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Hydropower generation, flood control and dam

cascades: A national assessment for Vietnam

Viet Nguyen-Tien 1, Robert J. R. Elliott1, Eric A. Strobl2

1 University of Birmingham, UK

2University of Bern, Switzerland

Abstract

Vietnam is a country with diverse terrain and climatic conditions and a dependency
on hydropower for a significant proportion of its power needs and as such, is particu-
larly vulnerable to changes in climate. In this paper we apply SWAT (Soil and Water
Assessment Tool) derived discharge simulation results coupled with regression anal-
ysis to estimate the performance of hydropower plants for Vietnam between 1995 to
mid-2014 when both power supply and demand increased rapidly. Our approach is to
examine the watershed formed from three large inter-boundary basins: The Red River,
the Vietnam Coast and the Lower Mekong River, which have a total area of 977,964
km2. We then divide this area into 7,887 sub-basins with an average area of 131.6km2

(based on level 12 of HydroSHEDS/HydroBASINS datasets) and 53,024 Hydrologi-
cal Response Units (HRUs). Next we simulate river flow for the 40 largest hydropower
plants across Vietnam. Our validation process demonstrates that the simulated flows are
significantly correlated with the gauged inflows into these dams and are able to serve as
a good proxy for the inflows into hydropower dams in our baseline energy regression,
which captures 87.7% of the variation in monthly power generation In other results
we estimate that large dams sacrifice on average around 18.2% of their contempora-
neous production for the purpose of flood control. When we assess Vietnam’s current
alignment of dams we find that the current cascades of large hydropower dams appear
to be reasonably efficient: each MWh/day increase in upstream generation adds 0.146
MWh/day to downstream generation. The study provides evidence for the multiple ben-
efits of a national system of large hydropower dams using a cascade design. Such a
system may help overcome future adverse impacts from changes in climate conditions.
However, our results show that there is still room for improvement in the harmoniza-
tion of cascades in some basins. Finally, possible adverse hydro-ecological impacts due
to the proliferation of large upstream dams, including those located beyond Vietnam’s
border, need to be carefully considered.
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1 Introduction1

Hydropower, which utilizes running or falling water as the chief input into electricity gen-2

eration, is the leading renewable source for electricity generation globally, supplying 71%3

of all renewable electricity. Reaching 1,064 GW of installed capacity in 2016, it generated4

16.4% of the world’s electricity from all sources (World Energy Council, 2017). Although5

attractive as a cheap, long-lasting, flexible and low-polluting renewable energy source, it6

is sensitive to changes in hydrology as a result of variation in weather conditions partic-7

ularly rainfall and temperature (Kumar et al., 2011; IFC, 2015). To assess the state of a8

hydropower system requires an evaluation of water availability. However, the absence of a9

consistent data at the country level means such an evaluation can be challenging. In many10

cases, measures of the inflow into a hydropower dam is not available or accessible. Mod-11

elling hydropower production is further complicated by hydrpower dams being increasingly12
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spatially connected so that they form cascades.113

There is a small but growing literature that incorporates rainfall-runoff models and re-14

gression analysis to estimate the energy generation from a hydropower system conditional15

on weather-induced variations in river flow. Rainfall-runoff models, in conjunction with16

remote-sensing datasets, are one of the solutions employed to overcome the lack of consis-17

tent data on a large scale. Meanwhile, regression analysis enables the researcher to establish18

the relationship between water availability and power generation. Notable papers include19

Cole et al. (2014) who use the GeoSFM model and regression techniques to assess the po-20

tential risks to energy supply in hydro-dependent African countries under different IPPC cli-21

mate change scenarios.2 Studies for Vietnam include Gebretsadik et al. (2012) who employ22

the CLIRUN-II model to simulate river flow for Vietnam in an integrated study while (Arndt23

et al., 2015) evaluate the impact of climate change on multiple water-dependent sectors in-24

cluding energy in Vietnam.3 However, these studies do not take into account the multiple25

purpose use of hydropower dams and the interactions between them. Indeed, a recent paper26

by de Faria et al. (2017) looking at the local socio-economic impact of large dams highlights27

the lack of (1) quantitative studies looking at impacts over an extended period and (2) a lack28

of studies that consider multiple projects in the context of a developing country.29

The purpose of this paper is fill this gap in the literature and to estimate the performance30

of the hydropower system across the whole of Vietnam using new data and advanced re-31

gression modelling techniques. More specifically, our main contribution is to estimate the32

1In addition to power production, hydropower dams typically serve multiple purposes including, but not
limited to, flood control, irrigation, and navigation

2The GeoSFM model is a semi distributed, physically based catchment scale hydrological model originally
developed by the National Centre for Earth Observation and Science (EROS) to support the Famine Early
Warning System Network (FEWSNET) through river flow monitoring. See Cole et al. (2014) for more details.

3CLIRUN-II is the latest in a family of hydrologic models developed specifically for the analysis of the
impact of climate change on river-runoff. See Gebretsadik et al. (2012) for details.
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impact of water availability, flood control and the interconnected cascades of dams on hy-33

dropower production for the period 1995 to 2014. With floods being the most common34

natural disaster in the country and with climate change predicted to lead to more extreme35

weather patterns it is important that we gain a better understanding of the role of hydropower36

dams in both the mitigation of floods and droughts as well as providing a reliable and clean37

source of energy.4 Our methodological approach allows us to answer a number of questions38

relevant for water resource management and Vietnam future energy strategy: (1) How is39

national hydropower generation affected by variations in weather and is it robust to extreme40

hydrological changes? (2) What is the trade-off between power generation and flood con-41

trol? and (3) Is the location of large hydropower dams appropriate to enable coordination42

among dams through the use of dam cascades and how do cascades affect production? A43

second contribution is that our methodology will allow future researchers to identify how44

variations in weather may impact those economic activities that are dependent on electric-45

ity via variation in power supply. This source of exogenous variation is useful as it allows46

researchers to address a number of endogeneity concerns in studies of the relationship be-47

tween firm performance and electricity provision (Allcott et al., 2016; Fisher-Vanden et al.,48

2015; Alam, 2013) or household welfare and electrification (Grogan, 2016; Khandker et al.,49

2009; Walle et al., 2013).50

To model river flow we use the HydroSHEDS/HydroBASINS dataset (Lehner, 2014;51

Lehner et al., 2008), which is derived from the detailed SRTM DEM at three arc-seconds.552

4Flooding is the most common weather-related disaster and is estimated to affect 2.3 billion people
(mainly in the Asia) (CRED, 2015). In Vietnam, floods rank second among natural disasters. Accord-
ing to national statistics, natural disasters in Vietnam are responsible for 750 deaths annually and eco-
nomic losses equivalent to 1.5% of GDP (IFAD, 2010). In October 2017 floods killed 72 people and dam-
aged 22,000 hectares of rice with deforestation being blamed for the floods being more severe than usual
(https://www.nytimes.com/reuters/2017/10/16/world/asia/16reuters-asia-storm-vietnam.html).

5A digital elevation model (DEM) is a digital model or 3D representation of a terrain’s surface created
from terrain elevation data. Source: https://en.wikipedia.org/wiki/Digital _ elevation _ model. DEM data is
stored in a format that utilizes three, five, or 30 arc-seconds of longitude and latitude to register cell values.
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Consequently, the river network and nested basin system created by HydroSHEDS/HydroBASINS53

has a higher resolution than the popular Hydro1K dataset.6 As a result we are able to under-54

take our analysis at a more disaggregated spatial level which we believe is necessary if one55

is to accurately model dam interactions. To the best of our knowledge, we are also the first56

to apply the SWAT model for Vietnam at the national scale.57

To model river-flow we use the SWAT (Soil and Water Assessment Tool) river-runoff58

model. SWAT is “one of the most widely used water quality watershed and river basin–scale59

models and is applied extensively to a broad range of hydrologic and/or environmental prob-60

lems” (Gassman et al., 2014, p. 1). SWAT has been applied to large-scale watersheds all over61

the world, for example China (Hao et al., 2004), West Africa (Schuol and Abbaspour, 2006),62

and Europe (Abbaspour et al., 2015). For a summary of SWAT applications for the US and63

EU see Arnold and Fohrer (2005).64

There is also an emerging literature that applies the SWAT model to Vietnamese wa-65

tersheds. For example, it has been used to study the hydrological process and sediment66

transport in the trans-boundary basin of Lower Mekong River (LMR), which is shared by67

Cambodia, Laos, Thailand, Myanmar, and Vietnam (Rossi et al., 2009; Piman et al., 2013).68

A part of the LMR, the Sesan, Srepok, and Sekong rivers (widely referred to as the 3S rivers)69

shared by Vietnam, Laos and Cambodia is particularly attractive to researchers because of70

the recent boom in hydropower (Wild and Loucks, 2014; T.Piman et al., 2013; Shrestha71

The geographic reference system treats the globe as if it were a sphere divided into 360 equal parts called
degrees. An arc-second represents the distance of latitude or longitude traversed on the earth’s surface while
travelling one second (1/3600th of a degree). At the equator, an arc-second of longitude approximately equals
an arc-second of latitude, which is 1/60th of a nautical mile (or 101.27 feet or 30.87 meters). Arc-seconds
of latitude remain nearly constant, while arc-seconds of longitude decrease in a trigonometric cosine-based
fashion as one moves toward the earth’s poles. Source: http://www.esri.com/news/arcuser/0400/wdside.html.

