Fractal Dimensions and Mixing Structures of Soot Particles during Atmospheric Processing
Wang, Yuanyuan; Liu, Fengshan; He, Cenlin; Bi, Lei; Cheng, Tianhai; Wang, Zhili; Zhang, Hua; Zhang, Xiaoye; Shi, Zongbo; Li, Weijun

DOI: 10.1021/acs.estlett.7b00418

Citation for published version (Harvard):

Download date: 18. Dec. 2018
Fractal Dimensions and Mixing Structures of Soot Particles
during Atmospheric Processing

Yuanyuan Wang1,2, Fengshan Liu3, Cenlin He4, Lei Bi2, Tianhai Cheng5, Zhili Wang6, Hua Zhang7,8, Xiaoye Zhang6, Zongbo Shi9, Weijun Li*2

1Environment Research Institute, Shandong University, Jinan, Shandong 250100, China
2Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
3Measurement Science and Standards, National Research Council, Ottawa, Ontario K1A 0R6, Canada
4Department of Atmospheric and Oceanic Sciences and Joint Institute for Earth System Science and Engineering, University of California, Los Angeles, CA90095, USA
5State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100101, China
6Chinese Academy of Meteorological Sciences, Beijing 100081, China
7Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
8Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China
9School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K

* Corresponding author: liweijun@zju.edu.cn
+86-57187952453
Abstract
Soot particles strongly absorb sunlight and hence act as a short-lived warming agent. Atmospheric aging of soot particles changes their morphology and mixing state and consequently alter their optical properties. Here we collected soot particles at tunnel, urban, mountaintop, and background sites in Northern China and analyzed their mixing structures and morphology using transmission electron microscopy. Soot particles were further classified into three types: bare-like, partly coated, and embedded. Bare-like soot particles were dominant at the tunnel site, while most soot particles were partly coated or embedded type at other sites. Fractal dimensions \((D_f)\) of different types of soot particles ranged from 1.80 to 2.16 and were ordered as: bare-like < partly coated < embedded. Moreover, their average \(D_f\) changed from 1.8 to 2.0 from the tunnel to the background site. We conclude that the \(D_f\) can characterize the shape of soot aggregates reasonably well and its variation reflects soot aging processes. Compared with the reported \(D_f\) of soot particles, we found that \(D_f = 1.8\) used in previous optical models primarily represents freshly emitted soot aggregates, rather than the ambient ones.
1 Introduction

Soot particles, also known as black carbon (BC) or elemental carbon (EC), are fractal-like aggregates produced from the incomplete combustion of biomass and fossil fuels. Soot particles strongly absorb sunlight and heat the air, altering the radiative forcing of the atmosphere and affecting global and regional climate.\(^1\)\(^-\)\(^4\) During transport and aging, fresh soot particles mix with organic and inorganic aerosols, changing their morphology and compactness, which leads to changes of their optical properties and radiative forcing.\(^5\)\(^,\)\(^6\) Jacobson\(^7\) proposed that the sulfate coating on soot particles can enhance optical absorption by ~2 through treating the mixture of soot and sulfate as a core-shell model. However, Cappa et al.\(^8\) observed that the absorption enhancement of aged soot particles in Sacramento was 6% on average at 532 nm by in-situ measurements. Different conclusions about the optical absorption of soot particles should be attributed to their complicated shapes and various mixing states in the atmosphere.\(^9\)\(^,\)\(^10\) Due to the lack of quantification on the variation of shapes and mixing structures of soot particles, the debate on optical properties of soot particles still continues.

