Topotactic fluorine insertion into the channels of FeSb2O4-related materials.

Greaves, Colin; de Laune, Benjamin; Rees, Gregory; Marco, Jose; Hah, Hien-Yoong; Johnson, Charles; Johnson, Jacqueline; Berry, Frank; Hanna, John

DOI: 10.1021/acs.inorgchem.7b01613

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Topotactic Fluorine Insertion into the Channels of FeSb$_2$O$_4$-Related Materials

Benjamin P. de Laune, Gregory J. Rees, José F. Marco, Hien-Yoong Hah, Charles E. Johnson, Frank J. Berry, John V. Hanna, and Colin Greaves

School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
Department of Physics, University of Warwick, Coventry CV4 7AL, U.K.
Instituto de Quimica-Fisica "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
Department of Mechanical, Aeronautical and Biomedical Engineering and Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, Tennessee 37388, United States

ABSTRACT: This paper discusses the fluorination characteristics of phases related to FeSb$_2$O$_4$, by reporting the results of a detailed study of Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ and Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$. Reaction with fluorine gas at low temperatures (typically 230°C) results in topotactic insertion of fluorine into the channels, which are an inherent feature of the structure. Neutron powder diffraction and solid state NMR studies show that the interstitial fluoride ions are bonded to antimony within the channel walls to form Sb$-$F$-$Sb bridges. To date, these reactions have been observed only when Fe$^{2+}$ ions are present within the chains of edge-linked octahedra (FeO$_6$ in FeSb$_2$O$_4$) that form the structural channels. Oxidation of Fe$^{2+}$ to Fe$^{3+}$ is primarily responsible for balancing the increased negative charge associated with the presence of the fluoride ions within the channels. For the two phases studied, the creation of Fe$^{3+}$ ions within the chains of octahedra modify the magnetic exchange interactions to change the ground-state magnetic symmetry to C-type magnetic order in contrast to the A-type order observed for the unfluorinated oxide parents.

1. INTRODUCTION

Fluorine insertion into low-dimensional oxides is well understood and results in changes in structural properties, e.g., increased separation in layered materials, and electronic characteristics that are associated with oxidation of transition metal ions present in the parent material. These reactions have recently been reviewed, and a classic example is provided by the conversion of semiconducting La$_2$CuO$_4$ to superconducting La$_2$CuO$_4$F$_x$ by heating in ambient pressure fluorine gas. Similar reactions may also be observed for oxygen insertion, albeit generally at elevated pressures. We have recently reported that phases related to FeSb$_2$O$_4$ (the mineral schafarzikite) can accommodate oxygen into the narrow one-dimensional channels that are an inherent feature of their structure. We have therefore examined whether related fluorine insertion reactions are possible. In this paper we report that this is, indeed, the case; we describe the nature of the redox reactions involved and compare the different anion insertion processes.

The structure of FeSb$_2$O$_4$ is tetragonal (P4$_2$/nmb $a = 8.62$ Å $c = 5.91$ Å) and contains chains of edge-sharing Fe$^{2+}$O$_6$ octahedra that are linked by trigonal pyramidal Sb$^{3+}$ ions. The Sb$^{3+}$ coordination becomes pseudotetrahedral if we include the lone pair of electrons (e) in the coordination geometry, SbO6e. The combination of these structural features provides parallel channels (along the c-axis) into which the Sb$^{3+}$ lone pairs of electrons are directed (Figure 1). The schafarzikite family, which can be represented by MSb$_2$O$_4$, is quite broad, and the members with M = Co$^2+$ and M = Mg$^2+$ are relevant to the present study. There have been several reports of the magnetic properties where M is a magnetic ion, especially of how elemental substitutions affect the magnetic exchange interactions.

