Oscillation of a bubble in a liquid confined in an elastic solid
Wang, Qian

DOI:
10.1063/1.4990837

License:
None: All rights reserved

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Final Version of Record available at: https://doi.org/10.1063/1.4990837

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 05. Sep. 2020
Oscillation of a bubble in a liquid confined in an elastic solid

Q. X. Wang

Citation: Physics of Fluids 29, 072101 (2017); https://doi.org/10.1063/1.4990837
View Table of Contents: http://aip.scitation.org/toc/phf/29/7
Published by the American Institute of Physics

Articles you may be interested in
Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity
Physics of Fluids 29, 072102 (2017); 10.1063/1.4990777

Liquid jet leaping from a free surface
Physics of Fluids 29, 071702 (2017); 10.1063/1.4994601

Diffusive heat and mass transfer in oscillatory pipe flow
Physics of Fluids 29, 073601 (2017); 10.1063/1.4990976

Ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip
Physics of Fluids 29, 072002 (2017); 10.1063/1.4990841

Magnetic stage with environmental control for optical microscopy and high-speed nano- and microrheology
Physics of Fluids 29, 072001 (2017); 10.1063/1.4989548

Proposition of stair climb of a drop using chemical wettability gradient
Physics of Fluids 29, 072103 (2017); 10.1063/1.4985213
Oscillation of a bubble in a liquid confined in an elastic solid

Q. X. Wang a)
School of Mathematics, The University of Birmingham, Edgbaston, Birmingham B15 2TS, United Kingdom

(Received 2 March 2017; accepted 16 June 2017; published online 5 July 2017)

A simple theoretical model is described for the oscillation of a gas bubble in a liquid in a cavity confined by an elastic solid. The phenomenon occurs in nature and technology but has only recently received attention. The compressibility effects in the continuity equation are shown to be negligible, using dimensional analysis. However, the volume change of the confined liquid has to be considered since the associated pressure variation is large. The variation of the cavity volume is assumed to be proportional to the change of the liquid pressure at the confinement wall. The Rayleigh-Plesset-like equation describing the dynamics of a confined bubble is derived, considering the viscous and surface tension effects. Using the linear stability analysis, we show that the bubble undergoes stable damping oscillation when it is subject to small disturbances. The natural frequency of oscillation is obtained analytically. The theory agrees well with recent experiments. The analyses show that the natural frequency of oscillation for a bubble in an elastic confinement is larger, in order of magnitude, than that in an unbounded liquid. The amplitude and period of oscillation of a transient bubble decrease significantly owing to the presence of a confinement, reaching a steady state in a much longer period and at a larger equilibrium radius. When subject to an acoustic wave, a bubble in a confinement oscillates at smaller amplitude. The effects of the confinement increase with the bulk modulus of the confinement and decrease rapidly with the cavity size but are still significant for a large cavity whose size is an order of magnitude larger than the bubble. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4990837]

I. INTRODUCTION

Bubble dynamics have been investigated extensively, for a bubble in an infinite fluid domain, 1–5 near a rigid surface, 6–9 or in a tube. 10 Studies were also carried out for the interaction of a bubble and a free surface, 11–13 an elastic surface, 14 or another bubble. 15 Bubble dynamics in non-Newtonian fluids were analyzed for spherical bubbles 16 and non-spherical bubbles. 17 Reviews on bubble dynamics can be found in Refs. 18–23.

However, little attention has been given to bubbles oscillating in a liquid inside a cavity in a solid. Here, a cavity denotes a confined space within a solid fully confined in all directions. Confined bubbles occur in natural and engineering applications. Plants contain fluid-filled vessels (xylem) to transport water from the roots to the leaves. Vulnerability to drought-induced cavitation is a key trait of plant xylem. Growth of cavitation bubbles in plant xylem is believed to be a cause of mortality during drought. 24–26 Confined bubble dynamics in plants are associated with ejection of spores in some species of ferns. 27 Acoustic emission of pressure waves is associated with cavitation in plant xylem and their applications in plant sciences are rapidly increasing, especially to investigate drought-induced plant stress. 25 Liquids trapped in rocks may contain bubbles and their quasi-static behaviour is used by geologists to extract past thermodynamic conditions. 28,29 Other applications of such a non-invasive technique include cavitation monitoring in porous media and quartz inclusions or soil tensiometers. 30

