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Abstract 18 

In urban research, Twitter data have the potential to provide additional information about urban 19 
citizens, their activities, mobility patterns and emotion. Extracting the sentiment present in tweets is 20 
increasingly recognised as a valuable approach to gathering information on the mood, opinion and 21 
emotional responses of individuals in a variety of contexts. This article evaluates the potential of 22 
deriving emotional responses of individuals while they experience and interact with urban green 23 
space. A corpus of over 10,000 tweets relating to 60 urban green spaces in Birmingham, United 24 
Kingdom was analysed for positivity, negativity and specific emotions, using manual, semi-25 
automated and automated methods of sentiment analysis and the outputs of each method 26 
compared. Similar numbers of tweets were annotated as positive/neutral/negative by all three 27 
methods; however, inter-method consistency in tweet assignment between the methods was low. A 28 
comparison of all three methods on the same corpus of tweets, using character emojis as an 29 
additional quality control, identifies a number of limitations associated with each approach. The 30 
results presented have implications for urban planners in terms of the choices available to identify 31 
and analyse the sentiment present in tweets, and the importance of choosing the most appropriate 32 
method. Future attempts to develop more reliable and accurate algorithms of sentiment analysis are 33 
needed and should focus on semi-automated methods. 34 

Keywords: Twitter; sentiment analysis; urban green space 35 

Issue 36 

This article is part of the issue “Crowdsourced Data and Social Media for Participatory Urban 37 
Planning”, edited by Bernd Resch (University of Salzburg, Austria), Peter Zeile (Karlsruhe Institute of 38 
Technology, Germany) and Ourania Kounadi (University of Salzburg, Austria). 39 
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1. Introduction 41 

1.1. Twitter, Sentiment Analysis and Urban Green Space 42 

Sentiment analysis describes the field of study concerned with analysing the opinions, attitudes and 43 
emotions of individuals towards entities such as products, services, organisations, locations and 44 
events (Liu, 2012). Over the last two decades, the field has become increasingly active given the vast 45 
real-world applications to a plethora of disciplines, such as politics, economics, business, healthcare 46 
and urban planning. Increased engagement with sentiment analysis has also coincided with the rapid 47 
growth in social networks, without which a lot of the recent research would not have been possible. 48 
For the first time in human history researchers have access to huge volumes of freely accessible data 49 
published by individuals online.  50 

The increase in social media sites such as Twitter has led to the internet becoming a place of 51 
increased expression and opinion sharing on a vast range of topics (Pak and Paroubek, 2010). This 52 
phenomenon is providing new sources of text which can be used to gauge public opinion through 53 
sentiment analysis (Zhang et al., 2011). Recent studies have indicated the potential and versatility of 54 
tweets in examining emotions. These include: a variety of economic (Bollen and Mao, 2011; Jansen 55 
et al., 2009; Chung and Lui, 2011) and social (Thelwall et al., 2014) contexts, examining emotional 56 
responses to specific events, such as political elections (Tumasjan et al., 2010; Wang et al., 2012; 57 
Bruns and Burgess, 2011), natural disasters (Mandel et al., 2012; Shalunts et al., 2014) and terrorism 58 
events (Cheong and Lee, 2011); and exploring new ways to measure happiness (Mitchell et al., 2013; 59 
Quercia et al., 2012; Dodds et al., 2011). Recent success by Roberts et al. (accepted for publication) 60 
identifies how Twitter data can be successfully used to identify both emotions in tweets; and the 61 
cause of these emotions, in relation to green space experience. Following the success of this work, 62 
this article investigates the employment of three different methods of sentiment analysis in this 63 
context. In doing so, different methodologies are explored and their limitations discussed. 64 

The information made available by individuals in their tweets has the potential to provide insights 65 
into how urban landscapes are perceived by individuals as they navigate them. The urban landscape 66 
is being experienced by an increasing number of individuals as global urban populations continue to 67 
expand (UN HABITAT, 2016), leading some to question the long-term sustainability of cities (Grimm 68 
et al., 2000). Understanding how individuals are responding and relating to city landscapes is a key 69 
element for facilitating their design, implementation and management. Urban green spaces in cities 70 
provide the opportunity for individuals to have contact with the natural environment (Daniel et al., 71 
2012), a fundamental influence on human well-being (Wilson, 1984; Kellert and Wilson, 1995; Fuller 72 
and Gaston, 2009), while the benefits associated with nature and green spaces are a vital 73 
component of the ecosystem services they provide to human populations (Costanza et al., 1997; 74 
Daily, 1997; Ehrlich and Ehrlich, 1981; MEA, 2005). Despite broad agreement that these cultural 75 
ecosystem services are beneficial to urban dwellers (WHO, 2017) there remains limited 76 
methodological progress in capturing the transfer and receipt of these services to populations, 77 
largely due to their intangible nature and difficulty in assigning economic value to the benefits they 78 
provide (Daniel et al., 2012; Milcu et al., 2013). Studies have only recently emerged that consider the 79 
effect of number and duration of encounters on ecosystem service receipt (Shanahan et al., 2014; 80 
Shanahan et al., 2015), and at present they remain small scale and highly contextualised. Twitter 81 
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data have the potential to offer a wider spatial and temporal lens through which responses of 82 
people to urban green spaces can be captured.  83 