6The Hydro1K dataset which is a comprehensive global geographic database at a resolution of 1 km that
includes streams, drainage basins and ancillary layers derived from the 30 arc-second digital elevation model
(DEM) of the world (GTOPO30) generated by the U.S. Geological Survey (USGS, 2015) and has been used
for large scale river flow modelling by (Cole et al., 2014; Gebretsadik et al., 2012).
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et al., 2016). There are also a series of studies that apply SWAT to separate basins in dif-72

ferent parts of Vietnam: the North (Wang and Ishidaira, 2012; Phan et al., 2011; Ngo et al.,73

2015), the Central Coast (Giang et al., 2014; Le and Sharif, 2015), the Central Highland74

(Vu et al., 2012; Tram et al., 2014; Vu et al., 2015; Quyen et al., 2014), and the South (Ho75

et al., 2013; Khoi and Suetsugi, 2014). Although a frequent application of SWAT is to as-76

sess the impact of climate change on hydrological processes (Phan et al., 2011; Giang et al.,77

2014; Le and Sharif, 2015; Vu et al., 2015) they have also been used to evaluate the impact78

of human activities that take into account deforestation (Khoi and Suetsugi, 2014), forest79

planting, soil protection, crop conversion (Ngo et al., 2015; Quyen et al., 2014), and hy-80

dropower construction and operation (Wang and Ishidaira, 2012; Le et al., 2014). Although81

the application of these models varies they all attempt to inform policy makers on various82

aspects of water management, agricultural land use, and energy supply. However, none of83

these papers examine Vietnam at a national scale.84

The remainder of this paper is organised as follows. Section 2 describes the evolution85

of hydropower in Vietnam. Section 3 describes our methodology and data including the86

materials needed for our hydrological simulation, the SWAT model, the consolidation and87

transformation of hydropower and the regression techniques used in the paper. We present88

our results in Section 4. The final section concludes.89

2 Hydropower in Vietnam90

Understanding the hydrology of Vietnam is important for the reasons highlighted in the91

introduction. Located in the south-east of the Indochinese peninsula, Vietnam’s terrain is92

dominated by tropical hills and densely forested highlands. This means that Vietnam’s low-93
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lands, which are suitable for agricultural cultivation, cover less than 25% of its area with94

production concentrated in the Red River Delta (in the North) and the Cuu Long River Delta95

(in the South). The majority of water resources (63.9% of total flows) are concentrated in96

these basins while other parts of the country, that occupy more than 75% of the total area of97

Vietnam, receive just over 35% of the national total river-runoff. Yet Vietnam is abundant98

in water resources with 2,360 rivers above 10 km in length and 16 river basins above 2,50099

km2 in area. The annual run-off volume is around 847 km3. However a population of nearly100

100 million means that the total water volume per capita is still only around 9,560m3 per101

year compared to an average of global value of 10,000m3 according to the International102

Water Resources Association (IWRA) (MONRE, 2012).103

In the future, a rapidly growing economy and continued urbanization is expected to104

increase pressure on water resources. In addition, Vietnam’s river network is connected to105

neighbouring countries with 72% of its largest combined basin of about 1.167 million km2
106

located beyond its border (MONRE, 2012). This means Vietnam’s water availability could107

be severely affected if upstream countries were to change their demand or decide to divert108

or manipulate the river flow. Finally, although the monsoon tropical climate brings about a109

high average of annual rainfall of around 1940mm, the mountainous and hilly terrain causes110

a high degree of inter-annual rainfall variability. As a result, Vietnam’s water availability can111

change dramatically throughout the year. This means that foods and prolonged droughts can112

occur within the same year and region. As a rule, the dry season lasts around 6 – 9 months113

(with exact times varying across the country) and accounts for only 20-30% of annual run-114

off. At the same time, half of the 15 major basins experience a shortage of water (MONRE,115

2012).116

Under such challenging circumstances, dams, reservoirs, and their associated irrigation117
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systems play an important role in the water management of Vietnam. The combined total118

storage capacity of reservoirs across the country is about 37 billion m3, which is equivalent119

to 4.5% of Vietnam’s average annual run-off. The network of over 7,000 dams means that120

Vietnam is one of the most dammed in the world alongside the US and China (Pham and121

Pham, 2014).122

Our study covers the period 1995-2014 which is a time when Vietnam experienced rapid123

growth in the demand for electricity. Between 1995-2005, demand for electricity grew on124

average by 15% per annum as a result of an economic growth rate of around 7.5% per year125

(Huu, 2015). At current growth rates, projections are that Vietnam’s energy supply will need126

to triple by 2020 with additional supply coming chiefly from petroleum, coal, natural gas,127

and hydropower (ADB, 2015b). As a result, per capita energy consumption is projected to128

increase to 5,400 kilowatt-hours by 2030 from 985 kilowatt-hours in 2010 (ADB, 2013). As129

an inexpensive and available source of power, hydropower is a key component of the national130

energy mix. The ten major rivers suitable for hydropower construction have an approximate131

total potential capacity of 21,000-24,000 MW (UNIDO and ICSHP, 2013).7 In the last two132

decades, Vietnam has increased construction of hydropower plants to the extent that it has133

exploited nearly 70% of its theoretical hydropower potential (Huu, 2015).8 Hydropower cur-134

rently contributes 44% of Vietnam’s installed power capacity (ADB, 2015a). As part of its135

development plan looking ahead to 2035 (PDP7 revised) (Prime Minister, 2016), Vietnam136

continues to prioritise the development of hydropower, especially multi-purpose projects137

that combine flood control, irrigation, and electricity generation. The total capacity of hy-138

dropower plants is planned to increase from approximately 17,000 MW (2016) to 21,600139

7For comparison, the total power installed capacity of Vietnam in 2015 is 38,642 MW. Hence, if hy-
dropower’s potential was to be fully exploited it could account for 54% - 62 % of the total power installed
capacity in 2015.

8Compared to a global average rate of 35%
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MW (2020)9. In addition, the pumped storage electricity plants are scheduled to have a total140

capacity of 1,200 MW in 2025 and 2,400 MW in 2030.10
141

3 Material and methods142

3.1 Material for hydrological simulation143

To develop the SWAT model for Vietnam we use data generated through remote sens-144

ing. For the administrative boundary maps, we use the Global Administrative unit layers145

(GAUL) (version 2015), which provides “the most reliable spatial information on admin-146

istrative units for all countries in the world” (FAO, 2015). Our hydrographic data comes147

from HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives148

at multiple Scales) (Lehner et al., 2008) and its subset HydroBASINS (Lehner and Grill,149

2013). HydroSHEDS is a derivative of the digital elevation model (DEM) at a 3 arc-second150

resolution of the Shuttle Radar Topography Mission (SRTM). The elevation data was void-151

filled, hydrologically processed, and corrected to produce a consistent and comprehensive152

suite of geo-referenced data that enables the analysis of upstream and downstream connec-153

tivity of watersheds. Among the subsets of the HydroSHEDS database, the polygon layers154

that depict watershed boundaries and sub-basin delineations at a global scale critical for155

hydrological analysis are termed HydroBASINS. HydroBASINS delineates and codes sub-156

9However, the share of hydropower in national electricity production is predicted to fall to 29.5% by 2020
and 15.5% by 2030 (due to faster growth of other components of the energy sector).

10Vietnam is predicted to be among the countries likely to be most affected by climate change (WB & MPI,
2016). This vulnerability has come to the attention of the government and international organizations (ADB,
2013; FAO, 2011; IFAD, 2010, 2014; IMHEN, 2010; IPCC, 2007; ISPONRE, 2009; MONRE, 2003, 2009,
2010, 2011; WB, 2010, 2011; WB and MPI, 2016) with the main threats being increasing temperature, altered
rainfall patterns, and rising sea levels. For hydropower, higher temperatures are thought to lead to an increase
in demand for energy (MONRE, 2010) whilst also affecting stream flows into hydropower plants (WB, 2011).
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basins purely based on topographic and hydrographic bases without any local information157

(for example the name of rivers/ basins). To mitigate this, we utilize the basin and river158

layers of the dataset named “Rivers in South and East Asia” derived from HydroSHEDS159

by FAO (2014) which provides a river and basins network that simplifies HydroBASINS to160

include annotated attributes, such as the name of each large river and basin and the tentative161

classification of perennial and intermittent streams.162

For our analysis we require a large amount of consistently collected weather data. Al-163

though Vietnam has an intensive network of meteorological stations, access to the data to164

such a large number of stations over a long time period is prohibitively costly. Even if access165

were possible, inconsistencies in data availability (especially the missing data in weather se-166

ries) prevents us using this data for watershed analysis on a large scale. In addition, since167

Vietnam shares river basins with Laos, Cambodia and China, the weather data outside of168

Vietnam would also be needed since variations in rainfall and temperature in the neighbour-169

ing countries could affect the discharge of downstream rivers in Vietnam. Our solution is to170

use a high quality gridded weather database that supports SWAT applications from the Cli-171

mate Forecast System Reanalysis (CFSR) by the US’s National Centers for Environmental172