Recently, Vincent et al. 30–32 carried out a series of interesting experiments for the dynamics of a cavitation bubble in a liquid fully entrapped in a transparent elastic solid, using light scattering, laser strobe photography, and high speed camera recordings. Their experiments showed unexpectedly fast bubble oscillations in volume, depending on the confinement size and elasticity. They also observed rich non-spherical dynamics, with ejection away from the walls and bubble fragmentation. In particular, they analyzed the natural frequency of oscillation of a confined bubble using Minnaert’s theory, by considering the compressibility of the liquid and elasticity of the confining solid. They calculated the kinetic energy of the liquid flow induced by a bubble in a confinement using the formula for a bubble in an unbounded incompressible liquid, which leads to an error at the order of the ratio of the bubble radius to the cavity radius, as shown in Sec. II.

While a bubble oscillates in a confinement, the liquid pressure changes at much larger amplitude than in an infinite fluid. Using the dimensionless analysis, the compressibility effects of water are shown to be negligible in the dimensionless continuity equation. When the variation amplitude of the liquid pressure is at 20 MPa, the compressibility effects in the continuity equation are at the order of 0.01. But this high pressure variation changes the volume of the confined liquid, which plays a role in the dynamics of a confined bubble. 30 A fully confined bubble can grow by compressing the liquid around it and expanding/pushing away the confining solid.
With the above considerations, we describe a simple physical and mathematical model for the bubble dynamics in a spherical elastic confinement, considering the interaction among the expansion/collapse of the bubble gas, the liquid flow induced, and the deformation of the elastic confinement. We assume that a gas bubble is under adiabatic or isothermal condition, the liquid flow is described by the incompressible continuity equation, and the volume variations of the liquid and the cavity are both linear to the pressure variation of the liquid at the interface between the liquid and solid. The Rayleigh-Plesset-like equation is described for a bubble in a confinement considering the viscous and surface tension effects. We perform the linear stability analysis for a confined bubble and obtain its natural frequency of oscillation.

The computed frequency of a confined bubble and the radius of the bubble, the liquid in the cavity, and the elastic solid sur- rounding the cavity are shown in Fig. 1. The system consists of the internal gas/vapor bubble, the liquid in the cavity, and the elastic solid surrounding the cavity. To facilitate the mathematical analysis, we assume that a gas bubble is under adiabatic or isothermal conditions, and consider the interaction of the bubble, the liquid in the cavity, and the elastic solid surrounding the cavity as

\[R(t) \]

\[\text{solid} \]

\[\text{liquid} \]

\[R_b(t) \]

\[R_c(t) \]

\[\text{Gas, vapour} \]

\[\text{bubble} \]

\[\text{cavity} \]

FIG. 1. Illustration of a gas/vapor bubble in liquid in a cavity confined by an elastic solid. The bubble and cavity are assumed to be spherical and concentric with their radii denoted as \(R_b(t) \) and \(R_c(t) \), respectively.

The computed frequency of a confined bubble and the radius history of a transient confined bubble agree well with the recent experimental results. The natural frequency, transient oscillation starting from a non-equilibrium state, and oscillation of a bubble subject to an acoustic wave are analyzed, in terms of the confinement size and bulk elasticity.

II. RAYLEIGH–PLESETT-LIKE EQUATION FOR A CONFINED BUBBLE

Consider a bubble in a liquid in a cavity in an elastic solid. Here cavity denotes a confined space within a solid as shown in Fig. 1. The system consists of the internal gas/vapor of the bubble, the liquid in the cavity, and the elastic solid surrounding the cavity. To facilitate the mathematical analysis, the bubble and cavity are assumed to be spherical and concentric. We denote the instantaneous radii of the bubble and cavity as \(R_b(t) \) and \(R_c(t) \), respectively, where \(t \) denotes the time.