While environmental cues have a significant impact on how individuals respond to and experience 84 
space (Ulrich, 1983), a wide range of other factors are also influential, including weather conditions, 85 
group dynamics, types of activities and what people observe happening around them. These factors 86 
are hard to study successfully due to limitations on experiment size and cohort selection, so 87 
capturing their high spatial and temporal variability has proved challenging (Cohen et al., 2009). As a 88 
result, studies lack explorations of the emotional responses of people to urban green spaces and the 89 
range of sentiments they can elicit in individuals. Twitter data offers the potential to overcome these 90 
limitations and can provide information about how individuals feel while experiencing urban green 91 
spaces. The information provided in tweets also has the potential to contextualise why an individual 92 
may be experiencing certain emotions and what activities they are engaging in that result in the 93 
given response. Such information has significant utility for urban planning. For example, data which 94 
provides evidence for the beneficial effects of urban green spaces for urban dwellers can be used to 95 
justify their continued presence in the urban landscape amidst intense development pressures. 96 
Furthermore, the successful identification of the causes of positive and negative emotions 97 
experienced by users of urban green space using Twitter data (Roberts et al., accepted for 98 
publication), could be used to develop an evidence base from the which planners can create and 99 
manage green spaces to promote positive emotional experiences and minimise and remove features 100 
which cause negative responses. 101 

Despite the benefits Twitter data can afford to researchers, sentiment analysis studies obtained 102 
from tweets are not common, especially in an urban context. Nonetheless, studies have utilised 103 
tweet text to investigate how public mood varies both spatially (Bertrand et al., 2013) and 104 
temporally (Martinez and Gonzalez, 2013) in urban areas, and to compare how the positivity of 105 
Twitter posts by urban citizens varies between different cities (Hollander et al., 2016). Others have 106 
used Twitter data alongside additional sources (such as biosensors) to assess how individuals 107 
perceive and emotionally respond to cities (Resch et al. 2016), in order to develop more citizen 108 
centric approaches to urban planning. For tweets to be a useful source of emotional data to urban 109 
planners, methods of sentiment analysis are required which enable the fast, accurate and replicable 110 
annotation of tweets. 111 

1.2. Methods of Sentiment Analysis 112 

The possibility of accurately extracting emotions from tweets has been demonstrated in recent 113 
studies (e.g. Roberts et al., 2012), which have classified tweets according to a range of readily 114 
identifiable and distinct emotions. However, working with such an informal text genre presents new 115 
challenges for language processing as the language used by the twitter community is often informal 116 
with creative punctuation and spelling, slang, abbreviations and URLs (Rosenthal et al., 2014). The 117 
use of emoticons/emojis also provides an additional challenge for analysts as the emotions they 118 
convey can be highly subjective and often context dependent. Debate on how to develop methods 119 
which address these challenges and capture the fullest range of responses possible, and how best to 120 
mine people’s opinions and sentiments is an increasing body of literature. 121 

To compensate for the range of challenges inherent in using Twitter data, approaches to identifying 122 
sentiment and emotion are varied, but can broadly be placed into three commonplace 123 
methodologies. Firstly, manual annotation requires human annotators to categorise tweets into 124 
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emotion categories (Roberts et al., accepted for publication; Jansen et al., 2009). Fully automated 125 
annotation can also be undertaken, relying on algorithms and rules to annotate the emotion in 126 
tweets. Many different approaches to fully automated annotation exist, but methods typically rely 127 
on n-gram analysis (Barbosa and Feng, 2010) to annotate the emotion in a tweet. Significant 128 
limitations have been identified with using both manual and automated sentiment analysis on 129 
tweets (and are discussed in detail in subsequent sections). As a result, novel methodologies are 130 
being developed to progress tweet sentiment analysis. This study presents one such method, 131 
drawing on semi-supervised or machine learning annotation. There are a number of machine 132 
learning techniques which can be employed to annotate tweets including Naïve Bayes classification 133 
(Pak and Paroubek, 2010; Go et al., 2009), maximum entropy classification (Go et al., 2009), graph 134 
based propagation algorithms (Resch et al., 2016) and semantic orientation (Turney 2002). The 135 
method presented herein relies on a graph based semi-supervised learning algorithm (Resch et al., 136 
2016) and is described in full in section 2.5. The variety of approaches undertaken within these three 137 
methodological approaches reflects the complexity inherent in the task. 138 