Some experimental methods such as combination of single-particle soot photometer (SP2), three-wavelength photoacoustic soot spectrometer (PASS-3), and Aerodyne soot particle-aerosol mass spectrometer (SP-AMS) were used to well characterize physicochemical properties of soot and measured their optical properties.\(^11\)\(^-\)\(^14\) However, these measurements could not provide accurate morphology of soot aggregates for the modeling study. Many numerical optical models such as the Rayleigh-Debye-Gans (RDG) approximation\(^15\), T-Matrix\(^16\),\(^17\), and Discrete Dipole Approximation (DDA)\(^18\) can be used to calculate the optical properties of soot aggregates.\(^10\),\(^19\)\(^-\)\(^21\) Except RDG, other numerical models require the morphology of soot aggregates, which can be generated numerically using fractal dimension (\(D_f\)). Among the available algorithms to generate fractal aggregates, the tunable method\(^22\) is preferred due to its capability of generating aggregates of a prescribed \(D_f\), which is the most important morphological parameter of fractal aggregates. Adachi et al.\(^23\) used
electron tomography in transmission electron microscopy (TEM) to calculate the D_f of individual soot particles. The method requires a sophisticated system of TEM coupled with tomography, which is not commonly available. Xiong and Friedlander24 calculated the D_f of individual soot particles by drawing circles around the primary particles and then determining the size and position of the primary particles in the TEM image using scaling laws25,26. The method is inefficient in obtaining the D_f of hundreds of soot particles, because it requires 10-30 minutes for each soot aggregate. Later, an approach for image characterization of soot aggregates was proposed by Brasil et al.27 and Oh and Sorensen28. The method can conveniently derive various parameters of individual soot particles in the scaling law and obtain a D_f to represent their ensemble morphology. Recently, China et al.29 successfully used this method to calculate D_f of soot particles freshly emitted by wildfire. However, there are only quite few available reports about the D_f of ambient soot particles, whose D_f values are very important to understand their optical properties in different environments.

In this study, we report a detailed analysis of a large number of soot particles collected at tunnel, urban, mountaintop, and background sites in polluted air in the North China Plain (NCP). At each site, soot particles are classified into three types based on their mixing states and morphology and then their corresponding D_f values are calculated and compared systematically for the first time. We use a method combining TEM analysis and numerical calculation to obtain a D_f to represent the ensemble morphology of soot aggregates. At last, we discuss their morphological and mixing properties and the implication of these properties on aging.

\section{Materials and Methods}

\subsection{Aerosol Sampling}

The NCP was covered by the regional haze layer during the sampling period, so we defined our samples from the continental polluted air. Aerosol samples were collected at four sampling sites in NCP: a tunnel site, an urban site, a mountaintop site, and a background site (Figure S1), where the relative humidities (RHs) were at
about 52%, 16%, 64%, and 56%, respectively. The RHs at the four sampling sites were lower than 65% during the sampling period, indicating that the hazes were mainly dry. The Kaiyuan tunnel site is a busy highway that enters Jinan City. The urban site in Jinan City is a typical downtown site with strong vehicle and residential emissions. The Mountain Tai (at 1534 m above sea level) is the highest mountain in NCP. The aerosol particles collected at the mountaintop site reflect regional transport of aerosol particles in NCP. The background Changdao Island in the Bohai Sea is a downwind site of Shandong province and the Jing-Jin-Ji area (i.e., Beijing, Tianjin, and Hebei province) during winter (Figure S1). Aerosol samples were simultaneously collected at the urban, mountaintop, and background sites during 13-23 December 2014. At the tunnel site, aerosol samples were collected on 8 November 2016. A total of 779 soot particles from 31 samples were analyzed to determine their size and elemental composition using TEM/EDS. We note that the distribution of aerosol particles on TEM grids was not uniform. Therefore, we chose three to four areas from the center and periphery of each grid to ensure that the analyzed particles were representative. Once the internally mixed soot particles are under the strong electron beam (Figure S2), they can easily damage the sulfates and nitrates but do not change morphology of soot aggregates. This microscopic analysis is explained in the Supporting Information.

2.2 Morphology Analysis of Soot Particles

Fractal dimension of soot particles can be characterized using the scaling law:

$$N = k_g \left(\frac{2R_g}{d_p} \right)^{D_f}$$

(1)

where N is the total number of monomers in each aggregate, R_g is the radius of gyration of the soot aggregate, d_p is the monomer diameter, k_g is the fractal prefactor, and D_f is the mass fractal dimension. Note that the D_f in this study is the mass fractal dimension of soot aggregates that excludes the coating. In this study, the D_f and k_g are estimated from a power law fit of a scatter plot of N vs the values of $2R_g/d_p$.