In the spherical coordinates with the origin at the centre of symmetry, the continuity equation of the liquid flow reads

\[\nabla \cdot \mathbf{u} = \frac{1}{r^2} \frac{\partial \left(r^2 u \right)}{\partial r} = -\frac{1}{\rho} \frac{d\rho}{dt}, \quad (2.1) \]

where \(\rho \) is density, \(\mathbf{u} \) and \(u \) are the velocity of the liquid flow and its radial component, respectively, \(r \) is the radial distance measured from the bubble centre to a field point, and \(\frac{d\rho}{dt} \) denotes the material derivative. Since \(\frac{d\rho}{dt} = \frac{dp}{dt} \frac{dp}{d\rho} \) and \(\frac{dp}{d\rho} = c^2 \), where \(p_1 \) is the pressure and \(c \) is the sound of speed in liquid, we have

\[\frac{1}{r^2} \frac{\partial \left(r^2 u \right)}{\partial r} = -\frac{1}{\rho} \frac{dp}{dt}, \quad (2.2) \]

We choose the initial bubble radius \(R_{b0} \) as the reference length, the density \(\rho_0 \) of the undisturbed liquid as the reference density, and \(\Delta p = p_l - p_{sat} \) as the reference pressure, where \(p_l \) is the initial liquid pressure and \(p_{sat} \) is the saturated vapor pressure. Equation (2.2) can be written in the dimensionless form as follows, with the dimensionless quantities indicated by an asterisk subscript:

\[\frac{1}{r^*} \frac{\partial \left(r^* u \right)}{\partial r} = -\frac{\Delta p}{\rho_0 c^2} \frac{1}{\rho_0} \frac{dp}{dt}, \quad (2.3) \]

If the reference pressure \(\Delta p \leq 2, 20 \) MPa, we have \(\Delta p/ (\rho_0 c^2) \leq 0.001, 0.01 \), respectively, since \(c \approx 1500 \) m s\(^{-1} \) and \(\rho_0 \approx 1000 \) kg m\(^{-3} \) for water. If reference pressure \(\Delta p \leq 20 \) MPa, the right hand term in (2.3) is negligible, i.e., \(\frac{\partial \left(r^2 u \right)}{\partial r} / \partial r = 0 \), so that

\[u(r,t) = \frac{R^2_b \dot{R}_b}{r^2} = a(t), \quad a(t) = R^2_c \dot{R}_c, \quad (2.4) \]

where the over dot denotes the derivative in time.

Using (2.4), the kinetic energy of the liquid in the cavity can be calculated as follows:

\[E_k = \frac{1}{2} \rho \int_{R_b}^{R_c} 4\pi r^2 u^2 dr = 2\pi \rho R^2_c \dot{R}_c^3 \left(1 - \frac{R_b}{R_c} \right), \quad (2.5) \]

where \(E_{k\infty} = 2\pi \rho R^2_c \dot{R}_c^3 \) is the kinetic energy of a bubble in an infinite incompressible fluid. Using \(E_{k\infty} \) to approximate \(E_k \) results in an error of the order of \(R_b/R_c \).

It is also assumed that the volume of the bubble is small compared to the volume of the cavity, i.e., \(V_b/V_c = (R_b/R_c)^3 \ll 1 \). As such, the volume variation of the cavity is assumed to be linear to the pressure variation at the confinement wall,

\[V_c - V_{c0} = \frac{V_{c0}}{K_c} (p_{lc} - p_{b0}), \quad (2.6) \]

where \(V_{c0} \) and \(V_c \) are the initial and transient volumes of the cavity, respectively, and \(p_{lc} \) is the transient liquid pressure at the interface between the liquid and solid, \(p_{lc} = p_1 (R_c, t) \), and \(K_c \) is the bulk modulus of the elastic confinement.

It is also assumed that the change of the liquid volume is proportional to the pressure variation at the confinement wall,

\[V_l - V_{l0} = -\frac{V_{l0}}{K_l} (p_{lc} - p_{b0}), \quad (2.7) \]

where \(V_{l0} \) and \(V_l \) are the initial and transient volumes of the liquid, respectively, and \(K_l \) is the bulk modulus of water.