Prediction (NCEP) (Saha et al., 2010, 2014). To obtain information on soil profile, we use173

the Digital Soil Map of the World (DSMW) version 3.6 (FAO, 2007). The (physical and174

chemical) characteristics of each soil unit are tabulated by Schuol et al. (2008). For land175

cover information, we use the University of Maryland Department of Geography (UMD)176

Land Cover classification collection at the 1km pixel resolution (Hansen et al., 1998, 2000).177

The resolution of materials for the simulation are summarized in Table 1.178

[Table 1 about here]179
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3.2 The SWAT hydrological simulator180

SWAT (Arnold et al., 1998) is a continuation of thirty years of non-point source modelling by181

the US Department of Agriculture (USDA), the Agricultural Research Service (ARS), and182

Texas A&M University.11 The model is a physically based, continuous, semi-distributed183

model that was initially developed to project the impact of land management practices on184

water, sediment and agricultural chemical yields in large complex catchment areas under185

various soil conditions, land use and management over a long time period (Neitsch et al.,186

2009). More recently it has been incorporated into a variety of GIS interfaces such as SWAT/187

GRASS (Srinivasan and Arnold, 1994), ArcView-SWAT (AVSWAT) (Di Luzio et al., 2004)188

and ArcSWAT (Olivera et al., 2006).189

SWAT enables the simulation of numerous physical and chemical processes: discharge,190

erosion, nutrients, pesticides and management (rotations and water use) (Neitsch et al.,191

2009). It divides a given watershed into a number of sub-basins mainly based on topog-192

raphy characteristics given a chosen number or size of sub-basin. This process is typically193

referred to as watersheds delineation. However, each sub-basin is not treated as a lump but194

instead each sub-basis in broken down into different hydrologic response units (HRU) each195

considered as a homogenous unit with their own unique set of land cover, soil and manage-196

ment features. The hydrological cycle of a watershed is simulated based on two processes.197

First, the land phase controls the amount of water flowing to the main channel of each sub-198

basin and second, the routing phase controls the movement of water through the channel199

(river) network to an outlet of the watershed.200

11Other federal agencies also contributed to the model, including the US Environmental Protection Agency,
the Natural Resources Conservation Service, the National Oceanic and the Atmospheric Administration and
the Bureau of Indian Affairs.
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The land phase The land phase of the hydrological cycle is based on the water balance201

equation:202

S Wt = S W0 +

t∑
i=1

(
Rday − Qsur f − Ea − wseep − Qgw

)
(mm H2O) (1)

where the final soil water content (S Wt) is made up of the sum of initial soil water203

content (S W0) and a daily-time-step summation of the difference between the amount of204

precipitation
(
Rday

)
, and the sum of the amount of surface runoff

(
Qsur f

)
, evapotranspiration205

(Ea) , percolation and bypass flow exiting the soil profile bottom
(
wseep

)
, and return flow206 (

Qgw

)
.207

Equation (1) captures potential pathways of water movement simulated by SWAT. Once208

precipitation descends, it is either intercepted or held in the vegetation canopy or falls to the209

soil surface. Water on the soil surface infiltrates into the soil profile or flows overland as210

runoff. Runoff moves relatively quickly toward a stream channel and contributes to a short-211

term stream response. Infiltrated water is either held in the soil and later evapotranspried or212

slowly makes its way to the surface water system via underground paths. Different crops213

and soils appear with varying evapotranspiration. Runoff is projected individually for each214

HRU then combined to obtain a total runoff for the watershed. Details about each phase can215

be found in Arnold et al. (1998); Neitsch et al. (2009).216

Routing phase The lump of runoff in each sub-basin is calculated and then routed to217

the main channel through the stream network using either the variable storage coefficient218

method by Jimmy (1969) or the Muskingum routing method. The underlying principle is219

that water discharges downstream except for that part that is lost due to evaporation and220
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transmission through the bed of the channel and the removal for agricultural and human use.221

3.3 Hydrological simulation222

In this paper we simulate river flow for Vietnam using the ArcSWAT 10.2 interface (SWAT223

model incorporated in ArcGIS 10.2).224

The first step is to delineate the watershed. The watershed we study is a combination225

of three large basins as defined by the “FAO Rivers in South and East Asia”: Red River226

(165,007 km2), Vietnam Coast (186,187 km2), and a part of Mekong River (similar to Lower227

Mekong River with an area of 626,771 km2). The total area of the watershed is 977,964228

km2.229

Figure 1 shows the transboundary watershed shared by Vietnam, China, Myanmar, Lao230

PDR, Thailand and Cambodia. The area within Vietnam accounts for 32.22% the total area231

of the watershed and covers 96.15% (315,122 km2/327,727 km2) of Vietnam’s mainland232

area. The remainder belongs to the Bang Giang – Ky Cung river basin, which makes no233

meaningful contribution to Vietnam’s overall hydropower production. ArcSWAT offers two234

options for breaking the watersheds into smaller sub-basins: burning a river network from235

a DEM input or using layers that predefine sub-basins and the river network. We chose236

the second option to take advantage of the HydroBASINS dataset. Hence, the watershed is237

divided into 7,887 sub-basins at level 12 of HydroBASINS.238

[Figure 1 about here]239

Table 2 summarises the sub-basin data and shows that their areas vary from 0.2 km2
240

to 368.6 km2, with a mean of 131.6 km2. The use of HydroBASINS has two advantages241
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over using DEM. First, HydroBASINS was derived from HydroSHEDS, which already242

hydrographically conditioned DEM. DEM like SRTM has some characteristics, artefacts,243

and anomalies unfavourable for hydrologic application (Lehner, 2013).12 Second, Hy-244

droBASINS provides two nested coding systems (Pfafstetter codes and HydroSHEDS ID).245

These codes are a useful for our spatial analysis as they help us to determine systematically246

the upstream- downstream relationship between dams. Despite using predefined basins, a247

DEM is still required to calculate the topography characteristics of each basin and hence we248

used the HydroSHEDS void-filled DEM for this purpose.249

[Table 2 about here]250

ArcSWAT divides each sub-basin into HRUs using a combination of soil, land use and251

slope layers. The soil and land use layers are listed in subsection 3.1. The slope layer was252

created by ArcSWAT using the HydroSHEDS void-filled DEM. We determined three classes253

of slope in line with the soil slope classification of DSMW: 0-8% (class 1), 8-30% (class254

2) and above 30% (class 3), which respectively contribute 64.12%, 31.51%, and 4.37% to255

the area of the watershed. Based on the above layers, ArcSWAT assigned multiple HRUs to256

each watershed given our sensitivity thresholds (5% for land use and soil and 20% for slope).257

In our final data set the watershed is divided into 7,887 sub-basins and 53,024 HRUs. Daily258

data for each sub-basin on the maximum and minimum temperature, precipitation, wind259

speed, relative humidity, and solar radiation were supplied from 2,755 weather gridded-260

stations from the CFSR/NCEP dataset.261

We simulated monthly river flow for the whole watershed for the period January 1995 to262

July 2014. The simulation period was chosen to best fit the available performance data of263

12HydroSHEDS reduces errors by deepening open water surfaces, weeding coastal zones, burning stream,
filtering, moulding valley courses, filling sinks and carving through barriers.
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hydropower plants, subject to the availability of weather data. The model was also run for264

5 years prior to this period for warming up purposes, which helps to establish the equalized265

initial condition of soil water before simulation. The simulation used the method integrated266

in ArcSWAT (Arnold et al., 1998; Neitsch et al., 2009) that modify the SCS curve number267

procedure (SCS, 1972) to take into account the varying conditions of land uses and soil types268

to estimate surface runoff and use the Penman-Monteith method (Allen, 1986; Allen et al.,269

1989; Monteith, 1981) to estimate evapotranspiration.270

3.4 Hydropower data consolidation and transformation271

Our analysis focuses on river flow to the 40 largest hydropower plants in Vietnam, which272

belong to the 12 basins shown in Figure 2 and listed in Table 3. The location of these hy-273

dropower dams is mapped using a GIS software (ArcGIS) based on information from various274

sources including the Vietnam Energy Map of Japan External Trade Organization (JETRO),275

WB (2014), United Nations Framework Convention on Climate Change - Clean Develop-276

ment Mechanism (UNFCCC-CDM) database, hydropower companies’ websites, and local277

news websites. Finally, we validated and refined the dataset using observations from Google278

Earth.279

[Figure 2 about here]280

[Table 3 about here]281

Our hydropower operation data at the plant level is from Electricity of Vietnam (EVN,282

2015). The report provides information on total capacity, monthly gauged river flow data283

of each plant, and electricity generation of 40 of the largest hydropower plants of Vietnam284
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between 1995-2014. Vietnam classifies hydropower plants into two categories: small (un-285

der 30 MW and managed by local governments) and large (above 30MW and managed by286

central government). WB (2014) further divides the latter group into medium (from 30MW287

to under 100MW) and large hydropower plants (above 100 MW). The majority of plants on288

our list of 40 are defined as large and all of them are managed by the central government.289

Figure 3 shows that the combined installed capacity of these plants accounts for 75-85% of290

all hydropower sources which in turn accounts for 35% -53% of all energy sources across291

Vietnam.292

[Figure 3 about here]293

As part of the data cleaning process we transformed the data in a number of ways. The294

original power generation data was monthly and measured in million kWh. However, the295

number of days within a month varies between 28 to 31. Our solution is to divide the296

monthly electricity generation by the number of days per month and re-scale it into MWh.297