Received: June 28, 2017
Published: August 4, 2017

Figure 1. Structure of FeSb$_2$O$_4$ viewed along [001] (a), and [110] (b). Elements are shown as hard spheres—Fe (blue), Sb (black), apical oxygen (yellow), equatorial oxygen (red)—and their coordination environments are shown.
interactions and thereby influence the nature of the low-temperature magnetic order. All Sb-based materials which order magnetically at low temperatures have been found to display either A- or C-type modes of order with the moments aligned perpendicular to [001] or along [001], as shown in Figure 2. FeSb$_2$O$_4$, for example, has A-type order below a Néel temperature, $T_N = 45$ K, whereas CoSb$_2$O$_4$ is C-type with $T_N = 79$ K. Interestingly, partial oxidation of Fe$^{2+}$ to Fe$^{3+}$ via cation substitution, FeSb$_{1-y}$Pb$_y$O$_4$ or in oxygen-excess phases, e.g., Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$, cause a switch from A-type to C-type order. However, the pure Fe$^{3+}$ compound FePbBiO$_4$ is A-type, which highlights the delicate balance that exists between the intrachain and interchain magnetic exchange interactions and how small changes to the relative magnitudes of direct and superexchange magnetic interactions within the chains of octahedra influence the three-dimensional (3-D) magnetic order. The only reports of electronic conductivity relate to Fe$^{2+}$-containing phases and suggest semiconductor behavior with higher conductivities being observed for materials containing mixed Fe$^{2+}$/Fe$^{3+}$ compositions.

We have recently reported that unusual oxidation reactions can occur in air or oxygen with retention of the basic structure. The reactions occur at low temperatures, e.g., at 350°C, but it has been seen only for compounds which contain some Fe$^{2+}$ cations. The reaction involves insertion of oxide ions into the empty channels, with charge balance being provided by simultaneous oxidation of Fe$^{2+}$ ions to Fe$^{3+}$ and Sb$^{3+}$ to Sb$^{5+}$. The stability appears to be enhanced by the formation of defect clusters in the channels: these contain two 4-coordinate Sb$^{5+}$, two interstitial O$^{2-}$ ions, and one 5-coordinate Sb$^{5+}$. High levels of oxygen insertion occur when the Fe$^{2+}$ concentration is high, e.g., in FeSb$_2$O$_4$, and this causes structural strain and broadening of diffraction peaks. However, this is not apparent for compounds such as Fe$_{0.50}$Mg$_{0.50}$Sb$_2$O$_4$ for which detailed investigations are possible.

These low temperature oxidations are of interest for their demonstration that the schafarzikite structure may be useful for materials with relevant electrocatalytic and ion transport properties. Given the high oxidation potential of fluorine gas, we have studied its low temperature reactions with Fe$^{2+}$-containing schafarzikite phases and compared the nature of the reactions with those reported previously for the production of oxygen-excess phases. Here we report a detailed study of two representative materials, Mg$_{0.50}$Fe$_{1.50}$Sb$_2$O$_4$ and Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$. We show that similar reactions occur, but the Sb–F bonding preferences are different from Sb–O and result in significant differences not only to the structural characteristics, but also to the nature of the redox processes involved.

2. EXPERIMENTAL DETAILS

Parent materials were prepared by heating dried mixed metal oxides and antimony metal (CoO, 325 mesh Sigma-Aldrich; Fe$_3$O$_4$, 99.9% Sigma-Aldrich; Sb$_2$O$_3$, Reagent Plus, Sigma-Aldrich; Sb, BDH; MgO, 99.9% 325 mesh Sigma-Aldrich) in evacuated sealed quartz tubes as previously described. Samples were fluorinated by heating in flowing F$_2$ (10% in N$_2$) at 230°C for various times. After each heat treatment the reaction vessel was immediately purged with N$_2$ or Ar gas.