The volume of the cavity equals to the sum of the volumes of the bubble and liquid,

\[V_c = V_b + V_l, \quad V_{l0} = V_{b0} + V_{l0}, \quad (2.8) \]

where \(V_{b0} \) and \(V_b \) are the initial and transient bubble volumes, respectively. Using (2.6)–(2.8) yields
\[V_b - V_{b0} = \frac{V_{b0}}{K_c} (p_{lc} - p_{b0}) + \frac{V_{b0}}{K_l} (p_{lc} - p_{0b}). \]

If \(V_{b0} = 0 \) or \(V_{c0} >> V_{b0} \), we have
\[\frac{V_b - V_{b0}}{V_{c0}} = \left(\frac{1}{K_c} + \frac{1}{K_l} \right) (p_{lc} - p_{0b}). \]

i.e.,
\[p_{lc} - p_{0b} = K \frac{V_b - V_{b0}}{V_{c0}} = K \left(R_b^3 - R_{b0}^3 \right) \]
\[K = \frac{K_c K_l}{K_c + K_l}, \]

where \(R_{c0} \) is the initial cavity radius, \(R_{b0} = R_b(0) \). \(K \) is termed as the effective bulk modulus for the system, which increases with the bulk modulus of liquid \(K_l \) and the bulk modulus of the confinement \(K_c \).

Substituting (2.11) into (2.6) yields
\[V_c - V_{c0} = \frac{K}{K_c} (V_b - V_{b0}) \]

or \(R_c^3 - R_{c0}^3 = \frac{K}{K_c} \left(R_b^3 - R_{b0}^3 \right) \).

(2.12)

The Navier-Stokes equation for a compressible flow reads\(^{33}\)
\[\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) = -\nabla p_l + \mu \nabla^2 u + \frac{\mu}{3} \nabla (\nabla \cdot u), \]

(2.13)

where \(\mu \) is the viscosity of the liquid. Its \(r \)-component is
\[\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} \right) = -\frac{\partial p_l}{\partial r} + \mu \frac{\partial}{\partial r} \left(\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 u) \right) + \frac{\mu}{3} \frac{\partial}{\partial r} \left(\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 u) \right). \]

(2.14)

Substituting (2.4) into (2.14) yields
\[\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) = -\frac{1}{\rho} \frac{\partial p_l}{\partial r}. \]

(2.15)

Integrating the above equation to \(r \) from \(R_b(t) \) to \(R_c(t) \), respectively,
\[\frac{1}{r} \left(\frac{\partial}{\partial r} - \frac{1}{R_b} \right) \frac{1}{r} \left(\frac{1}{r} \frac{\partial}{\partial r} - \frac{1}{R_b} \right) = \frac{p_l(t, t) - p_{lb}}{\rho}, \]
\[\frac{1}{R_c} \left(\frac{\partial}{\partial r} - \frac{1}{R_b} \right) \frac{1}{r} \left(\frac{1}{r} \frac{\partial}{\partial r} - \frac{1}{R_b} \right) = \frac{p_l - p_{lb}}{\rho}, \]

(2.16a)

(2.16b)

where \(p_{lb} \) is the transient pressure of the liquid at the bubble surface, \(p_{lb} = p_l(R_b, t) \). Equation (2.16a) provides the pressure field of the liquid flow and (2.16b) is used to derive the Rayleigh-Plesset-like equation for confined bubbles. Assumming that the bubble gas undergoes an isothermal or adiabatic process, its pressure \(p_B \) is given as
\[p_B = p_{sat} + p_{g0} \left(\frac{R_{b0}}{R_b} \right)^{3\gamma}, \]

(2.17)

where \(p_{g0} \) is the initial partial pressure of the bubble gas and \(\gamma \) is the polytropic index of the bubble gas. Note that \(\gamma = 1 \) for an isothermal process and \(\gamma > 1 \) for an adiabatic process. For an isothermal process, temperature and chemical composition within the bubble are assumed to be uniform, with water vapor freely entering the bubble with minimal change in surface temperature. For an adiabatic process, the bubble motion is much faster so that the mass and thermal transfer may be neglected.