Initially we had a simple measure of the installed capacity of plants after full installation.298

However, as there were no additional developments to existing hydropower plants during our299

period of analysis, this variable is time-invariant and would be absorbed by the fixed effects300

in our regressions. In other words, under such circumstances, we would n2ed to exclude the301

capacity variable as there would be perfect multicollinearity between it and the dam fixed302

effects, which already capture any time-invariant dam-specific characteristics. To mitigate303

this, we take advantage of the fact that each plant is comprised of several generators that304

are typically commissioned at different times. More precisely, it can take a plant months or305

even years to be fully operational after the commissioning of its first generator. Hence, in306

reality the installed capacity of each plant is time varying during the installation phase and307

time-invariant from that point onwards. We gather information on the operation date of each308
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generator from the website of plants or local online newspapers, and then adjust the installed309

capacity of each plant to reflect the real operation of each generator. Fortunately, the first run310

of each generator in a large hydropower plant is an important event to investors and local311

residents and hence this information is fully recorded. As a result, the installed capacity312

variable, after transformation, became time-varying and can be included in a regression313

with fixed effects. All plants in our sample are of the storage type and many have large314

government regulated reservoirs. The total capacity of reservoirs ranges from 30.4 million315

m3 to 9.8 billion m3 and the mean size is 1.1 billion m3. 13
316

To enable us to investigate the interaction between dams on the same river system, we317

need to determine the upstream-downstream relationship between dams. To do this we318

use the HydroSHEDS identifiers from the HydroBASINS dataset at the most disaggregated319

level. HydroBASINS provides two systems of basin coding: HydroSHEDS identifiers and320

Pfafstetter code (Verdin and Verdin, 1999). We use the former as the HydroSHEDS identi-321

fiers is more consistent and each sub-basin is assigned one unique identifier and routed to322

(only) one immediate downstream sub-basin or the sea/itself (if it is an outlet) or an out-323

let (if it is an endorheic sink).14 Table 4 shows that, after tracing all routes, that there are324

13 hydropower cascades detected in 9 of the 12 basins studied comprised of 36 upstream-325

downstream pairs. We then consolidated with local information (websites of hydropower326

plants, local newspapers and so on). The distance between each upstream plant and its327

downstream counterparts in Table 4 is measured by the number of HydroSHEDS sub-basins328

13Information about these reservoirs is from the 11 most recent PM decisions on inter-reservoir manage-
ment procedures in 11 basins: Ba (1077/QD-TTg -2014), Sesan (1182/QD-TTg 2014), Srepok (1201/QD-TTg
2014), Ca (2125/QD-TTg 2015), Huong (2482/QD-TTg 2015), Kon Ha Thanh (1841/QD-TTg 2015), Ma
(1911/QD-TTg 2015), Tra Khuc (1840/QD-TTg - 2015), Red River (1622/QD-TTg -2015), Vu Gia Thu Bon
(1537/QD-TTg 2015), Dong Nai (471/QD-TTg -2016). For smaller reservoirs, data were collected from inter-
net sources. The smallest plant among those studied has a full installed capacity of 44 MW. The largest one is
more than 50 times greater (2,400 MW) and the average one is about 300 MW.

14Because of the challenges in the latter in determining the downstream plants; for example, the difference
in routing between inter-basins and basins and the skip of coding due to endorheic sinks and islands.

17



  

shared between them. The exception is Ham Thuan and Da Mi where the zero-distance329

reflects the fact that the dams are located in the same sub-basin.330

[Table 4 about here]331

We create two proxies for the operation of an upstream dam: the combined installed332

capacity of upstream dams and the combined production of upstream dams. Some dams333

have many upper dams that are operated at different times and we need to fill in all missing334

values before aggregating. The installed capacity and production of plants before they begin335

their operation are assigned zero values. Any missing values from upstream dams are filled336

in using the predicted values of a double log regression of non-missing production values337

on its installed capacity and simulated discharge.15 The double-log regression has lower338

predictability than the double-level regression; however, it ensures that the predicted values339

are positive. The variable coefficients then measure the average impact of upstream dams340

nationwide.341

Table 5 provides summary statistics for our key variables of interest. We model monthly342

hydropower generation using data on installed capacity and simulated discharge. We con-343

sider the period from January 1995 to July 2014 and since the majority of Vietnam’s hy-344

dropower plants were commissioned after 1995, the panel is unbalanced. Our final sample345

includes 2,984 observations with a mean generation of 4.39 MWh per day. The highest pro-346

duction record is 46.8 MWh (Son La on August 2014). Recall that the installed capacity,347

disaggregated at the generator level, is time variant and ranges from 22MW to 2,400 MW348

with a mean of 376.3 MW. The simulated flows in the sample vary from 0.12 – 9,105 cubic349

metres per second and the combined installed capacity of upstream dams varies from 0 to350

15The model for each plant (i) is ln(Gent) = β0 + β1ln(CAPt) + β2ln(Flowt) + εt.
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2,820 MW. The combined production of upstream dams varies from 0 to 45,781 MWh/day.351

[Table 5 about here]352

3.5 Simulation validation353

To evaluate the performance of the river flow model in general and the SWAT application in354

particular, a common approach is to compare the gauged flow with the simulated flow based355

on statistics established and documented prior to the modelling. There are numerous statis-356

tics that can be used for this purpose that are usually put into 3 different categories: standard357

regression, dimensionless, and error index (Moriasi et al., 2007). In this study, since river358

flows are simulated to serve as as an explanatory variable in subsequent regression analyses,359

we are interested in the variation in discharge rather than the level. Hence, for validation we360

intend to use two standard regression statistics: Pearson’s correlation coefficient r and the361

coefficient of determination R2. The gauged data for validation are monthly average inflows362

to dams from the same source as hydopower generation data. The data are only available363

for dams during their operation time hence the length of gauged series vary across dams.364

It should also be noted that there are many missing values hence gauged series are shorter365

than the generation series. Validation is applied for dams with gauged series long enough366

(at least 30 observations) to provide statistically reliable results.367

Pearson’s correlation coefficient r measures the degree of the linear relationship between368

two types of data, ranging from -1 (perfect negative correlation) to 1 (perfect positive corre-369

lation) (Krause et al., 2005; Moriasi et al., 2007). To have confidence in our simulated data370

we expect a sensible river flow model to have a positive r with a magnitude close to one. As371

we do not have any guide on specific threshold to classify the fit of the model based on r,372
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we report the significance at conventional levels (i.e., whether two variables are significantly373

correlated or not).374

r =

∑n
i=1

(
Yobs

i − Ȳobs
) (

Y sim
i − Ȳ sim

)
√∑n

i=1

(
Yobs

i − Ȳobs
)2
√∑n

i=1

(
Y sim

i − Ȳ sim
)2

(2)

The coefficient of determination R-squared measures the percentage of the change in375

observed data explained by a best-fit regression line using simulated data as an explanatory376

variable. The value is bounded between 0 and 1, and the higher it is, the better the match377

between observed data and simulated data. A value above 0.5 is considered acceptable378

(Santhi et al., 2001; Van Liew et al., 2007).379

3.6 Regression method380

To estimate hydropower generation using simulated flows, we rely on the linear panel data381

model and the pooled ordinary least squares (POLS) estimator. See Appendix A for more382

details. For inference purposes, we make minimal assumptions about the error term and rely383

on standard errors that are robust to heteroscedasticity and contemporaneous and lagged384

spatial correlation computed by statistical package STATA and command xtscc (Hoechle,385

2007). They are derived from the non-parametric covariance matrix estimator by Driscoll386

and Kraay (1998) adjusted for an unbalanced panel . Driscoll and Kraay (1998) standard387

errors are used because the normal i.i.d assumptions are not appropriate as the variances in388

the errors are likely to be larger for the larger plants. In addition, power generation from389

different plants, especially those within the same basin, are likely to be correlated with each390

other. Finally, the electricity generation from any given plant at a particular time is not in-391
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dependent of its lagged values. To assess the goodness-of-fit of our models, we consider392

the adjusted R-squared (R̄2) that measures the percentage of variation in the dependent vari-393

able explained by a model with a penalty for excessive regressors. We employ a number of394

specifications to model hydropower generation as follows:395

Baseline regression In the first stage we examine the degree to which simulated river flow396

explains the production of electricity from hydropower plants. Our baseline specification397

follows Cole et al. (2014) and assumes that the main determinants of hydropower generation398

(Gen) are a quadratic function of river flow (Flow) and dam capacity (CAP):399

Genit = β0 + β1Flowit + β2Flow2
it + β3CAPit + λt + µi + εit (3)

where subscripts i and t refer to a hydropower plant and our unit of time, respectively.400

λt is included to capture all time-specific factors (monthly) that have a uniform effect on all401

hydropower plants. µi is the unobservable time-invariant hydropower plant fixed effect and402

εit is an idiosyncratic error term. One should note that our specification differs from Cole403

et al. (2014) in that they studied hydropower generation on a continental scale for Africa at404

yearly intervals, while our study is on a national scale for Vietnam using monthly data.405

The calculation of electricity production from a hydropower plant is given by:406