This article uses tweets relating to urban green spaces to evaluate three different sentiment analysis 139 
methods, focusing on the variation in sentiment they indicate, in order to facilitate discussion 140 
around the limitations and benefits of each approach. However, this article does not attempt to 141 
identify the most effective method for tweets. Instead, the aims of this article are twofold: 142 

1) To compare the outcomes of manual, fully automated and semi-supervised learning 143 
methods of sentiment analysis on the same corpus of tweets 144 

2) To evaluate each method in the context of urban green space research 145 

The three methods of sentiment analysis presented and compared herein have been chosen as each 146 
one is derived from one of the three broad methodologies of sentiment analysis: manual, automated 147 
and semi-automated. In this way, a comparison can be made between these differing methodologies 148 
in the context of urban green space research; and their potential contribution in providing ways for 149 
urban planners to engage meaningfully with social media derived data.  150 

2. Methodology 151 

2.1. Case Study Location 152 

The tweets collated for analysis relate to 60 urban green spaces located in Birmingham, United 153 
Kingdom (Figure 1). With a population of approximately 1.1 million people (ONS, 2014) the 600 154 
public parks, open spaces and nature reserves within the Birmingham metropolitan area (BCC, 2016) 155 
provide an important resource for urban citizens in terms of their contribution to cultural ecosystem 156 
service provision.  157 
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 158 

Figure 1. The locations of the green space study sites included in this article.  159 

The 60 green spaces were chosen to reflect the diversity of spaces found across the city in terms of 160 
their size, habitat type, available facilities and amenities and locations within different types of 161 
neighbourhoods. Alongside 46 parks, 14 linear green features were also included for investigation 162 
consisting of the footpaths along 4 rivers and 7 canals and 3 cycle ways. 163 

2.2. Tweet Corpus Creation 164 

The tweets used in this study were obtained via Twitters publically accessible REST API. The REST API 165 
provides access to a 1% sample of tweets published by users with public profiles, and allows queries 166 
to be used to search for specific tweets. Searches made using the REST API are based on relevance 167 
and therefore this source of tweets was most appropriate for use in this article. To create the tweet 168 
corpus used in this study, English language tweets were downloaded every 10 days from the REST 169 
API. During preparation for the tweet data collection various different time scales were used to 170 
collect tweets to ascertain the most effective frequency for harvesting tweets. Tests were carried 171 
out over a three month trial period to look at which frequency worked best to harvest tweets in 172 
terms of minimising duplications and ensuring sufficient capture of the available tweets. Frequencies 173 
of 3, 5, 7 and 10 days were tested. This showed that using frequencies of 3, 5 and 7 days were too 174 
frequent and resulted in large duplications and made unnecessary pre-processing work to remove 175 
the duplications. Using the 10 day frequency, there was no lack of tweets compared to searcing 176 
every 7 days, and given the benefits of this frequency in harvesting the tweets this frequency was 177 
used throughout the subsequent data collection period  ensuring maximal temporal coverage over a 178 
period of 12 months, from June 2015 to May 2016. A search query was used to ensure that the 179 
tweets downloaded related to one of the 60 sites included in the study. Therefore, each tweet in the 180 
corpus contains specific reference to one of the sixty green spaces included in the sample. Any 181 
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duplicated tweets were removed during pre-processing. In this way, a corpus of 10268 tweets was 182 
generated for use in this study. 183 

2.3. Manual Annotation 184 

During manual annotation, tweets were first assigned into one of three categories: positive, negative 185 
or neutral. This annotation was based on the presence of emotive words, emoticons/emojis or 186 
meaning. Subsequently, the positive and negative tweets were categorised into distinct emotions. 187 
The higher level emotions chosen included five of Ekman’s basic emotions (anger, disgust, fear, 188 
sadness and happiness (Ekman and Friesen, 1971; Ekman, 1992)), in line with previous research 189 
using Twitter data (Roberts et al., 2012; Resch et al., 2016). These emotions are arranged into the 190 
ontology shown in Figure 2. In this study, beauty was included an additional sub-category to the 191 
positive tweets but outside of the emotions to account for the large amount of tweets referencing 192 
the beauty of nature and the landscape (as to be expected for green space). Each tweet could only 193 
be assigned into one of these emotion categories based on the strongest present emotion.  194 