The liquid pressure at the bubble surface \(p_{lb} \) is given by the dynamics boundary condition on the bubble surface
\[p_{lb} = -p_A + \frac{2\sigma}{R_b} - 4\mu \frac{\dot{R}_b}{R_b}, \]

(2.18)

where \(\sigma \) is surface tension at the bubble surface and \(p_A \) is the pressure of the acoustic wave at the position of the bubble, when it is subject to an acoustic wave.

Substituting (2.4), (2.11), and (2.18) into (2.16b) yields the Rayleigh-Plesset-like equation for a confined bubble as follows:
\[\rho \left(R_B \frac{\dot{R}_B}{R_b} + 2 \frac{\dot{R}_B^2}{R_b} \right) \left(1 - \frac{R_b^3}{R_c^3} \right) = \rho \frac{\dot{R}_B^2}{R_b} \frac{1}{2} \left(1 - \frac{R_b^3}{R_c^3} \right)^4 \]
\[-p_{lb} - p_A + p_{sat} + p_{g0} \left(\frac{R_{b0}}{R_b} \right)^{3\gamma} - 2\sigma \frac{\dot{R}_b}{R_b} - 4\mu \frac{\dot{R}_b}{R_b}, \]

(2.19)

Equations (2.12) and (2.19) are the governing equations for \(R_b(t) \) and \(R_c(t) \). As \(R_{c0} \to \infty \), the above equation reduces to the Rayleigh-Plesset equation for a bubble in an unbounded liquid as follows:
\[\rho R_B \frac{\dot{R}_B}{R_b} + \rho \frac{3\dot{R}_B^2}{2} = \rho \frac{\dot{R}_B^2}{R_b} \frac{1}{2} \left(1 - \frac{R_b^3}{R_c^3} \right)^4 - 2\sigma \frac{\dot{R}_b}{R_b} - 4\mu \frac{\dot{R}_b}{R_b}. \]

(2.20)

III. NATURAL FREQUENCY OF A BUBBLE IN A CONFINEMENT

In the linear analysis for obtaining the natural frequency, we set \(p_A = 0 \) and
\[R_b(t) = R_{b0} \left(1 + \varepsilon R_{b1} e^{i\omega t} \right) \]

with \(\varepsilon \ll 1 \), \(R_{b1} = O(1) \). (3.1)

Note here that \(R_{b0} \) and \(R_{c0} \) should be the equilibrium radii of the bubble and cavity, respectively, when the oscillation of a bubble at small amplitude is considered for calculating the natural frequency.

We substitute (3.1) into (2.19), expand all terms in the equation obtained in the Taylor series in terms of \(\varepsilon \), and equal the first two order terms in \(\varepsilon \) on both sides, respectively, yielding
\[p_{sat} + p_{g0} = p_{b0} + \frac{2\sigma}{R_{b0}}, \]
\[\rho \omega^2 R_{b0}^2 (1 - \alpha) - 4\mu \omega^2 - \left(3\gamma p_{g0} + 3K \alpha^3 - 2\sigma \frac{R_{b0}}{R_{b0}} \right) = 0, \]

(3.2a)

(3.2b)

where \(\alpha = R_{b0}/R_{c0} \) is the confinement ratio. Equation (3.2a) is the equilibrium condition, which is the same as that for a bubble in an unbounded liquid. The solutions for \(\omega \) to (3.2b) are
The natural angular frequency ω_n of oscillation of a bubble in a cavity is thus given as

$$\omega_n = \frac{1}{\sqrt{1 - \alpha}} \sqrt{\frac{-4\mu^2 + \rho R_{b0}^2 (1 - \alpha) (3\gamma (p_{0,0} - p_{sat}) + 3K\alpha^3 + 2(3\gamma - 1)\sigma/R_{b0})}{\rho R_{b0}^2 (1 - \alpha)}}. \quad (3.4)$$