Powder X-ray diffraction (XRPD) analysis was performed on a Bruker D8 diffractometer with transmission geometry (monochromatic Cu–K$_\alpha$ radiation, $\lambda = 1.5406$ Å). Neutron powder diffraction (NPD) data sets were collected (from samples of ca. 2–3 g in 8 mm vanadium cans) at 4 and 300 K on the diffractometer D2B at ILL, Grenoble, France. Data obtained from the central portion of the detector were used in the analysis to limit low angle asymmetry. Crystallographic and magnetic structure determinations were performed using the Rietveld method and the general structures analysis system (GSAS) and EXPGUI. The magnetic refinements for 4 K data used form factors for Fe$^{2+}$ and Co$^{2+}$ based on evidence gained from the 300 K data and Mössbauer spectroscopy, which suggested that Fe$^{3+}$ was the major iron species present. Magnetic properties were determined with an MPMS Quantum Design XL instrument: field-cooled (FC) and zero-field cooled (ZFC) measurements were taken with an applied field of 100 Oe. Thermogravimetric (TG) properties were investigated with a Netzsch Sta 449 F1 analyzer by heating samples at 10 K/min to 873 K in flowing 10% H$_2$ in N$_2$. The 57Fe- and 121Sb-Mössbauer spectra were recorded at 300 K with constant acceleration spectrometers using 57Co/Rh and 121Sn sources. All spectra were computer fitted and the chemical isomer shift data are quoted relative to metallic iron at room temperature. The distribution of O$^{2-}$ and F$^{-}$ ions among the available anion sites was investigated using Madelung energy calculations.

3. RESULTS

The samples of Fe$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ and Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ were selected for detailed study from a wide range of synthesized compounds, since they offered sufficient fluorine contents for reliable structure analysis while avoiding complications of broadened diffraction peaks seen for samples with higher iron contents; this also occurs for oxygen-excess phases as previously discussed. XRPD data showed that the products of fluorination were single phase with structures closely related to that of the parent oxides; Figure 3 shows data for the formation of Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_4$ from Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$.

3.1.1. Structure Analysis, 300 K.

The structure was refined against NPD data in $\pi/2$–$4\pi–\pi/2$ to record a full echo with only half echo processing being used which ensured that no broad components were distorted or lost in the experimental dead time after the excitation pulse, and to establish 19F chemical shift referencing. A spectrometer operating at a 19F Larmor frequency of 94.2 MHz. Each measurement was performed using a dual channel Bruker Avance III HD spectrometer operating at a 1F Larmor frequency of 94.2 MHz. Each measurement was performed using a dual channel Bruker Avance III HD spectrometer operating at a 1F Larmor frequency of 94.2 MHz. Each measurement was performed using a dual channel Bruker Avance III HD spectrometer operating at a 1F Larmor frequency of 94.2 MHz.
interstitial fluorine. Satisfactory refinements were achieved for both materials and located interstitial fluorine within the channels at sites which are closely related to those reported for oxygen excess phases. The isotropic displacement parameters for the fluorine and the two oxygen sites (equatorial, O_{eq} and apical, O_{ap}, as shown in Figure 1) were constrained to be equal to limit correlation effects between the F site occupancy and its displacement parameter. The diffraction peaks for Mg_{0.50}Fe_{0.50}Sb_{2}O_{4}F_{x} showed evidence for shoulders which were attributed to a non-homogeneous distribution of fluorine within the sample. Although fitting the data to two phases was possible, refinement using a single phase was more stable and was therefore adopted. After Rietveld refinement, the profile data are shown in Figures 4 and 5 and the structural data in Tables 1 and 2 for Co_{0.50}Fe_{0.50}Sb_{2}O_{4}F_{x} and Mg_{0.50}Fe_{0.50}Sb_{2}O_{4}F_{x}, respectively. Since NPD cannot differentiate between oxygen and fluorine, Tables 1 and 2 assume that the inserted fluorine occupies the intrachannel site and does not undergo any substitution with framework O_{eq} or O_{ap} sites. Thermodynamic support for this anion distribution was sought using Madelung energy calculations, which provide good relative stabilities for different ionic arrangements that are possible for a given material.