P = η × ρ × g × Q × H (4)

where P is the power produced at the transformer (million MW), η is the overall effi-407
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ciency of the power plant, ρ is the density of water (1000 kg/m3), g is the acceleration due408

to gravity (9.81 m/s2), Q is the volume flow rate passing through the turbine (m3/s), and H409

is the net head (m). By assigning a typical overall efficiency of 87% (IFC, 2015) it reduces410

the formula to:411

P(kW) = 8.5 × Q × H (5)

The installed capacity is one of the most prominent features of a hydro plant, which can412

be calculated by equation (4) using design discharge, net head, and the overall efficiency413

for a given design discharge. If the river flow rate passing through a turbine is equal to414

its design discharge, the production of electricity is proportionate to the installed capacity.415

If the flow rate is higher or lower than the design discharge, there will be more or less416

electricity generated. The gap between the flow rate and the design discharge can be sensibly417

proxied by the variation in the river flow into a hydropower plant. We expect positive signs418

for both explanatory variables in a linear specification (β1, β3 > 0). The linear function419

of the inflow’s impact on hydropower electricity generation is based on the assumption of420

constant overall efficiency. In practice, efficiency is a non-linear function of the deviation421

between the turbine discharge and the optimal value, the outcome of which is subject to the422

type of turbine. Figure 4 presents a stylized version of the efficiency profiles of different423

turbine types and shows that plant efficiency is low when the discharge is far below the424

optimal value, and then increases. This suggests that a quadratic function of discharge with425

a negative coefficient for the squared term (β2 < 0) is a more appropriate functional form to426

model hydropower production.427

[Figure 4 about here]428
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Besides the key determinants, our baseline model includes two-way fixed effects (λt +429

µi + εit). Dam fixed effects µi are included to account for the unobserved features that are430

unchanged overtime. As our SWAT model has not been calibrated, the parameters in the431

rainfall-runoff model can not be considered optimal. Hence, the relationship between sim-432

ulated and actual inflows into a dam depends in part on the heterogeneous characteristics433

of each sub-basin (for example soil composition, land cover distribution and topographic434

features) and are partially absorbed by dam fixed effects. Dam fixed effects also capture435

variations in turbine efficiency across dams. We include time fixed effects to control for com-436

mon trends over time. For example, the performance of satellite data on which our SWAT437

model relied may varying across the months of a year and across years. Likewise, time438

fixed effects will control for any time-varying fluctuations in the demand for electricity that439

is common across the country. Finally, besides measurement error, the idiosyncratic error440

term (εit) captures any unobserved factors that vary across either time or dams, for example,441

production adjustments due to regional changes in demand, deviations from overall turbine442

efficiency, the storage and releasing of water from dam reservoirs, and any hydropower plant443

interactions.444

Flood control regression A key feature of hydropower plants is they important role they445

play in flood control. In Vietnam, 3 basins have reservoirs with a flood control capability446

namely Hong–Thai Binh River, Ma River and Huong River (MONRE, 2012).16 Even hy-447

dropower plants without a specific flood control function are able to store flood water as a448

means to smooth electricity production across time.449

To quantify the degree to which the flood control function of dams affects production of450

16Lo–Gam–Chay River and Da River are parts of larger Hong–Thai Binh River.
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hydropower we extend the baseline specification to include proxies for floods. We estimate451

three alternative specifications: (1) a dummy variable Floodit (defined as flows that exceed452

the mean flow at each hydropower plant by at least one standard error), (2) its interaction453

terms with inflows into hydropower plants and (3) both (1) and (2) together. The final454

specification is given by:455

Genit = β0 +β1Flowit +β2Flow2
it +β3CAPit +γ0Floodit +γ1Flowit×Floodit +λt +µi +εit (6)

where the assumption is that utilizing a dam’s flood control role is at the expense of a456

reduction in hydropower generation even though this shortfall in power generation may be457

considered socially and economically desirable. We expect the estimated coefficients on our458

flood variables to be negative (γ0, γ1 < 0).459

Dam interactions Finally, a little understood issue is how hydropower plants interact with460

each other. Hydropower generation in many basins requires coordination between plants that461

share a common water resource. Knowledge of how these interactions work could facilitate462

improvements in the allocation of existing water resources.463

There are a number of reasons why an upstream plant may potentially influence the464

power generation of downstream plants that can be related to either their construction or465

operation. For example, the building of a hydropower plant is typically associated with466

a degree of deforestation and hence an increase in river-runoff. As a result, downstream467

discharge and electricity generation may increase.17 Alternatively, some hydropower plants468

17A report from the National Assembly reveals that 160 hydropower projects in 29 cities and provinces

24



  

construct weirs that diverts water to an ‘off-site’ facility that enables it to create a higher469

head for electricity generation (Hecht and Lacombe, 2014) but at the cost of a reduction in470

river flow into downstream rivers which in turn lowers the production of hydropower plants471

in those down stream locations. In terms of operation, upstream plants with large storage472

facilities and no water diversion normally adjust outflows in a way that favours downstream473

electricity generation. By reducing extreme inflows into downstream plants it means that474

the turbines can operate at higher efficiency levels leading to higher levels of electricity475

production.476

The actual effect of dam interactions is therefore an empirical question. To capture the477

cascade effect our solution is to include a proxy for the operation of upstream dams into our478

baseline specification. As part of our robustness checks we include the combined upstream479

capacity and combined upstream production variables (as described in Subsection 3.4). We480

further decompose the impact of cascades by adding interaction terms between upstream481

operation variables and categorical variables of hydrological conditions (flood, normal and482

drought). Finally, we investigate the heterogeneity in dam interaction across basins. Ac-483

cording to PanNature (2011), basin-based water management was adopted in Vietnam fairly484

early.18 As basins have historically been managed by different organizations, dam interac-485

tion could vary across basin. We explore this heterogeneity by adding the interaction terms486

over the period 2006-2012 converted an area of 19,792ha of forest land into land suitable for the location of
hydropower plants (Le and Tran, 2016).

18Water Resources Law issued in 1998 sketched river basin plan regulation and the role of the River Basin
Planning Management Commissions. The commissions then established the management of water resources
in Cuu Long (Mekong) River (2001), Dong Nai River (2001), Hong–Thai Binh River (2001), Vu Gia–Thu
Bon (2005) by MARD. Similarly, River Basin Councils with the participation of local governments and the
involvement of communities were created to manage the Srepok River (2006) and Ca River. Subsequently,
the water resource management function was passed from MARD to the newly set-up MONRE with the
establishment of a number of River Basin Environment Protection Commissions in Cau River (2007), Dong
Nai River (2008), and Nhue-Day River (2009). The ineffectiveness of various basin management organizations
mentioned above was addressed by the Decree 120/2008/ND-CP on River Basin management, which sought
to establish consistent basin-based water resources management and proposed the establishment of the River
Basin Commissions to coordinate and supervise the activities of ministries, and local governments related to
water resources planning and management.
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between the proxies for upstream operation and dummies for each basin.487

4 Results and discussions488

4.1 Simulated discharge validation489

The validation is made for simulated inflows to 24/40 studied hydropower dams (belonging490

to 11/12 studied basins) that have at least 30 gauged observations for comparison.19 The as-491

sessment results are shown in Table 6. Overall, all simulated flows are positively correlated492

with the gauged flows. The magnitude of the Pearson correlation coefficients (r) ranges from493

0.33 (An Khe - Kanak) to 0.90 (Thac Mo). The mean and median of these coefficients are494

0.70 and 0.72 respectively. Almost every correlation is significant at 1%. The exceptions495

are An Khe - Kanak and Quang Tri, which are significant at 10% and 5% respectively. The496

coefficients of determination (R2) vary between 0.11 and 0.8. Based on the threshold of 0.5497

for the this statistic, our rainfall-runoff model could be labelled as ‘acceptable’ for inflows498

to 13/24 dams. Both the mean and median of these R2 are 0.52 and exceed the threshold.499

[Table 6 about here]500

There are a number of reasons why the simulated data does not perfectly match the501

observed data. Firstly, the model may inherit errors in the data, especially when we need502

to rely on remote-sensing data for our large scale study. For example, the HydroSHEDS503

dataset is known to be exposed to error in coastal areas (Lehner, 2013) due to SRTM satellite504

operation characteristics (Farr et al., 2007). The problem is amplified as Vietnam is a coastal505

19The only basin that has no dam validated is the Huong River Basin.
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country and stretches along the sea. Our model perform better for basins in the North and the506

South rather than those in the Central part of the country. It is indeed difficult to accurately507

model discharge in small, narrow coastal basins like Huong River, or Thach Han River due508

to the strong influence of the tide. In addition, we simulated the model with assumptions509

of no change in topography, soil profile and land cover. We acknowledge that this is a510

reasonably strong assumption over a long period of time.511

As our time period covers a time when Vietnam experienced rapid economic develop-512

ment, the change in land cover could be considerable (for example deforestation and urban-513

ization). A boom of hydropower in Vietnam and countries upstream may also have a consid-514

erable impact on river flow regimes and sediment patterns. Finally, as our SWAT model was515

not calibrated, the default parameters that we rely on may not be optimal for Vietnam. An516

appropriate adjustment of the parameters ET, lateral flow, surface runoff, return flow and tile517

flow processes (Arnold, Moriasi, et al., 2012) may improve the performance of the model.518