The dimensionless form of (3.4) is given as follows:

$$\omega_{n*} = \frac{1}{1 - \alpha} \sqrt{-4Re^{-2} + (1 - \alpha) (3\gamma\text{sgn}(\Delta p) + 3K\alpha^3 + 2(3\gamma - 1)\sigma_s)}, \quad (3.6)$$

where $K_s = K/|\Delta p|$, $\sigma_s = \sigma/(R_{b0} |\Delta p|)$, $Re = R_{b0}\sqrt{|\Delta p|/\rho \mu}$, with μ being the kinematic viscosity of the liquid, and $\text{sgn}(\Delta p)$ is equal to 1, -1 as $\Delta p > 0$, < 0, respectively. The dimensionless frequency increases with the confinement ratio α. Reynolds number Re, the dimensionless effective bulk modulus K_s of the confinement, and the dimensionless surface tension σ_s.

If the effects of surface tension and viscosity are negligible, i.e., $Re \gg 1$ and $\sigma_s << 1$, (3.6) becomes

$$\omega_n = \frac{1}{R_{b0}} \sqrt{\frac{3\gamma (p_{0,0} - p_{sat}) + 3K\alpha^3}{\rho (1 - \alpha)}}. \quad (3.7)$$

Under this situation, the dependency of both $\omega_n R_{b0}$ and $\omega_n R_{c,0}$ in terms of R_{b0} and $R_{c,0}$ is through their ratio α, as observed in the experiments.\(^{30}\)

$$\omega_n R_{b0} = \frac{1}{\alpha} \sqrt{\frac{3\gamma (p_{0,0} - p_{sat}) + 3K\alpha^3}{\rho (1 - \alpha)}},$$

$$\omega_n R_{c,0} = \frac{1}{\alpha} \sqrt{\frac{3\gamma (p_{0,0} - p_{sat}) + 3K\alpha^3}{\rho (1 - \alpha)}}. \quad (3.8)$$

The effective bulk modulus of the confinement may be as high as $K = O(1)$ GPa.\(^{30}\) If $K_s \gg \gamma |p_{0,0} - p_{sat}|$, we have

$$\omega_n = \sqrt{\frac{3K \mu}{R_{b0}}} a^{3/2} (1 - \alpha)^{-1/2}. \quad (3.9)$$

Under this situation, the oscillation frequency of a bubble depends on the liquid density ρ, the bubble size R_{b0}, the effective bulk modulus K, and the confinement ratio α. The natural frequency is in the MHz range as $K = O(\text{GPa})$, $R_{b0} \leq O(\text{mm})$, and $\alpha = O(1)$.

IV. COMPARISON WITH EXPERIMENTS

Vincent et al.\(^{30-32}\) performed a series of experiments for the dynamics of a cavitation bubble in water in a microcavity confined by a stiff pHEMA hydrogel. The cavitation bubble was generated by a negative pressure of high magnitude of about $p_{0,0} - p_{sat} = -20 \text{ MPa}$. The radius of the cavity was in the range of $R_{c,0} = 15-200 \mu\text{m}$ and the ratio of the bubble equilibrium radius to the initial cavity radius, $\alpha = R_{b0}/R_{c,0}$, was fixed at a value. Vincent et al.\(^{30}\) set the value of α to 0.28 (solid line) from the experimental data, and it is reset to 0.265 (dashed line) since the latter fits better with the experimental data, as shown in Fig. 2(a). The bulk modulus of the confinement was estimated as $K_c = 1 \text{ GPa}$.\(^{30}\) The other parameters used are $\rho = 988 \text{ kg} \cdot \text{m}^{-3}$, $\mu = 0.001 \text{ Pa} \cdot \text{s}$, and $\sigma = 0.07 \text{ N} \cdot \text{m}^{-1}$. It is easy to verify using (2.19) and (3.4) that the viscous and surface tension effects are negligible for the experimental cases.