Five annotators were used to annotate a random sample of 1,000 tweets, in order to ensure there 195 
was sufficient agreement between different annotators in how tweets were categorised. A metric of 196 
comparison was derived (K=0.666) suggesting sufficient agreement to assume inter-annotator 197 
reliability (Landis and Koch, 1977). Given the identification of sufficient inter-annotator reliability 198 
between annotators, and the time required for the task, the remaining tweets were annotated by 199 
one annotator. To the authors’ knowledge this is largest manually annotated dataset of sentiment 200 
present in tweets, providing a robust test set against which other methods can be compared.  201 

 202 

Figure 2. High level emotion ontology for the emotions used in manual and semi-automated tweet 203 
annotation. 204 

2.4. Fully Automated Annotation 205 

For the automated method, an Affective Norms for English Words (ANEW) resource was used as the 206 
basis for emotion annotation. The ANEW resource utilised here derives from Warriner et al., (2013) 207 
in which over 13,000 English lemmas were assigned valence scores. Using an automated process 208 
these scores were used to annotate the valency of each tweet in the corpus. After assigning each 209 
word in each tweet with a valence score, an average valence score was created for each tweet based 210 
on the number of words present. Thresholds were then used to place the tweets into positive, 211 
neutral and negative categories. Following the thresholds used by Warriner et al. (2013) tweets with 212 
scores of ≥6.0 were categorised as positive, scores between 5.9 and 4.9 were categorised as neutral 213 
and scores of ≤4.9 were categorised as being negative. Given there remains no robust way to 214 
determine specific emotions from numeric scores, this method only annotated the tweets in terms 215 
of their positivity as opposed to annotating each with a discrete emotion. The implications of this are 216 
discussed in greater detail further on. 217 
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2.5. Graph Based Semi-Supervised Learning Annotation 218 

In this method (Resch et al. 2016), a sample of manually annotated tweets was used to train a graph 219 
based semi-supervised learning algorithm which annotated the remaining tweets. A sample of 1,000 220 
tweets from the corpus, known as the gold standard, were annotated manually (as described in 221 
section 2.3) and used to train and evaluate the annotation algorithm. This was done to compromise 222 
between manual and automated analysis and capture the benefits of each, namely the accuracy of 223 
manual annotation and the quickness of automated annotation.  224 

In order to classify tweets according to the emotions they contain a similarity computation was first 225 
undertaken, where similarity is defined as the likelihood that two tweets contain the same emotion. 226 
The similarity computation comprises three dimensions; linguistic similarity (defined through proven 227 
emotion emotion-related linguistic features such as co-occuring words, part-of-speech tags, 228 
punctuation, spelling, emojis and n-grams), spatial similarity and temporal similarity (defined 229 
through spatial and temporal decay functions according to recent literature). It should be noted that 230 
the results presented in this article only used the linguistic feature groups because not all tweets 231 
were geolocated, thus lacked the necessary spatial information. 232 

Once the similarity between tweets has been computed, the graph, which creates the input for the 233 
semi-supervised learning approach is constructed and is defined by the tweets (nodes) and pairwise 234 
similarity values (weighted edges). Assigning emotions to the tweets was undertaken by applying the 235 
graph-based semi-supervised learning algorithm Modified Absorption (MAD) using a subset of the 236 
gold standard (training dataset) as this method is found to be most effective for graphs where nodes 237 
connect to many other nodes (Talukdar and Pereira, 2010). The assigned emotions were then 238 
validated using the rest of the gold standard (test dataset) through computing statistical measures 239 
including precision, recall, f-measure and micro average precision. The results prove to be better 240 
than random and majority baselines which in the understanding of the field of computational 241 
linguistics, demonstrates that the methods works well. The developed algorithm outperforming the 242 
majority baseline is considered assuring, whereas the better performance compared to random 243 
baseline provides strong evidence that the method works well because it demonstrates that the 244 
results are not produced by chance, but that significant similarities have been found between pairs 245 
of tweets. 246 

Once each tweet had been assigned a discrete emotion using this method, it was then possible to 247 
reverse the process and place the tweets into positive, neutral and negative categories using the 248 
same ontology as shown in the manual method. 249 

2.6. Analysis 250 

Following presentation of the relevant descriptive statistics for each method, various statistical tests 251 
were undertaken to assess the significance of any differences in the assignment of the number of 252 
positive, neutral and negative tweets by each of the three methods. Fleiss and Cohen Kappa Indexes 253 
were then generated to assess inter-method reliability of tweet assignment into each category 254 
between the three methods alongside percentage agreement assessments of the three methods in 255 
their annotation of each individual tweet.  256 