However, we were not able to execute such an approach in this study due to a shortage of519

longer observed flows that would be necessary for calibration.520

Nevertheless, by exploiting information on the variation of discharge data rather than521

its level, the simulated flows appears to be useful given the significant and relatively high522

correlation with gauged flows. The introduction of fixed effects and dam interconnection523

modelling in regressions are expected to help mitigate some of the problems mentioned524

above. The above assessment also indicates that there are substantial similarities in SWAT525

model performance for dams in the same basin. This is a signal of potential spatial corre-526

lation besides possible serial correlation and motivates our decision to adjust the standard527

errors following Driscoll and Kraay (1998). See subsection 3.6 for details.528
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4.2 Regression results529

4.2.1 Hydropower generation (baseline model)530

First, to arrive at the baseline specification we add each regressor sequentially which en-531

ables us to consider the contribution of each explanatory variable to the operation of hydro-532

plants. The results from Columns (1) to (5) in Table 7 show that all the regressors in the533

baseline specification appear with the expected signs and significance at the conventional534

levels. Column (1) shows that discharge is the main explanatory variable for hydropower535

electricity production with its variation alone explaining 64.4% of the variation in electric-536

ity generation. The non-linear specification in Column (2) provides additional explanatory537

power and adds 1.5% to the goodness-of-fit. A negative and significant quadratic term sug-538

gests that higher discharge increases production but at a decreasing rate before it reaches a539

turning point. Our finding is similar to that for African hydropower production shown in540

(Cole et al., 2014). The reason for the inverted U is due to the variation in efficiency of541

turbines discussed in Subsection 3.6.20 In Column (3) we include installed capacity which is542

found to be positive and significant and increases the adjusted R-squared by a further 19.3-543

percentage points to 0.853 and reduces the coefficients on both discharge and its squared544

term by roughly a half. The inclusion in Columns (4) and (5) of plant and time fixed effects545

respectively only marginally increases the goodness of fit. Our final baseline specification546

in Column (5) explains 87.7% of the variation in hydropower electricity generation.547

[Table 7 about here]548

20The average turning point is estimated to be approximately 9,820 (m3/s), which is out of range of the
discharge sample.
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4.2.2 Flood control549

Column (6) of Table 7 includes a dummy for a flood and indicates that, on average, a plant550

during those months of flooding produces 795.5 MWh per day less than during normal op-551

eration conditions (which is equivalent to 18.2% of the mean production of the sample). In552

Column (7) we include the interaction term which suggests that a higher reduction in elec-553

tricity production mitigates a more severe flood. On average, a plant reduces its production554

by 1 MWh/day to mitigate 1 (m3/s) increase in flood flow. When we add both a dummy555

for a flood and its interaction term with discharge in Column (8), only the coefficient of the556

latter is statistically different from zero and the estimate of the coefficient is just below -1557

(m3/s). It should be noted that as we do not model dynamics, the sacrifice of electricity558

generation for flood control purposes should be interpreted as a contemporaneous response559

rather than a permanent trade-off.21 Dams can use water stored during periods of flooding560

to generate electricity at a later date. The large and significant coefficients estimated here561

provide evidence of the substantial benefits of large dams to mitigate the adverse impact of562

extreme weather events.563

4.2.3 Hydropower plant cascade interactions564

In Table 8 we present our estimates for the impact of hydropower cascades on hydropower565

production. In addition to our proxy for the operation of upstream dams we also include566

year and dam fixed effects. Our upstream dam proxies in Columns (1) and (3) are the sum567

of hydropower capacity installed upstream and the sum of hydropower generated upstream.568

The results show that upstream plant have a positive and significant impact on hydropower569

21We thank an anonymous referee for raising this point.
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production although capacity is only significant at the 10 percent level. The interpretation570

of the coefficients is straightforward. Each additional MW of hydropower capacity installed571

upstream increases the daily production of a downstream plant by 1.332 MWh (Column 1).572

This is equivalent to 0.03% the mean production of the sample. Column (3) shows that an573

increase by 1 MWh in the production of upstream plants adds 0.146 MWh to downstream574

production.575

[Table 8 about here]576

In Columns (2) and (4) we include interaction terms to evaluate the synergies under577

different hydrological conditions. Column (2) suggests that for downstream electricity gen-578

eration, on average each extra MW upstream adds 1.28 MWh in normal conditions, 2.721579

MWh under extremely dry conditions and reduces production by 0.167 MWh under ex-580

tremely wet conditions. Column (4) indicates that a 1 MWh increase in upstream production581

induces a rise in downstream production by 0.161 MWh under normal discharge conditions,582

by 0.0634 MWh under flood conditions and 0.341 MWh in a drought. The differences be-583

tween the coefficients under extremely dry conditions and normal conditions is significant584

at the 1% level.585

Our results highlight that hydropower cascades can be successfully used to improve the586

reliability of power supply and as an adaptation measure against future extreme weather587

conditions. During period of drought an upstream plant can roughly double the production588

of downstream plants but has a negligible effect during extreme wet conditions. The logic is589

simple. Upstream plants store water during floods and release water during droughts, which590

in both cases improves the efficiency of downstream plants.591

To investigate the cascade effect further, in Table 9 we include hydropower dam inter-592
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actions at the basin scale. Since there are no cascades among the plants in the basins of the593

Thach Han River, Kon-Ha Thanh River and Vu Gia–Thu Bon River, the results in Table 9594

estimate the spillover effects for 9 basins only.22 Our results now suggest that the spillover595

effect of upstream plants is not always positive. While synergies are found for the Da River,596

Sesan River, and Srepok River, we find a negative spillover effect for the Dong Nai River,597

Ba River, Ca River, Huong River, and Ma River. Although all of the positive synergies are598

significant, the only negative and significant impact is for the Dong Nai River and the Ca599

River.600

[Table 9 about here]601

An important question is whether these synergies were anticipated before the construc-602

tion of new upstream plants. If this is the case, if well coordinated, the construction of an603

upstream plant can be equivalent to extending downstream storage such that downstream604

plants can store and release stored water to maximize power generation. An example of605

coordinated construction comes from Srepok where the construction of the Buon Tua Srah606

dam (86 MW) was predicted to enhance the generation of the Buon Kuop and Srepok 3607

dams by 77 million kWh and 34.8 million kWh, respectively (VINACONEX, 2017). In the608

Da River basin, the installation of Son La dam (2400 MW), the largest hydropower dam of609

Vietnam (and in Southeast Asia), was expected to increase the annual production of Hoa610

Binh dam by 1.26 billion kWh (Vietnam National Committe on Large Dams and Water611

Resources Development, 2006). Similarly, the operation of Ban Chat dam (220MW), up-612

stream of Son La dam since 2013, was expected to add nearly 0.4 billion kWh per year to613

two downstream dams (Vietnam National Committe on Large Dams and Water Resources614

22The estimates for Ca River, Huong River and Srepok River using interaction terms for upstream dams
installed capacity were dropped due to the perfect multicollinearity with dam fixed effects.
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Development, 2015). Finally, in the Sesan river, the most upstream hydropower plant (Plei615

Krong 1 – 100 MW) was supposed to increase the installed capacity of downstream plants616

(Yaly, Sesan 3 and Seasan 4) by 157.3 MW and to increase production by 217.1 million617

kWh/year (Ialy Hydropower Company, 2017)618

The negative spillovers are most likely the result of the deliberate diversion of water by619

upstream dams. Given the multi-purpose nature of dams, this negative impact may be inten-620

tional. The claim is that the Dai Ninh dam and Dong Nai 3 dam in the Dong Nai River were621

constructed to help prevent flooding in downstream districts of Lam Dong province and to622

reduce the flooding pressure on the most downstream hydropower dams in this basin (Tri623

An dam) (Pham, 2014). At other times, droughts caused by hydropower dams is unintended624

and undesirable. One of the most frequently criticised is the case of An Khe–Kanak dam625

(173 MW) which, after starting operation, began to store water from the Ba River but to dis-626

charges water into the Kon River to create a higher head and to improve its own production627

(MONRE, 2012). The result was that a downstream segment of Ba River became dry and628

adversely affected the welfare of nearby residents.629

Although our results are robust to different specifications, it is worth noting that while630

we control for dam heterogeneity and time heterogeneity, there may still be some omitted631

variable bias if there are unobserved factors that vary both spatially and temporally. One632

example might be variations in weather conditions such as temperature and rainfall which633

are correlated with discharge and therefore could simultaneously affect hydropower supply634

through changes in demand for electricity. In this case, hot weather induces higher demand635

for cooling. However, over our time period, power transmission and distribution in Viet-636

nam was centrally managed which should mean that these factors have a uniform impact637

on plants and hence be absorbed by time fixed effects. In addition, as hydropower was the638
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cheapest form of electricity generation, it is used to cover the base load and hence should639

be less sensitive to demand fluctuations than other energy sources. A second concern is640

that physical processes like land cover changes, soil degradation and sediment transporta-641

tion that were excluded from our SWAT model, could bring about a degree of measurement642

error. For simplicity, we assume that this source of error is exogenous. Finally, Vietnam is643

located downstream of a large number of international rivers, such that upstream changes644

could affect the discharge into Vietnam’s basins. Although our SWAT model already ac-645

counts for variations in weather in upstream sub-basins outside Vietnam, the construction646

and operation of neighbouring countries’ hydropower plants is beyond the scope of this647

study. For example, the construction of new hydropower plants in China has been blamed648

for worsening the drought that hit Southeast Asia (The Diplomat, 2016). Vietnam and Laos649

are also predicted to be the most badly affected from the proliferation of new hydropower650

plants along the Mekong River (The Economist, 2012, 2016).651

5 Conclusions652

In this paper we apply the SWAT river flow model combined with regression analysis to653

explain the operation of hydropower plants on a national scale in a hydro-dependent country654

with a diversity of terrain and climate conditions. Although Vietnam has experienced a655

period of rapidly-growing demand for energy (12-15% per year), it also faces the challenge656

of potentially adverse impacts of climate change.657

As far as we are aware, this is the first study to build a river flow model using SWAT658

for Vietnam as a whole. To take into account the high level of inter-connectivity between659