Madelung energies were computed based on the structural data for Co_{0.50}Fe_{0.50}Sb_{2}O_{4}F_{x}, Table 1, with a fluorine content of 0.5 per formula unit (in accordance with the site occupancies in Table 1) and charge balance via oxidation Fe^{2+} to Fe^{3+}. Structures were examined in which fluorine was allowed to substitute for both apical and equatorial oxide ions, and the results, Figure 6, revealed very little difference for substitution at O_{ap} and O_{eq} sites. An alternative charge balance involving a combination of Fe^{2+} and Sb^{3+} oxidation, suggested by Mössbauer spectroscopy (section 3.2), was also examined, and the results are included in Figure 6. The data provide no thermodynamic evidence to suggest any F/O exchange in the material, with fluorine showing a strong preference to remain in interstitial channel sites according to a higher Madelung energy of ~4%. However, it should be noted that the interstitial fluorine sites are occupied only to the extent of ~12%, and the model used distributes the charge evenly across all equivalent sites. This will result in a higher repulsive interaction between the channel sites than would occur in reality, where short-range order could avoid very close contacts between the anions. In the computations, this will destabilize structures with oxide ions in the channels more than those involving interstitial fluoride ions because of the higher ionic charge on oxygen. To evaluate the magnitude of this contribution, the structure was transformed to \(P\bar{1} \) symmetry which allowed the selection of two well-separated positions for the two interstitial anions in the unit cell (to give the required composition). This model slightly increased the stability of all distributions, but especially those with oxygen within the channels, as expected. In all cases, however, the Madelung energy for fluorine occupancy of the channels remained >1.3% higher than for fluorine occupancy of framework sites (O_{ap} or O_{eq}) and confirmed the structural assignments in Tables 1 and 2.

Table 3 compares some relevant bond distances for the starting materials with those in the fluorinated products and some common trends are seen. The bond distances around the octahedral cations decrease on fluorination which is consistent with oxidation of some Fe^{2+} ions to Fe^{3+}. The higher charge provides enhanced cation–cation repulsions within the chains of octahedra, which is reflected in the increased \(c \)-parameter.

![Figure 3](image-url)
Figure 3. XRPD patterns showing how the structure of Co_{0.50}Fe_{0.50}Sb_{2}O_{4} (black) changes upon fluorination to form Co_{0.50}Fe_{0.50}Sb_{2}O_{4}F_{x} (red). The significant reflections for 2\(\theta \) < 35° are shown for Co_{0.50}Fe_{0.50}Sb_{2}O_{4}, and convergence of the (220)/(002) and (310)/(112) peaks occurs after fluorination.

![Figure 4](image-url)
Figure 4. Rietveld refinement profiles for Co_{0.50}Fe_{0.50}Sb_{2}O_{4}F_{x} showing raw data (red crosses), fitted profile (green), and difference profile (mauve). Reflection positions are marked as vertical bars: crystal structure (black), magnetic structure (red). The low angle region at 4 K is shown in the inset to highlight the magnetic scattering.

![Figure 5](image-url)
Figure 5. Rietveld refinement profiles for Mg_{0.50}Fe_{0.50}Sb_{2}O_{4}F_{x} showing raw data (red crosses), fitted profile (green), and difference profile (mauve). Reflection positions are marked as vertical bars: crystal structure (black), magnetic structure (red). The low angle region at 4 K is shown in the inset to highlight the magnetic scattering.
Table 1. Results of Rietveld Refinement against NPD data at 300 and 4 K (data in Italic) for Co0.50Fe0.50Sb2O4Fx.

<table>
<thead>
<tr>
<th>atom</th>
<th>position</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>100 × Uiso/Å²</th>
<th>occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/Fe</td>
<td>4d</td>
<td>0</td>
<td>0.5</td>
<td>0.25</td>
<td>1.34(8)</td>
<td>0.5/0.5</td>
</tr>
<tr>
<td>Sb</td>
<td>8h</td>
<td>0.1660(5)</td>
<td>0.1634(5)</td>
<td>0</td>
<td>2.28(7)</td>
<td>1.0</td>
</tr>
<tr>
<td>Oap</td>
<td>8g</td>
<td>0.6747(3)</td>
<td>0.1747(3)</td>
<td>0.25</td>
<td>2.18(6)</td>
<td>1.0</td>
</tr>
<tr>
<td>Oeq</td>
<td>8h</td>
<td>0.1000(4)</td>
<td>0.6348(4)</td>
<td>0</td>
<td>2.18(6)</td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>16i</td>
<td>0.555(3)</td>
<td>0.468(4)</td>
<td>0.268(4)</td>
<td>2.18(6)</td>
<td>0.12(4)</td>
</tr>
</tbody>
</table>

\[a = 8.4270(3) \ \text{(8.4123(2)) \ Å, } c = 5.9501(2) \ \text{(5.9383(2)) \ Å, } P4_1/mbc \text{. Magnetic moment for Co/Fe at 4 K: } 3.58(5) \ μ_B; x^2 = 4.3 \ (6.1); \ χ_{wp} = 0.048 \ \text{(0.090).} \]

Table 2. Results of Rietveld Refinement against NPD data at 300 and 4 K (data in italics) for Mg0.50Fe0.50Sb2O4Fy.