3. Results 257 

3.1. Assignment of the Tweets into Positive, Neutral and Negative Categories 258 
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Variation existed in the numbers of tweets assigned to into the ‘positive’, ‘neutral’ and ‘negative’ 259 
categories by each of the methods (Figure 3). Although for all three methods, the majority of tweets 260 
were placed into the ‘neutral’ category, categorisation of tweets into ‘positive’ and ‘negative’ 261 
categories showed to be more variable between the three methods (Table 1).  262 

 263 

 264 

Figure 3. The number of tweets assigned by each method into positive, neutral and negative 265 
categories with standard error bars displayed. N (Number of tweets analysed) = 10268, for all 266 
methods. 267 

Table 1. The percentage (%) of tweets assigned by each method to positive, neutral and negative 268 
categories. 269 

 Manual Automated Semi-automated 

Positive 24.4 8.2 25.1 

Neutral 68.8 83.0 72.5 

Negative 6.8 8.8 2.4 

 270 

Given that all three methods show some similarity in the numbers of tweets assigned to each 271 
category (Figure 3), statistical analysis was undertaken to investigate the significance of the 272 
differences identified between the three methods of classification for all three classes: ‘positive’, 273 
‘negative’ and ‘neutral’. Given that the assumption of homogeneity of variance was not met by the 274 
‘positive’ datasets, a Welch ANOVA test was used and identified significant difference in the number 275 
of tweets annotated as positive by each of the three methods (F(2,17.867)=39.343, p<0.001). Post 276 
hoc Tukey analysis identified specific significant differences between manual and automated analysis 277 
(p<0.001) and automated and semi-automated analysis (p=0.001). There was no significant 278 
difference in the number of tweets annotated as ‘positive’ by the manual and semi-automated 279 
methods (p=0.76). Using a one-way ANOVA, no significant differences were identified between the 280 
number of tweets classified as being ‘neutral’ by each method (F(2,33)=3.216, p=0.053). Finally, a 281 
Kruskal-Wallis H test, given the violated assumption of normality, identified significant differences 282 
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between the number of tweets classified as ‘negative’ by the three methods (χ2(2)=16.176, p<0.001) 283 
. These were largest between the automated and semi-automated annotations of negativity. 284 

By making adjustment to the thresholds (Table 2) used to assign the automated tweet scores into 285 
the ‘positive’, ‘neutral’ and ‘negative’ categories, it was possible to generate very similar outputs for 286 
the manual and fully automated methods (Figure 4), and identify no significant differences in the 287 
number of tweets each method assigned to each category. 288 

 289 

Table 2. Original and adjusted thresholds used to assign automated tweet scores into positive, 290 
neutral and negative categories. 291 

 Original threshold adapted 
from Warriner et al. (2013) 

Adjusted threshold 

Positive assigned tweets ≥6.0 ≥5.73 

Neutral assigned tweets ≥5.0 ≥4.931 

Negative assigned tweets ≤4.99 ≤4.93 

 292 

 293 

Figure 4. Comparisons of the numbers of tweets assigned to positive, neutral and negative 294 
categories by the manual and automated methods using two different thresholds. 295 

3.2. Inter-Method Reliability 296 

Consideration of inter-method reliability however, shows a more complex picture. A Fleiss Kappa 297 
Index identified very little inter-method agreement (k=0.0445) between the three methods, 298 
highlighting that the annotation of each individual tweet into the three different categories by each 299 
method differed substantially. Indeed, only 44.5% of tweets were found to have been assigned the 300 
same category by all three methods, with 5.5% of tweets being assigned different categories by all 301 
three methods, indicating wide misallocation.  302 
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The relatively high percentage agreement compared to the low Fleiss Kappa Index is due to a large 303 
number of tweets being annotated as neutral by all three methods. Indeed, further investigation of 304 
the 44.5% of tweets which were annotated the same by all three methods revealed the vast majority 305 
to have been assigned to the ‘neutral’ category (98.1%). However, annotations of positive and 306 
negative tweets were less similar, suggesting that where emotions were present, the methods 307 
showed more variance in identifying them, either annotating them as neutral or with the incorrect 308 
polarity of positivity. Positive and negative annotation agreement between all three methods was 309 
extremely low at 1.9% and 0% respectively. 310 

Interestingly, the low percentage in the agreement of tweets remained following the adjustment of 311 
the automated thresholds. The adjusted threshold annotations showed most similarity with the 312 
manual annotations. Again, however, only 56.8% of tweets were placed in the same category by 313 
both methods; showing that despite increasing similarity in number of tweets assigned to each 314 
category by each method, altering the thresholds used to assign tweets into ‘positive’, ‘neutral’ and 315 
‘negative’ categories had no effect on increasing the percentage agreement of tweet assignment 316 
between the manual and fully automated methods. 317 