Vietnam’s rivers and upstream sources beyond its border, the extent of our river flow model660
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covers a large part outside Vietnam. It includes three inter-boundary basins: Red River,661

Vietnam Coast, and Lower Mekong River, in which Vietnam shares water resources with662

China, Laos, Cambodia, Myanmar and Thailand. The watershed of 977,964 km2 is di-663

vided into 7,887 sub-basins with a mean area of 131.6km2 and 53,024 HRUs. Such a664

detailed analysis is possible thanks to a variety of high-resolution datasets, especially Hy-665

droSHEDS/HydroBASINS, which is finer than Hyro1K and a topographic and hydrographic666

dataset widely used in previous economic studies using river flow models. River-flow was667

simulated for the period from 1995 to mid-2014, coinciding with a period when both power668

supply and power demand of Vietnam increased dramatically. Since it is mainly dependent669

on global datasets derived from satellite data, the method described within this study could670

be easily replicated for other countries and regions.671

Our regression analysis uses panel data fixed effects regression models to explain the672

operation of large hydropower plants across Vietnam. Simulated discharge is shown to be673

a good proxy for inflows into hydropower plants. Our results are similar to those of Cole674

et al. (2014) and show that installed capacity and a quadratic function of discharge are the675

key determinants of hydropower generation. Furthermore, our model shows evidence of a676

flood control benefit of large hydropower plants across Vietnam.677

Finally, we used simulated flows to evaluate the coordination and the spillover effect678

among hydropower plants in Vietnam. Overall, the construction and operation of upstream679

plants improves the generation efficiency of downstream plants. The effect is particularly680

large during periods of drought, with a smaller but still positive effect for floods. However,681

the impact is not the same across all basins. The two basins that are the most important for682

hydropower provide contrasting results with a negative impact found for the Dong Nai River683

(in the South), although this is compensated for by a stronger flood control role to protect684
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the downstream area, while we find a strong positive synergy for the Da River (in the North).685

In future research it would be interesting to also consider more carefully changes in686

power demand, land cover, soil degradation, and sediment transportation. In addition, more687

detailed calibration could improve the accuracy of the river flow model. However, due to688

current data limitations we leave this for future research. Nevertheless, using simulated689

discharge still manages to explain up to 87.7% of the monthly variation in hydropower690

generation (using the two-way fixed effect regressor including installed capacity, discharge691

and its squared term). This suggests that river flow simulated from a SWAT model, even692

without calibration, serves as a good predictor for hydropower electricity generation. We693

acknowledge that our flood measure is relatively coarse and is not able to capture all aspects694

of floods in a monsoon context (to be able to differentiate the impacts of beneficial vs disaster695

floods) and our static model of flood control benefit is not appropriate to model the long run696

impact. Improvements in either flooding data or dynamic modelling techniques would be697

useful for future research. Finally, our study concentrates on large dams and excludes the698

impact of medium and small plants, which grew dramatically after 2010 and may impact699

the hydropower plant cascade effect. Compared to large hydropower plants, the lack of700

supervision, coordination and regulation with regards to the construction and operation of701

small and medium hydropower in Vietnam is problematic (PanNature, 2010). Hence, one702

should not generalize the results in this paper for hydropower dams of all sizes.703

Our study has a number of policy implications. First, we provide evidence to that an hy-704

dropower operation with large reservoirs and cascades of hydropower plants can strengthen705

the resilience of the national power supply system against the adverse impact of future cli-706

mate change. However, harmonizing the operation of plants that share common water re-707

sources is not simple, as evidenced by the finding of significant and negative spillovers708
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for some basins. Finally, although we only quantify the impact of hydropower plants on709

downstream electricity generation, it is implicitly made clear that upstream plants can have710

an important impact on downstream flow regime (seasonality, water availability and so on).711

This implies potentially large impacts on downstream ecosystems and other economic activ-712

ity using water resources (i.e. agriculture), as well as the welfare of downstream inhabitants.713

Given the numerous interconnections between Vietnam’s rivers and those of its neighbours,714

our findings also raise concerns about possible hydro-ecological consequences associated715

with the proliferation of large upper dam projects on the Mekong River. The challenges716

associated with inter-basin dam operation management are likely to be even harder when717

cross-border coordination is required.718

A Appendix: Regression estimators719

Our method is based on the linear panel data model:

yit = x′itβ + εit; i = 1, 2, ...,N; t = 1, 2, ...,T

where i and t are respectively indices for dam and time, scalar y is the dependent variable,720

x is a K × 1 vector of independent variables, which may contain an intercept, dummies and721

non linear variable (interaction and/or quadratic terms). β is a K × 1 vector of unknown722

coefficients, which are restricted to be common across time and dam. However, change in723

parameters across dam or time are permitted by the inclusion of appropriate regressors in x724

(for example time dummies or dam dummies).725
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Our coefficients are estimated using a pooled ordinary least squares (POLS) estimator:726

β̂ =
( N∑

i=1

T∑
t=1

x′itxit

)−1( N∑
i=1

T∑
t=1

x′ityit

)
(A1)

The estimator is shown to be consistent (Wooldridge, 2010, pg. 192) as long as E(x′tεt) =727

0, for t = 1, 2, ...,T (exogeneity condition) and rank
[ T∑

t=1

E(x′txt)
]

= K (no perfect collinear-728

ity condition).729

The goodness-of-fit of regressions are computed as:730

R2 =

∑
(ŷit − ȳ)2∑
(yit − ȳ)2 (A2)

R̄2 = 1 −
n − 1
n − K

(1 − R2) (A3)

where ŷit and ȳ are respectively the predicted values and the mean of the observed values of731

the dependent variable. n is the number of observations. R2 is bounded by 0 and 1. R̄2 never732

exceeds R2 and can be negative if a poorly-performing model includes too many redundant733

regressors. In general, a model with higher R2 or R̄2 fits the observed data better.734
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Figures

Figure 1: Watershed delineation

Source: Authors compiled from HydroSHEDS/HydroBASINS (Lehner et al., 2008; Lehner and Grill, 2013)
and ‘Rivers in South and East Asia’ (FAO, 2014). Note: The resolution of HydroSHEDS void-filled DEM is 3
arc-seconds. The resolution of HydroBASINS river network is 15 arc-seconds.
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Figure 2: Studied basins and hydropower plants

Source: Basins are derived from “FAO Rivers in South and East Asia” and MONRE (2012).
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Figure 3: Total installed capacity of studied hydropower plants, as percentage of
national energy capacity

Source: Authors calculated from EVN (2015).

Figure 4: Typical efficiency curves for different types of hydropower turbines

Source: (Kumar et al., 2011, p. 453)
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Tables

Table 1: Data description and sources for SWAT simulation

Data types Sources Resolution

Predefined basins HydroBASINS
http://www.hydrosheds.org/page/hydrobasins

15 arc-seconds

and river networks Rivers in South and East Asia
http: / / ref .data . fao.org /map?entryId=dc2a5121- 0b32-
482b-bd9b-64f7a414fa0d

30 arc-seconds

Digital Elevation Model
(DEM)

HydroSHEDS void-filled DEM
http://www.hydrosheds.org/

3 arc-seconds

Soil Digital Soil Map of the World version 3.6
http://www.fao.org/geonetwork/srv/en/metadata.show?
id=14116

5 arc minutes

Land cover UMD Land Cover classification collection
http://glcf.umd.edu/data/landcover/

1km pixels

Weather CFSR-NCEP
https://globalweather.tamu.edu/

19 arc-seconds

Note: See text for more details

Table 2: Summary statistics of subbasins

(1) (2) (3) (4) (5)

VARIABLES N mean sd min max

All sub-basins within the watershed

Area of the sub-basin 7,887 131.6 56.52 0.2 368.6

Total upstream area 7,887 15,443 77,756 0.4 774,282

Distance to the next downstream sink 7,887 951.4 754.4 0 3,628

Distance to the most downstream sink 7,887 957 751.3 0 3,628

Sub-basins within Vietnam

Area of the sub-basin 2,617 131.9 58.4 0.2 368.6

Total upstream area 2,617 7,812 59,053 0.4 774,282

Distance to the next downstream sink 2,617 341.4 417.2 0 2,506

Distance to the most downstream sink 2,617 343.6 416.4 0 2,506

Source: Authors compiled from HydroBASINS dataset (level 12).