<table>
<thead>
<tr>
<th>atom</th>
<th>position</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>100 × Uiso/Å²</th>
<th>occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg/Fe</td>
<td>4d</td>
<td>0</td>
<td>0.5</td>
<td>0.25</td>
<td>0.98(7)</td>
<td>0.5/0.5</td>
</tr>
<tr>
<td>Sb</td>
<td>8h</td>
<td>0.1671(6)</td>
<td>0.1649(6)</td>
<td>0</td>
<td>2.01(8)</td>
<td>1.0</td>
</tr>
<tr>
<td>Oap</td>
<td>8g</td>
<td>0.6766(3)</td>
<td>0.1766(3)</td>
<td>0.25</td>
<td>1.83(6)</td>
<td>1.0</td>
</tr>
<tr>
<td>Oeq</td>
<td>8h</td>
<td>0.1003(4)</td>
<td>0.6335(5)</td>
<td>0</td>
<td>1.83(6)</td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>16i</td>
<td>0.559(4)</td>
<td>0.467(7)</td>
<td>0.250(7)</td>
<td>1.83(6)</td>
<td>0.077(4)</td>
</tr>
</tbody>
</table>

\[a = 8.4537(6) \ \text{(8.4410(8)) \ Å, } c = 5.9451(3) \ \text{(5.9353(3)) \ Å, } P4_1/mbc \text{. Magnetic moment for Fe at 4 K: } 2.5(1) \ μ_B; x^2 = 10.6 \ (6.1); \ χ_{wp} = 0.046 \ \text{(0.044); } χ_f^2 = 0.048 \ \text{(0.090).} \]

Figure 6. Variation of Madelung energy with percentage of fluorine occupying channel sites. Red line = F in Oap sites with charge balance on Fe and Sb sites; black line = F in Oeq sites with charge balance on only Fe sites; blue line = F in Oap sites with charge balance on only Fe sites; green line = F in Oeq sites with charge balance on Fe and Sb sites.

Detailed bond distance comparisons around the Sb ions is not possible because we have only average bond distances, and these reflect ions with coordination numbers of 3 and 4.

The mean site occupancies from 300 and 4 K data (see below) refinements suggest compositions of Co0.50Fe0.50Sb2O4Fx0.49 and Mg0.50Fe0.50Sb2O4Fy0.31. These compositions will be used to describe the fluorinated phases throughout this paper. The difference in fluorine content in these samples probably relates to differences in particle size for the starting materials. Because of this, the fluorinating conditions were not identical. The compositions can be compared with the fluorine content of 0.50 per formula unit if oxidation of all Fe2+ to Fe3+ occurred completely and was the only charge balance mechanism for the interstitial fluorine. The concentration of interstitial anions is therefore compatible with oxidation of only Fe3+, whereas for the analogous oxygen insertion reactions, oxidation of both Fe2+ and Sb3+ cations was necessary to explain the significantly higher concentrations of anions in the channels. The results from Mössbauer spectroscopy, section 3.2, address this question.
are not equal, and the Sb–O distances have increased in length after the fluorination; this is consistent with an increase in average coordination for Sb, but provides no support for any significant oxidation to Sb$^{5+}$. This structural aspect is explored later in section 3.2. The F-bridging between two Sb$^{3+}$ cations is shown in Figure 8. It is interesting that the bridging bonds between F and two Sb ions have slightly different lengths. However, there is no special space group position that would constrain the bonds to be equal, and the fluorine position affects not only the bonding to the two Sb ions, but also more distant structural aspects. Figure 8 shows that the fluorine bonds in such a way as to provide space for the Sb$^{3+}$ lone pair of electrons, which are directed into the channels. The SbO$_{3e}$F coordination (e = lone pair) can be related to pseudo-D$_{3h}$ symmetry where one of the two O$_{ap}$ ions (marked * in Figure 8) and the lone pair lie on the C$_3$ axis, on opposite sides of the Sb ion. Detailed bond distance comparisons around the Sb ions are not possible unfortunately because the experimental distances are averages for ions with coordination numbers of