Cohen Kappa tests were undertaken to see if the inter-method reliability was higher between any 318 
two specified annotation methods. The highest inter-method reliability was found to be between 319 
the manual and semi-automated methods (K=0.136), compared to similarity between manual and 320 
automated (K=0.0814), and semi-automated and automated methods (K=-0.00784). However all 321 
these Kappa Indices are low (McHugh, 2012) and there remains large variation in the way each 322 
method assigns individual tweets into ‘positive’, ‘neutral’ or ‘negative’ categories, despite the 323 
appearance of similarity in Figure 3.  324 

3.3. Quality Control Using Character Emojis 325 

By way of a quality control measure, assessment was undertaken on just the tweets containing 326 
objective character emojis for the manual and semi-automated methods (automated annotation did 327 
not include character emojis in the lexicon). This was done as tweets containing such characters 328 
clearly belonged to either the positive or negative categories. All tweets containing positive or 329 
negative character emojis were assigned as ‘positive’ or ‘negative’ respectively by the manual 330 
method indicating a complete success rate of allocating these tweets into the correct emotion 331 
category. Compared to this, the ability of the semi-automated method was less successful. 54.4% of 332 
tweets containing positive character emojis were misallocated by the semi-automated method as 333 
either ‘neutral’ or ‘negative’; while 75% of the tweets containing negative character emojis were 334 
misallocated as ‘neutral’ or ‘positive’. 335 

3.4. Assignment of Tweets into Discrete Emotion Categories 336 

Using the manual and semi-automated methods of annotation it was possible to assign tweets into a 337 
number of emotion categories. A comparison of the number of tweets assigned into each of these 338 
categories again highlights substantial variation between the methods (Figure 5). Both methods 339 
showed variation in the number of tweets they identified as belonging to each emotion category. 340 
Substantially higher numbers of tweets were annotated as anger/disgust, fear and beauty by the 341 
manual method compared to the semi-automated method.  342 

 343 
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 344 

Figure 5. The number of tweets assigned by the manual and semi-automated methods into discrete 345 
emotion categories. 346 

 347 

Percentage agreement between the two methods was found to be 44.5% when undertaken on all 348 
tweets. However, when tweets which were allocated as ‘neutral’ by both methods were removed, 349 
this figure falls substantially to 3.91%. This indicates that the methods show higher levels of variance 350 
when allocating an emotion to a tweet as opposed to just identifying the presence of an emotion, 351 
and that the presence of neutrality in a dataset can affect how the results of agreement between the 352 
assignment of tweets can first appear. A Cohen’s Kappa Index of 0.0157 further emphasises the low 353 
level of agreement in allocation of tweets to discrete emotions.  354 

4. Discussion 355 

4.1. Comparison of the Outputs of Manual, Automated and Semi-Automated Analysis 356 

The results presented show that detecting sentiments from tweets is a highly complex task, and 357 
importantly, that the method of analysis employed determines the categorisation of positivity, 358 
neutrality or negativity, despite using the same corpus of tweets. Moreover, the comparison of the 359 
manual and semi-automatic methods illustrated considerable variability in Ekman’s specific emotion 360 
classes.  361 

All three methods were found to assign variable yet similar numbers of tweets into the positive, 362 
neutral and negative categories, with the majority of tweets being annotated as neutral, followed by 363 
smaller numbers of positive and negative tweets respectively. Despite this analysis suggesting 364 
similarities between the three methods, assessment of inter-method reliability found percentile 365 
agreement between the assignment of tweets into the three categories by the methods to be only 366 
444.5%.  367 

The adjustment of thresholds used to assign automated tweet scores into positive, neutral and 368 
negative categories improved the similarity in the number of tweets assigned to each category 369 
between the manual and fully automated methods; however, it did not improve the percentage 370 
agreement between the two methods.  371 
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Manual annotation has previously been cited as providing the most reliable method of sentiment 372 
analysis, given that human annotators have the best chance of identifying the emotion present in a 373 
tweet (Saif et al., 2013). However, a dataset resulting from manual annotation is not unambiguous 374 
given that labelling tweets with an emotion remains a subjective task (Resch et al., 2016). Different 375 
human annotators may interpret the same text differently for many reasons – for example, sarcasm, 376 
slang or ambiguous use of emojis. This issue is also relevant for the semi-supervised learning method 377 
demonstrated in this article, given that the ‘gold standard’ tweet dataset used to train the algorithm 378 
relied on initial manual annotation of 1,000 tweets. To ensure that annotation was reliable between 379 
human annotators, a metric of comparison was derived suggesting agreement between them to be 380 
sufficient to assume inter-annotator reliability (Landis and Koch, 1977). Kappa Indexes enable the 381 
assessment of inter-annotator reliability between manual annotators and allow the variation in 382 
annotation by different annotators to be quantified.  383 