Note: N=Number of observations. sd= standard deviation
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Table 3: Studied hydropower plants

Basin Dams

Lo - Gam - Chay Thac Ba (120 MW), Tuyen Quang (342 MW), Bac Ha (90
MW)

Da Hoa Binh (1920 MW), Son La (2400 MW), Nam Chien
(200 MW), Ban Chat (220 MW)

Ma Hua Na (180 MW), Cua Dat (97 MW)

Ca Khe Bo (100 MW), Ban Ve (320 MW)

Thach Han Quang Tri (64 MW)

Huong A Luoi (170 MW), Binh Dien (44 MW), Huong Dien (71
MW)

Vu Gia – Thu Bon Song Tranh 2 (190 MW), Dak Mi 4 (190 MW), A Vuong
(210 MW), Song Con (63 (MW)

Kon – Ha Thanh Vinh Son (66 MW)

Sesan Sesan 4 (360 MW), Sesan 3 (260 MW), Yaly (720 MW),
Plei Krong 1 (100 MW)

Ba Song Hinh (70 MW), Song Ba Ha (220 MW), An Khe-
Knak (173 MW)

Srepok Buon Tua Srah (86 MW), Buon Kuop (280 MW), Srepok 3
(220 MW)

Dong Nai Tri An (400 MW), Da Mi (175 MW), Ham Thuan (300
MW), Dai Ninh (300 MW), Da Nhim (160 MW), Thac Mo
(150 MW), Dong Nai 3 (180 MW), Dong Nai 4 (340 MW),
Dak R’Tih (144 MW), Can Don (78 MW)

42



  

Ta
bl

e
4:

T
he

ca
sc

ad
es

of
hy

dr
op

ow
er

U
pd

am
B

ac
H

a
B

an
C

ha
t

N
am

C
hi

en
H

ua
N

a
B

an
Ve

A
L

uo
i

Pl
ei

K
ro

ng
1

A
n

K
he

-K
an

ak
B

uo
n

Tu
a

Sr
ah

T
ha

c
M

o
D

a
N

hi
m

D
ai

N
in

h
H

am
T

hu
an

B
as

in
Lo

-G
am

-C
ha

y
D

a
D

a
M

a
C

a
H

uo
ng

Se
sa

n
B

a
Sr

ep
ok

D
on

g
N

ai
D

on
g

N
ai

D
on

g
N

ai
D

on
g

N
ai

D
is

ta
nc

e
0

D
a

M
i

1 2
C

ua
D

at
H

uo
ng

D
ie

n
C

an
D

on
3

K
he

B
o

Y
al

y
4

So
n

L
a

Se
sa

n
3

B
uo

n
K

uo
p

5 6
D

on
g

N
ai

3
7

D
on

g
N

ai
4

8
Se

sa
n

4
Sr

ep
ok

3
D

on
g

N
ai

3
D

ak
R

’T
ih

9
D

on
g

N
ai

4
10

D
ak

R
’T

ih
14

T
ha

c
B

a
15

Tr
iA

n
16 17 18

So
ng

B
a

H
a

20
H

oa
B

in
h

21 23
Tr

iA
n

25
H

oa
B

in
h

Tr
iA

n

T
he

up
st

re
am

-d
ow

ns
tr

ea
m

re
la

tio
ns

hi
p

w
as

de
te

rm
in

ed
by

th
e

H
yd

ro
SH

E
D

S
ID

sy
st

em
of

H
yd

ro
B

A
SI

N
S

da
ta

se
t.

D
is

ta
nc

e
w

as
m

ea
su

re
d

by
th

e
nu

m
be

ro
fs

ub
-b

as
in

s
(a

tl
ev

el
12

of
H

yd
ro

SH
E

D
S

da
ta

se
t)

be
tw

ee
n

ea
ch

up
st

re
am

an
d

do
w

ns
tr

ea
m

da
m

s.

43



  

Table 5: Summary statistics

(1) (2) (3) (4) (5)
VARIABLES N mean sd min max

Dam statistics
Year of Operation 40 2005 10.5 1964 2013
Total storage capacity (million m3) 40 1,164 2,098 30.4 9,862
Full installed capacity (MW) 40 294 455 44 2,400

Production statistics (Jan 1995 – Jul 2014)
Average production (MWh/day) 2,984 4,393 6,754 0 46,833
Installed capacity (MW) 2,984 376.3 521.4 22 2,400
Flow to dam (m3/s); SWAT simulation 2,984 465.5 979.5 0.120 9,105
Upstream capacity (MW) 2,984 141.9 360.9 0 2,820
Upstream production (MWh/day) 2,984 1,615 4,161 0 45,781

Note: N=Number of observations. sd= standard deviation
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Table 6: Simulated discharge validation

Dam Basin Capacity (MW) N r R2

Thac Ba Lo - Gam - Chay 120 235 .82*** .67*

Tuyen Quang Lo - Gam - Chay 342 70 .8*** .64*

Hoa Binh Da 1920 235 .88*** .78*

Son La Da 2400 43 .81*** .65*

Cua Dat Ma 97 31 .75*** .56*

Ban Ve Ca 320 31 .68*** .47

Quang Tri Thach Han 64 31 .41** .17

A Vuong Vu Gia - Thu Bon 210 31 .6*** .36

Vinh Son Kon - Ha Thanh 66 209 .7*** .49

Sesan 3 Sesan 260 31 .54*** .29

Yaly Sesan 720 171 .73*** .53*

Plei Krong 1 Sesan 100 31 .82*** .68*

Song Hinh Ba 70 171 .86*** .73*

Song Ba Ha Ba 220 31 .69*** .48

An Khe - Kanak Ba 173 31 .33* .11

Buon Kuop Srepok 280 31 .71*** .5*

Tri An Dong Nai 400 235 .82*** .67*

Da Mi Dong Nai 175 122 .42*** .17

Ham Thuan Dong Nai 300 160 .53*** .28

Dai Ninh Dong Nai 300 70 .68*** .46

Da Nhim Dong Nai 160 235 .65*** .42

Thac Mo Dong Nai 150 223 .9*** .8*

Dong Nai 3 Dong Nai 180 31 .85*** .73*

Can Don Dong Nai 78 31 .86*** .74*

Note: Capacity indicates full installed capacity. N indicates number of observa-
tions. Significance level for Pearson correlation coefficient (r): *** p<0.01, **
p<0.05, * p<0.1. For the coefficient of determination (R2) to indicate acceptable
model (Santhi et al., 2001; Van Liew et al., 2007): * (R2 ≥ 0.5).
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Table 8: The synergies of hydropower cascades

(1) (2) (3) (4)
VARIABLES Average production (MWh/day)

Variables for dam operation

Installed capacity (MW) 5.876*** 5.880*** 5.859*** 5.834***
(1.182) (1.176) (1.190) (1.184)

Flow to dam (m3/s); SWAT simulation 4.476*** 4.984*** 4.359*** 4.865***
(0.544) (0.554) (0.559) (0.568)

Flow to dam (m3/s); SWAT simulation squared -0.000225** -0.000275*** -0.000216** -0.000267***
(9.19e-05) (9.17e-05) (9.14e-05) (9.11e-05)

Variables for upstream dam operation

Upstream capacity (MW) 1.332* 1.280
(0.705) (0.853)

Upstream capacity (MW)*Flood -1.447**
(0.689)

Upstream capacity (MW)*Drought 1.441**
(0.574)

Upstream production (MWh) 0.146** 0.161**
(0.0598) (0.0695)

Upstream production (MWh)*Flood -0.0976*
(0.0541)

Upstream production (MWh)*Drought 0.180***
(0.0446)

Intercept -429.8 -553.0 -430.3 -523.5
(464.2) (456.5) (468.7) (464.6)

Observation number 2,984 2,984 2,984 2,984
R2 .891 .893 .892 .895
Adjusted R2 .88 .88 .88 .88

*** p<0.01, ** p<0.05, * p<0.1.
Dam fixed effects and time fixed effects are included. Driscoll-Kraay standard errors are in parentheses.
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  Table 9: The synergies of hydropower cascades by basin

(1) (2)
VARIABLES Average production (MWh/day)

Installed capacity (MW) 5.724*** (1.165) 5.716*** (1.164)
Flow to dam (m3/s); SWAT simulation 4.719*** (0.533) 4.625*** (0.545)
Flow to dam (m3/s); SWAT simulation squared -0.000247*** (8.69e-05) -0.000246*** (8.54e-05)
Interaction: Updams operation*Ba -3.818 (2.699) -0.170 (0.247)
Interaction: Updams operation*Ca -0.697* (0.402)
Interaction: Updams operation*Da 2.157*** (0.783) 0.220*** (0.0685)
Interaction: Updams operation*Dong Nai -2.136*** (0.501) -0.135*** (0.0428)
Interaction: Updams operation*Huong -0.618 (0.711)
Interaction: Updams operation*Lo - Gam - Chay 1.289 (3.862) -0.307 (0.555)
Interaction: Updams operation*Ma -1.495 (2.252) -0.166 (0.222)
Interaction: Updams operation*Sesan 2.314 (9.777) 0.215*** (0.0427)
Interaction: Updams operation*Srepok 0.577*** (0.0639)

Observation number 2,984 2,984
R2 .896 .897
Adjusted R2 .885 .886
Upstream operation Installed capacity Production

*** p<0.01, ** p<0.05, * p<0.1.
Dam fixed effects and time fixed effects are included. Driscoll-Kraay standard errors are in parentheses. Upstream
operation indicates which variable is used to proxy for operation of upstream dams: (combined upstream) installed
capacity (MW) or (combined upstream) production (MWh/day)
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