Table 3. Selected Bond Distances (Å) for Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ and Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ at 300 K

<table>
<thead>
<tr>
<th>Species</th>
<th>Co${0.50}$Fe${0.50}$Sb$_2$O$_4$ [ref 7]</th>
<th>Co${0.50}$Fe${0.50}$Sb$_2$O4F${0.49}$</th>
<th>Mg${0.50}$Fe${0.50}$Sb$_2$O$_4$</th>
<th>Mg${0.50}$Fe${0.50}$Sb$_2$O4F${0.31}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/Fe/Mg–O$_{ap}$</td>
<td>2.165(1)</td>
<td>2.083(4)</td>
<td>2.151(1)</td>
<td>2.111(4)</td>
</tr>
<tr>
<td>Co/Fe/Mg–O$_{eq}$</td>
<td>2.080(9)</td>
<td>2.052(3)</td>
<td>2.075(1)</td>
<td>2.050(3)</td>
</tr>
<tr>
<td>Fe–Fe</td>
<td>2.9592(1)</td>
<td>2.9750(1)</td>
<td>2.9613(9)</td>
<td>2.9726(1)</td>
</tr>
<tr>
<td>Sb–O$_{ap}$ [x2]</td>
<td>1.993(1)</td>
<td>2.020(3)</td>
<td>2.000(1)</td>
<td>2.003(4)</td>
</tr>
<tr>
<td>Sb–O$_{eq}$</td>
<td>1.947(2)</td>
<td>1.9876(6)</td>
<td>1.933(2)</td>
<td>1.985(6)</td>
</tr>
<tr>
<td>Sb–F</td>
<td>2.15(2)</td>
<td>2.35(3)</td>
<td>2.07(4)</td>
<td>2.43(6)</td>
</tr>
</tbody>
</table>

Table 4. 57Fe Mössbauer Parameters Recorded at 300 K from Fluorinated Derivatives of Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ and Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$

<table>
<thead>
<tr>
<th>Assignment</th>
<th>IS ± 0.05 mm s$^{-1}$</th>
<th>QS ± 0.05 mm s$^{-1}$</th>
<th>Spectral area/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$^{3+}$ (1)</td>
<td>1.16</td>
<td>1.91</td>
<td>19</td>
</tr>
<tr>
<td>Fe$^{3+}$ (2)</td>
<td>0.82</td>
<td>1.51</td>
<td>16</td>
</tr>
<tr>
<td>Fe$^{3+}$ (1)</td>
<td>0.50</td>
<td>0.90</td>
<td>12</td>
</tr>
<tr>
<td>Fe$^{3+}$ (2)</td>
<td>0.38</td>
<td>0.70</td>
<td>52</td>
</tr>
<tr>
<td>Mg${0.50}$Fe${0.50}$Sb$_2$O4F${0.31}$</td>
<td>Fe$^{3+}$ (1)</td>
<td>1.09</td>
<td>2.09</td>
</tr>
<tr>
<td>Fe$^{3+}$ (2)</td>
<td>0.82</td>
<td>1.60</td>
<td>14</td>
</tr>
<tr>
<td>Fe$^{3+}$ (1)</td>
<td>0.57</td>
<td>0.84</td>
<td>12</td>
</tr>
<tr>
<td>Fe$^{3+}$ (2)</td>
<td>0.38</td>
<td>0.75</td>
<td>54</td>
</tr>
</tbody>
</table>

Figure 7. Interstitial O atom positions in FeSb$_{1.25}$Pb$_{0.75}$O$_{4.24}$ (a), compared with the F atom positions in Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ (Table 1) (b). All partially occupied sites are shown.