To validate our model, we performed the calculations for the experimental cases using the present theory and compared to the experimental results for both the natural frequency and the time history of the oscillating bubble radius. As shown in Figs. 2(b) and 2(c), the theoretical results agree very well with the experiments. The agreement for the natural frequency is for all the ranges of $R_{c,0}$ of the experiments, as shown in Fig. 2(b). The agreement for the bubble radius history is for both the first-cycle and second-cycle of oscillation [Fig. 2(c)]. The initial conditions used in calculating the bubble radius history shown in Fig. 2(c) are $R_{b0} = 1 \mu\text{m}$ and $R_{b}(0) = 0$, where the over dot denotes the derivative in time t.

If the argument of the square root in (3.3) is positive, the amplitude of oscillation decays exponentially in the form of $\exp(-\beta t)$, where $\beta = 2n\sqrt{\alpha} (1 - R_{b0}/R_{c,0}) > 0$, with ν being the kinematic viscosity of the liquid. The bubble is thus stable when it is subject to small disturbances, undergoing damping oscillation with the decay rate increasing due to the effects of confinement.

The dimensionless form of (3.4) is given as follows:

$$\omega_{n*} = \frac{1}{R_{b0}^2} \sqrt{\frac{-4\mu^2 + R_{b0}^2 (1 - \alpha) (3\gamma (p_{0,0} - p_{sat}) + 2(3\gamma - 1)\sigma/R_{b0})}{\rho R_{b0}^2 (1 - \alpha)}}. \quad (3.5)$$
The discrepancies between the experiments and theory should be comparable with the measurement errors in the experiments. The comparisons suggest that the theory predicts reasonable results for both the natural frequency of oscillation and the time history of the bubble radius for the nonlinear transient oscillation of a fully confined bubble.

V. NATURAL FREQUENCY

This section is concerned with the natural frequency of oscillation of a spherical bubble in a spherical cavity. Figure 3(a) shows the ratio \(\frac{\omega_n}{\omega_{n\infty}} \) of the natural frequency for a bubble in a confinement and that in an infinite fluid, as a function of the confinement ratio \(R_0/R_{b0} \) for the effective bulk modulus \(K \) of the confinement, since the pressure of the liquid at the confinement is larger, by an order of magnitude, than that in an unbounded liquid. This is due to the fact that the bubble oscillation is constrained by the confinement and the compressibility of the liquid is low. The effects of the confinement decrease rapidly with the cavity size but are still significant for a large cavity at \(R_0/R_{b0} = 10 \), since a small deformation of the cavity is associated with appreciable pressure change for the liquid in the confinement.

Figure 3(b) shows the natural frequency versus the effective bulk modulus \(K \) of the confinement for \(R_0/R_{b0} = 2.5, 3, \) and 4, respectively. The natural frequency increases substantially with the effective bulk modulus \(K \) of the elastic confinement, since the pressure of the liquid at the confinement is proportional to \(K \), which reflects the stiffness of the oscillation system.

VI. TRANSIENT BUBBLE DYNAMICS IN A CONFINEMENT

Transient oscillation of a confined bubble starting from a non-equilibrium state is investigated in this section. The case considered is for a bubble at its maximum radius initially with the initial conditions \(R_{b0} = 5 \) \(\mu \text{m}, R_0(0) = 0, \) and \(p_{b0} = 0.001 \) Pa s, and \(\sigma = 0.05 \) N m\(^{-1}\). The remaining parameters are chosen as \(p_{b0} = 100 \) kPa, \(p_{sat} = 2300 \) Pa, \(\rho = 1000 \) kg m\(^{-3}\), \(\mu = 0.001 \) Pa s, and \(\sigma = 0.05 \) N m\(^{-1}\). The initial conditions used in the calculation in (c) are \(R_{b0} = 1 \) \(\mu \text{m}, R_0(0) = 0, \) and \(p_{b0} - p_{sat} = -20 \) MPa.