Setting aside inherent subjectivity, the most significant limitation of manual sentiment analysis of 384 
tweets is the researcher time needed to examine each tweet. Given that Twitter generates large 385 
volumes of tweets in very short time periods, manual annotation is simply not viable. For this 386 
reason, automated and semi-automated methods are often employed.  387 

Automated methods of sentiment analysis offer a quick and easy means of annotating large tweet 388 
datasets. Methodologically, however, there remains no robust way to derive discrete emotions from 389 
numeric scores, thus the granularity of the automated method demonstrated herein is limited to 390 
assessment of positivity rather than identifying specific emotions from tweet text. In this study, a 391 
large lexicon of words was used to enhance the reliability in the scores generated for each tweet. 392 
Despite this, the limitations seem to outweigh the benefits. Low inter-method reliability was 393 
prevalent and there was a particularly low percentage agreement between annotations of positive 394 
and negative suggesting that this method is unlikely to reliably identify the correct polarity of 395 
sentiment in tweet text. Additionally, while the large lexicon used provides robustness for scoring 396 
words, it does not include emojis which are increasingly common ways to express sentiment in short 397 
social media posts (Pavalanathan and Eisenstein, 2015). Previous research has shown that emojis 398 
can be successfully used to inform automated analysis of tweets (Go et al., 2009). Indeed, the 399 
creation of an emoji lexicon in which each is given a score would be of significant use to future 400 
research and enable the combined use of words and emojis in the annotation of sentiment from 401 
tweet text. Such an undertaken would need to overcome the challenge of interpreting emojis in 402 
their different representational forms:  403 

Unicode (e.g. “U+1F642”), Kaomojis (e.g. “(◕‿◕)”), a sequence of ASCII characters (e.g. “:-)”) or a 404 
specific code used by Twitter (e.g., “<ed><a0><bd><ed><b2><af>” or 405 
“<ed><U+00A0><U+00BC><ed><U+00BC><U+009E>”).  406 

An issue of spatial variation in language use was also identified associated with the automated 407 
method of annotation. Despite the large lexicon used, it cannot account for regional/local dialect. 408 
Given the location for this study was Birmingham, where some language used by local populations is 409 
not used elsewhere, these words will not have been included and scored and a proportion of 410 
sentiment in the tweets, albeit small, will not have been captured by this method. Provided that 411 
manual annotators are native to the language and region from which the tweets have been 412 
captured, this should not be an insurmountable issue. 413 
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The semi-automated method generated similar numbers of neutral, positive and negative tweets as 414 
the other two methods. However, Kappa Indices indicate that the placement of individual tweets 415 
into each of these categories showed low levels of agreement. Differences were also identified in 416 
how semi-automated annotation assigned tweets to discrete emotion categories, when compared to 417 
manual annotation. The notion of beauty is not a basic emotion as defined in emotion psychology; 418 
indeed, it is usually subsumed under happiness. This makes it difficult for the algorithm to identify 419 
beauty in written text because it is often expressed in comparatively subtle terms.  420 

For the experiment presented in this article, it was possible to identify a limitation in the semi-421 
supervised method, in that the full range of emojis in the dataset could not be captured by the 422 
algorithm. The method is designed for character-wise emojis (e.g. “:-)”), however unicode emojis are 423 
widely used alongside character-wise emojis in tweet texts. In fact, the semi-supervised learning 424 
method was not able to interpret unicode emojis, increasing the likelihood that essential elements 425 
of tweets were missed by this method, diluting the precision of assigning emotions and polarities.  426 

The quality control measure, which used character emojis to assess the allocation of tweets into the 427 
correct category, highlighted that the semi-automated method was often unable to recognise 428 
emotion, despite these being included in the assessment of linguistic similarity undertaken during 429 
analysis.  430 

The parameter choices of semi-automated approaches make such methods highly sensitive; the 431 
number of seeds used, the seed distribution, details of similarity computation, edge weight 432 
threshold and the emotion categories used strongly influence the results. A significant issue is that 433 
no formalised method exists to perform an a priori estimation for these parameters. In most cases, 434 
‘optimal’ parameter settings can only be found through empirical experiments, which in turn means 435 
it cannot be stated with certainty how good any results are in relation to the best achievable results. 436 
Thus, the parameter choices require a substantial amount of expert knowledge and experience, 437 
particularly because random permutations cannot be performed due to the computational 438 
complexity of the algorithms. This opens up debate as to how a training dataset should be 439 
generated. In this article, 1,000 tweets were randomly chosen. It may be more appropriate to 440 
actively identify tweets which cover all the discrete emotion categories so the algorithm can learn 441 
most effectively.  442 