Figure 8. Interstitial F (orange) bridging two Sb ions (black) viewed approximately along [111] and showing bonds distances in Å. O$_{ap}$ and O$_{eq}$ ions are shown in yellow and red, respectively. The ions marked * are opposite the position of the lone pairs of electrons on Sb.

Figure 9. 57Fe Mössbauer spectrum from Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ at 300 K: observed data (black points), Fe$^{3+}$ (purple and orange), Fe$^{3+}$ (green and blue), overall (red).

Figure 10. 57Fe Mössbauer spectrum from Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ at 300 K: observed data (black points), Fe$^{3+}$ (purple and orange), Fe$^{3+}$ (green and blue), overall (red).
3 and 4. The bond distances around the octahedral cations decrease on fluorination which is consistent with oxidation of some Fe$^{2+}$ ions to Fe$^{3+}$. The charge increase provides enhanced cation−cation repulsions along the chains of octahedra and is reflected in the increased c-parameter and hence the larger cation−cation distance between adjacent cations.

3.1.2. Magnetic Structure, 4 K. Magnetic structures were refined by introducing a discrete magnetic-only phase with $P1$ symmetry to allow total flexibility in determining the magnetic order; lattice parameters for this cell were constrained to correspond with the nuclear cell. It was clear from the intense (100) peak at ca. 10.8°2θ (Figures 4 and 5) that the dominant type of magnetic order for both fluorinated phases was consistent with C-type (Figure 2), with ferromagnetic order along a given chain of octahedra and antiferromagnetic order between adjacent chains. This contrasts with the predominant A-type arrangement seen in both starting phases7,12 and suggests significant oxidation of Fe$^{2+}$ to Fe$^{3+}$. In fact, Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ has a ground-state comprising a minor C-type component (35%) which corresponds to a rotation of the magnetic moments through \sim30°. Refinements proceeded smoothly to yield magnetic moments of 3.58(5) μ_B and 2.5(1) μ_B per transition metal for the Co and Mg variants, respectively. Small peaks at ca. 18.5°2θ can be seen in the diffraction patterns for both compounds at 300 and 4 K. These were assigned to a strong magnetic peak which is characteristic of
spinel phases; these are presumed to be very small amounts of (Co,Fe)2O4 and (Mg,Fe)2O4.

Assuming full conversion of Fe2+ to Fe3+, the theoretical spin-only moments for the transition metal ions relevant to NPD data are 4.0 μB and 5.0 μB for Co0.50Fe0.50Sb2O4F0.49 and Mg0.50Fe0.50Sb2O4 respectively. Given the high orbital contribution inherent in Co2+ ions, the experimental moments are therefore smaller than expected, especially for spin-only values of 3.5 and 4.0 μB per transition metal ion. This has previously been attributed to the effects of disorder within the chains of octahedra and the similarity in exchange interactions for A- and C-type order, such that some magnetic ions show no long-range magnetic order; this has been supported by the results of Mössbauer spectroscopy.12

It is interesting that both oxygen and fluorine insertion reactions result in stabilization of the C-type magnetic structure. In the starting materials, the diamagnetic Mg2+ ions weaken the magnetic exchange interactions,12 whereas Co2+ stabilizes the C-type structure relative to A. These effects will also be apparent in the fluorinated products. It is likely that the effects of oxidation of Fe2+ to Fe3+ are more important to intrachain magnetic exchange rather than to interchain effects. Two significant interactions occur within the chains: direct exchange involving t2g orbital overlap and ~90° superexchange involving the oxygen ions forming the common edges of the linked octahedra. It is difficult to predict, a priori, the results of oxidation because of conflicting effects. Direct exchange (favoring antiferromagnetic order within each chain and therefore A-type order) would be enhanced by the maximum number of half-filled t2g orbitals on Fe3+ ions, but reduced by the increased separation between adjacent cations within each chain (caused by the increased cation—cation repulsions and reflected in the c unit cell parameter). Enhanced covalence and the d7 Fe3+ configuration should increase the superexchange which favors ferromagnetic order within each chain and overall C-type order. The latter effect seems to be dominant, at least for the materials examined to date.