N can also be scaled with the aggregate projected area in the following
power-law relationship:

\[N = k_a \left(\frac{A_a}{A_p} \right)^\alpha \]

(2)

\[\delta = \frac{2a}{L} \]

(3)

where \(A_a \) is the projected area of the soot aggregate, \(A_p \) is the mean projected area of the monomer, \(k_a \) is a constant, and \(\alpha \) is an empirical projected area exponent. The exact values of \(k_a \) and \(\alpha \) depend on the overlap parameter \(\delta \),\(^{28}\) which can be calculated using equation (3) with \(a \) being the monomer radius and \(l \) the lattice spacing in TEM images. The number of monomers \(N \) can then be calculated using equation (2).\(^{28}\)

The parameters \(d_p \) and \(R_g \) are also required to determine \(D_f \). While \(d_p \) can be obtained directly from analysis of TEM images, estimation of the actual radius of gyration \((R_g) \) is complicated. Here we used the following simple correlation

\[L_{max} / (2R_g) = 1.50 \pm 0.05 \]

(4)

to calculate \(R_g \),\(^{27}\) where \(L_{max} \) is the maximum length of the soot aggregate obtained from TEM images.

3 Results and Discussion

3.1 Morphology and Mixing State of Soot Particles

Fresh soot particles are normally chain-like aggregates. Once soot particles mix with other aerosol components in the air, the aging process can rearrange the structure of the inner soot aggregates.\(^{31}\) Based on their morphology and the visual estimation of coating on soot particles in TEM images, we classified them into three types: bare-like, partly coated, and embedded. Bare-like soot particles in TEM images display clear monomers without any visible coating on their surface (Figure 1a-1/1b-1/1c-1). Partly coated soot particles mean that individual soot particles are partly coated by other aerosol components (Figure 1a-2/1b-2/1c-2). Embedded soot particles refer to individual soot particles that are heavily coated or are entirely...
embedded within other aerosol components (Figure 1a-3/1b-3/1c-3). Figure 1 shows
the three types of soot particles collected at the urban, mountaintop, and background
sampling sites. Bare-like soot particles are dominant in the tunnel samples, because
vehicles emit large amounts of fresh soot particles (Figure S3). Similar results have
been found near freeways. Based on their different mixing structures, embedded
soot particles are normally considered as more aged than the partly coated soot
particles. We also calculated the area ratios of coating/soot core for internally
mixed soot particles. Figure S4 shows partly coated soot particles mostly have ratios
smaller than one, indicating smaller coatings. In contrast, embedded soot particles
have larger ratios, some of which are more than 20 times larger. These results are
consistent with our classification.

Figure 2 shows the fractions of three types of soot particles in different
atmospheric environments. The result shows that the bare-like soot particles
accounted for 64% of all particles in tunnel air but only 1~25% in urban polluted air
(Figure 2). Wang et al. also found a fairly low fraction (31.2%) of externally mixed
soot particles in urban Xi’an City of China through a single-particle soot photometer
(SP2). As a result, the polluted air likely accelerated the transformation from
bare-like into partly coated or embedded soot particles. It should be noted that
bare-like soot particles accounted for 25% at the urban site and 21% at the
background site, but embedded soot particles significantly increased from 12% to 39%
(Figure 2). These results indicate that the polluted air masses from the Jing-Jin-Ji
area and Shandong province (Figure S1) brought a large number of aged soot
particles into the downwind background air. In addition, the fraction of embedded
soot particles at the mountaintop site is largest at 55% and bare-like soot is lowest at
1% among the three sampling sites. China et al. found that most soot particles from
North America became internally mixed at the summit caldera of the Pico Volcano.
Therefore, soot particles that are emitted mostly at ground level but transported into
the upper atmospheric layers could undergo intense aging processes during their
transports. The RH is a critical factor to enhance heterogeneous reactions of acidic
gases on particle surface because secondary aerosols can deliquesce at about 60-80%
RH and form liquid phases. During the sampling period, there was higher RH around 64% in the upper air than the 16-55% on the ground. Indeed, many embedded soot particles on the mountaintop left a water rim around sulfate coating after drying on the substrate (Figure 1b-3), which indicates that secondary aerosol components existed as the liquid phase in the air. We conclude that soot particles likely underwent more complicated ageing processes due to the higher RH of the upper layers than at the polluted ground sites.