Finally, in this article, for all the methods of emotion annotation used, it was assumed that one 443 
tweet contains a maximum of one emotion. However, in reality tweets can be inherently more 444 
complex and contain a variety of emotions over a short space of characters. This is a finding that 445 
future methods looking to classify the emotion in tweet text will need to consider and overcome to 446 
provide the most accurate interpretation of the emotional information that tweets contain.  447 

4.2. Implications of These Findings for Urban Planners 448 

The availability of emotional data to urban planners has significant utility in the creation, 449 
management and justification of urban green spaces which promote positive emotional experiences 450 
and minimise features which may elicit negative emotional responses (Roberts et al., accepted for 451 
publication). The provision of such emotional data through social networks, such as Twitter, provides 452 
the opportunity for planners to gain access to this information in inexpensive, time efficient and 453 
replicable ways. However, in order to be used meaningful, methodologies are required which can 454 
accurately annotate any emotion present in a tweet relating to an urban green space.  455 
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This article has identified that challenges remain to this end. Indeed, none of the three methods 456 
presented herein are appropriate in their current form to provide sentiment analysis of tweet text 457 
for urban planners. Whilst manual analysis can be used to accurately identify any emotion present, 458 
the amount of time taken to undertake this method on a large corpus of tweets makes it unsuitable 459 
in the context of urban planning where resources and individuals are often limited.  460 

Similarly, the current inability of automated and semi-automated methods to accurately identify 461 
emotion, make them dubious approaches to employ where the identification of such emotion and 462 
their causes could have significant implications for the management and creation of green spaces.  463 

However, the authors tentatively suggest that pursuing a semi-automated method, like the one 464 
presented herein is the most appropriate way forward. The development of a method through 465 
which the accuracy of manual annotation can be achieved, in much shorter time is doubtless of 466 
interest to urban planners. This is of particular relevance because manual annotation of tweets is a 467 
time-consuming and expensive method. This article suggests that the development of a gold 468 
standard training data set should be a priority, enabling algorithms to learn the variety and 469 
complexity with which emotions can be conveyed in tweets.  470 

Without a doubt, Twitter data presents a useful and abundant source of easily accessible emotion 471 
information which is generated by users as they experience specific urban green spaces. Such a 472 
source of data presents vast opportunities for urban planners; however there remains a need for 473 
increased innovation and development in the methodologies which would enable this data source to 474 
be engaged with most effectively.  475 

5. Conclusion 476 

This article has presented a comparison of three approaches to sentiment analysis undertaken to 477 
collate the sentiment and emotion present in tweet text. Despite their utility, this article has 478 
identified significant differences in the outcomes of three methods of sentiment analysis on the 479 
same corpus of tweets, and the discrepancies in how tweet text is analysed by different methods is a 480 
critical consideration for future research.  481 

It was possible to identify differences in positivity annotation between all three methods in terms of 482 
the numbers of tweets they assigned to each category as well as inter-method reliability in 483 
assignment. Using the manual and semi-automated methods, discrete emotions can be annotated, 484 
but again significant differences were identified in this process, particularly for beauty and 485 
anger/disgust tweets.  486 

Overall, whilst this article is positive about the role of Twitter in providing a useful and substantial 487 
data source for urban planners on which to undertake sentiment analysis, it suggests caution is 488 
needed in interpreting the outputs of sentiment analysis and an understanding of the process can 489 
help place the results in an appropriate context. A critical discussion of the limitations identified 490 
through the undertaking of all three methods in this research has been presented. In doing so, this 491 
article adds to the debate surrounding annotation of sentiment and emotion from tweets and 492 
identifies methodological constraints which should be taken into account in future work. Given the 493 
utility of the sentiment information captured by tweets relating to urban green space for planners 494 
and decision makers, it is of important that an efficient and reliable method is established through 495 
which these can be identified and annotated. Despite its reliability, manual annotation remains 496 
unfeasible for use on large volumes of data. However, automated and semi-automated methods 497 
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remain hampered by a number of limitations associated with each, and this article suggests 498 
methodological progression is necessary before either can be used robustly to annotate the 499 
sentiment from large tweet datasets. 500 

The findings presented in this article suggest that automated methods of sentiment analysis are not 501 
able to accurately identify the emotion present in tweet text and that manual analysis, whilst 502 
accurate is impractical for use on large tweet corpi given the time taken to undertake such analysis. 503 
As a result, this article suggests that future attempts to develop methods of sentiment analysis 504 
should focus on semi-automated methods, with particular focus given to how the gold standard 505 
dataset is created. Successful algorithms should be aim to include Unicode as well as character 506 
emojis in order to best capture the emotion represented by these in tweets. 507 
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