Figure 4(a) compares the time histories of the radius of a bubble in a cavity at different sizes for \(R_0/R_{b0} = 4, 7, \) and \(\infty \), respectively, where \(R_0/R_{b0} = \infty \) is for an unbounded domain. Starting with collapse initially, it undergoes a damped oscillation due to the viscous damping effects. The amplitude of oscillation decreases with time, when the maximum radius decreases and the minimum radius increases. The frequency does not change significantly with time. The radius reaches an equilibrium value ultimately. The amplitude and period of oscillation decrease significantly due to the presence of the elastic confinement, reaching a larger equilibrium radius in a much longer period. These effects of confinement increase.
for a smaller cavity. This is because that a part of the energy of the bubble system is transmitted into the surrounding solid through the work done by the liquid pressure at the interface between the liquid and solid.

Figure 4(b) displays the effects of the effective bulk elastic modulus of the confinement for \(R_c/\rho_b = 4 \) and \(K = 10^8 \) Pa, \(5 \times 10^8 \) Pa. The amplitude and period of oscillation decrease with the effective bulk elastic modulus \(K \) of the confinement, while the equilibrium radius increases with \(K \).

VII. OSCILLATION OF A CONFINED BUBBLE SUBJECT TO AN ACOUSTIC WAVE

We next consider a bubble, having the initial radius \(R_b = 5 \) \(\mu \)m oscillating in a cavity subject to an acoustic wave. The acoustic pressure at the location of the bubble is characterized by amplitude \(p_a \) and driving frequency \(\omega_d \).

\[
p_a(t) = p_{ac} \sin(\omega_d t).
\]

We choose \(p_{ac} = 10 \) kPa and \(\omega_d = 100 \) kHz. Here, we assume that the wavelength \(\lambda \) of the acoustic wave is large compared to the bubble radius. In fact, for the case considered \(\lambda = 2\pi c/\omega \approx 94 \text{ mm} >> R_b \). The other parameters are chosen to be the same as in Fig. 4 except that the initial gas pressure of the bubble is set at the equilibrium value \(p_{g0} = 117.7 \) kPa, so that the bubble is at the equilibrium state before the acoustic wave is activated.

VIII. SUMMARY AND CONCLUSIONS

In this article, the Rayleigh-Plesset-like equation is derived for a bubble in a liquid in a cavity fully entrapped in an elastic solid. It is assumed that the variations of the liquid volume and the cavity volume are proportional to the variation of the liquid pressure at the cavity surface. Using the linear stability analysis, we show that the bubble undergoes stable damping oscillation subject to small disturbances and the damping rate

\[
p_a(t) = p_{ac} \sin(\omega_d t).
\]
accelerates due to the presence of the confinement. The natural frequency of oscillation is obtained analytically. The theory agrees well with the recent experimental data in terms of the natural frequency of oscillation and the time history of the radius of a transient bubble starting from a non-equilibrium state.

The natural frequency of oscillation, transient oscillation, and stable oscillation is analyzed in terms of the confinement size and elasticity of the surrounding solid. The following features/phenomena are noticed.

(i) The natural frequency of oscillation for a bubble in an elastic confinement is larger, in order of magnitude, than that in an unbounded liquid.

(ii) The amplitude and period of oscillation of a transient bubble decrease significantly due to the presence of the elastic confinement, reaching a steady state in a much longer period and at a larger equilibrium radius.

(iii) When subject to an acoustic wave, a bubble in a confinement oscillates with the frequency of the wave like that in an unbounded liquid, but the amplitude of oscillation decreases significantly due to the confinement.

(iv) The effects described above increase with the bulk modulus of the confinement and decrease rapidly with the cavity size but are still significant for a large cavity whose size is an order of magnitude larger than the bubble, since a small deformation of the cavity is associated with appreciable pressure change for the liquid in a confined cavity.

To facilitate the mathematical analysis, the bubble and the cavity are assumed to be spherical and concentric. The obtained features for confined bubbles for the special case are expected to be qualitatively correct for non-spherical bubbles/cavities and non-concentric cases. The results obtained can be used for validating the numerical models for more general situations.

ACKNOWLEDGMENTS

This work was partially supported by EPSRC Grant No. EP/P015743/1.

19 C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, 1995).