3.2 Quantifying the Shapes of Soot Particles

It is widely acknowledged that D_f of soot particles reflects their combustion conditions and aging processes. Compact soot particles often have larger D_f than lacy aggregates. Here we calculated the D_f of soot particles collected at the four sampling sites (Figure 3). D_f of bare-like soot particles at different sampling sites was very close, at ~1.82 (Figure 3a, 3b, 3d). Bare-like soot particles have the lowest D_f followed by partly coated and embedded soot particles (Figure 3), suggesting that bare-like soot particles were more lacy compared to the partly coated and embedded types. D_f of partly coated soot particles tends to be ~1.87, smaller than the 1.90–2.16 of embedded soot particles (Figure 3). Similarly, China et al. found the same properties (i.e., bare-like < partly coated < embedded) of D_f of the three types of soot particles emitted by wildfires. Peng et al. also found that the morphology of soot particles was modified heavily during aging processes. For the background soot particles, D_f ranges between 1.83 and 2.16, with a medium of 2.00 (Figure 3d). In contrast, D_f of the urban soot particles has lower values, between 1.83 and 1.90. We multiplied the number fraction of each type of soot by their corresponding D_f to calculate the statistical weighting of D_f. The statistical weighting of D_f values of the urban, mountaintop, and background site are 1.87, 1.90, and 1.97, respectively, which have an average value of 1.91.

The convexity (CV), roundness (RN), and D_f of the three types of soot particles at the four sampling sites are listed in Table S1. The CV and RN distributions of the three types of soot particle at the same sampling site (Figure S5) clearly prove their
D_f changes (Figure 3). The CV and RN of bare-like soot particles are smallest followed by those of partly coated and embedded soot particles at the four sampling sites. We therefore conclude that larger CV and larger RN represent more compactness for aged soot particles, consistent with the study of China et al.29

We found that D_f of fresh soot particles retained a consistent value (~1.82) at different sampling sites in the polluted air (Figure 3), although fresh soot particles display slightly different D_f due to their different sources and combustion conditions.30 Many researchers obtained D_f of soot particles of the primary sources, such as D_f from biomass burning at 1.67-1.83, D_f from vehicle emissions 1.52-1.94, and D_f from diesel at 1.6-1.9.41 D_f of soot particles becomes larger when soot aggregates are coated by other components during atmospheric processes.42 This indicates that soot particles likely collapse during the coating processes. In addition, the wide range of D_f of soot particles in the background air is somewhat expected because they originate from multiple sources, such as industries, residential heating, and transportation,30 and have undergone different atmospheric aging durations and processes.23 In addition, the D_f of embedded soot particles at 1.90~2.16 in this study are much lower than 2.3~2.6 reported by some previous studies.21, 23, 43 Adachi et al.21, 23 used cube-counting method to calculate D_f of soot particles. In most cases the images of fractal aggregates cannot be decomposed at all scales into an integer number of square boxes using this method,44 which may lead to a larger D_f. In the study by Bambha at al.,43 the smaller monomer diameter may cause lesser structural compaction.45 Besides, the coating material condensed at a low humidity often causes no restructuring, whereas the coating liquefies at a higher humidity and restructuring occurs promptly.46 In a word, these differences could be attributed to data processing methods, aging environments, and soot aggregate properties.

Using the scaling law method, the previous studies reported D_f at 1.52~1.94 for soot particles at road side32 and $D_f > 2$ for soot particles at a remote marine troposphere site.35 Here we systematically studied D_f of ambient soot particles collected at three representative polluted sites. These data are crucial to assess the
accurate shape of soot particles in the dry continental air.

4 Atmospheric Implications

Previous studies reported that the fractal dimensions (D_f) of fresh soot particles from vehicles, biomass, diesel, and wildfire emissions are around 1.7332, 1.7540, 1.7541, and 1.8929, respectively, which are close to 1.80–1.83 (D_f) of the bare-like soot particles obtained in this study (Figure 3). The reason is that fresh soot particles are generally formed via a cluster-dilute aggregation mechanism in a small-scale burning regime.39,47 These fresh soot particles are hydrophobic before being affected by secondary aerosols and condensable vapors in the atmosphere.48 Therefore, fresh soot particles can hardly collapse and their structures remain largely unchanged. In contrast, once soot particles interact with secondary organic and inorganic aerosols and water vapor during long-range transport, they became more compact as evidenced by the larger D_f in mountaintop and background air (Figure 3). TEM images further show that the morphology of soot particles not only became more compact from vehicular emission to background air (Figure 1), but also possibly underwent reconstruction under the influence of water vapor.5,49 Therefore, these hygroscopic secondary aerosols heavily caused morphological changes of soot particles in the atmosphere.

In this study, the D_f of soot particles were found to vary from 1.80 to 2.16 (Figure 3d) for different mixing structures, which indicate that the mixing structure of soot particles can represent their aging degree.31,33 At present, many studies set D_f as ~1.8 to simulate the complex structure of soot particles and to further calculate their optical properties.$^{10,50-52}$ However, some studies have suggested that the highly compact soot particles have substantially different optical properties from the lacy ones.20,53,54 In particular, the mass-specific scattering cross sections (MSC) of soot particles follow the order: $D_f = 2.1 > D_f = 1.78 > D_f = 1.4$.20 Therefore, it is essential to select suitable D_f values to construct accurate optical models of soot particles. Our results show that the statistical weighting of D_f of soot samples collected at the urban,
mountaintop, and background site has an average value at 1.91, suggesting that $D_f = 1.91$ could be more representative for ambient soot particles in continental polluted air. In particular, $D_f = 1.91$ can well represent soot particles in dry (RH<65%), winter polluted air in North China. Further studies are required to quantify the D_f of soot particles in different atmospheric environments, such as in humid troposphere, and strongly photochemical air, because they all can accelerate soot aging in the atmosphere.$^5, 34$

Acknowledgments

We thank Peter Hyde for his editorial comments. This work was funded by the National Natural Science Foundation of China (41622504 and 41575116) and the Hundred Talents Program in Zhejiang University. ZS is funded by Natural Environment Research Council (NE/N007190/1).

Associated Contents

Supporting Information Available: specific microscopic analysis, related geometric parameters of soot particles, and some supplementary tables and figures.
References

44. Wozniak, M.; Onofri, F. R. A.; Barbosa, S.; Yon, J.; Mróczka, J., Comparison of methods to
derive morphological parameters of multi-fractal samples of particle aggregates from TEM images.

Figure 1. TEM images of individual soot particles collected at the urban site (a-1/2/3), the mountaintop site (b-1/2/3), and the background site (c-1/2/3). Soot particles are classified into three types: bare-like (a/b/c-1), partly coated (a/b/c-2), and embedded (a/b/c-3).
Figure 2. The percentages of bare-like, partly coated, and embedded soot particles collected at four sampling sites. 147, 216, 295, and 121 soot particles were analyzed in the samples collected at the tunnel, urban, mountaintop, and background sites, respectively.

Figure 3. The fractal dimensions of different types of soot collected at the tunnel (a), urban (b), mountaintop (c), and background (d) site. For each site, the lines and circles represent bare-like (black), partly coated (blue), and embedded (red) soot particles.
Fractal Dimensions and Mixing Structures of Soot Particles during Atmospheric Processing

Yuanyuan Wang1,2, Fengshan Liu3, Cenlin He4, Lei Bi2, Tianhai Cheng5, Zhili Wang6, Hua Zhang7,8, Xiaoye Zhang6, Zongbo Shi9, Weijun Li*2

1Environment Research Institute, Shandong University, Jinan, Shandong 250100, China
2Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
3Measurement Science and Standards, National Research Council, Ottawa, Ontario K1A 0R6, Canada
4Department of Atmospheric and Oceanic Sciences and Joint Institute for Earth System Science and Engineering, University of California, Los Angeles, CA90095, USA
5State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100101, China
6Chinese Academy of Meteorological Sciences, Beijing 100081, China
7Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
8Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China
9School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K

\begin{center}
\includegraphics[width=0.5\textwidth]{aging_processes.png}
\end{center}

\begin{itemize}
\item $D_i = 1.80$
\item $D_i = 1.87$
\item $D_i = 2.16$
\end{itemize}