3.2. Mössbauer Spectroscopy. The 57Fe- and 121Sb-Mössbauer spectra recorded from Fe50SbO4 showed components characteristic of Fe2+ and Sb3+.21 Fluorination of both Mg0.50Fe0.50Sb2O4 and Co0.50Fe0.50Sb2O4 gave materials from which the 57Fe- and 121Sb-Mössbauer spectra showed that Fe2+ had been largely oxidized to Fe3+, whereas Sb3+ showed little signs of oxidation. The spectrum from fluorinated Mg0.50Fe0.50Sb2O4F0.31 is shown in Figure 9 and 57Fe Mössbauer parameters are collected in Table 4. The results show that, upon fluorination, ca. 66% of the Fe2+ in the pure oxide is oxidized to Fe3+. This agrees well with the NPD data, which show the bulk material to contain 62% Fe3+, assuming no oxidation of Sb3+ ions. The Fe3+ and Fe2+ components were both amenable to fitting to more than one site and are designated here as Fe2+(1), Fe2+(2), Fe3+(1), Fe3+(2). This fitting is attributed to the best approximation to the variety of local sites experienced by the octahedral cations that result from an essentially random arrangement within the chains and also more distant effects of the partially occupied fluorine sites. The Fe2+ and Fe3+ components are typical for an oxide environment and provide no evidence that fluorine may occupy sites within the structural framework.

The 57Fe Mössbauer results from Co0.50Fe0.50Sb2O4F0.49 (Figure 10, Table 4) are similar to those from Mg0.50Fe0.50Sb2O4F0.31 and demonstrate that fluorination induces ca. 68% of Fe2+ in the pure oxide to be oxidized to Fe3+, sufficient to compensate for 0.34F. The spectra also show two components for each of Fe2+ and Fe3+ species with isomer shifts similar to those recorded from Mg0.50Fe0.50Sb2O4F0.31. The 121Sb Mössbauer results (Figure 11, Table 5) from Mg0.50Fe0.50Sb2O4F0.31 show a single resonance (IS = −10.9 mm s−1) consistent with only Sb3+ and thereby confirming that oxidation of antimony is insignificant for this material. The broad nature of the line width (ca. 4 mm s−1) may suggest more than one environment for Sb3+ ions, which would be expected for bonding of some to the inserted F ions. However, in this study a single asymmetric peak was modeled by incorporating a quadrupole splitting. In contrast, the broad
lined 121Sb Mössbauer spectrum from Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ (Figure 12, Table 5) showed a small (ca. 5%) level of oxidation of Sb$^{3+}$ to Sb$^{5+}$. This concentration of Sb$^{5+}$ (0.1 Sb$^{5+}$ per formula unit) corresponds to a fluorine content of 0.2, an overall fluorine content of 0.54, and composition of Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.54}$, in good agreement with the NPD analysis.

3.3. Magnetic Susceptibility. The magnetic susceptibilities of Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ and Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ are plotted against temperature in Figure 13 and show that the oxidation of Fe$^{2+}$ ions within the chains of octahedra results in a significant change in magnetic behavior. Both Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ and Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ show canted antiferromagnetic transitions with $T_N = 49(1)$ and $80(1)$ K, respectively; these values can be compared with $T_N = 20(2)$ K for the parent materials. The increased Neel temperatures indicate a strengthening in magnetic exchange interactions, not only within the chains (resulting in a change from A-type to C-type order) but also between the chains to provide the overall three-dimensional order. Unfortunately the materials do not show Curie–Weiss behavior and provide nonlinear plots of (susceptibility)$^{-1}$ against temperature; this prevents reliable determination of effective moments or valid Weiss constants.

3.4. TG and Chemical Analysis. The fluorine content for a variety of materials was examined using a fluoride ion selective electrode after dissolution in HCl solutions. The results obtained indicated substantially higher fluorine contents than could be attributed to fluorine within the bulk material. It was therefore assumed that the samples contained significant, and variable, amounts of adsorbed and/or absorbed fluorine, and that the channels within the materials probably play a significant mechanistic role in this process.

TG analysis under reducing conditions (10% H$_2$ in N$_2$) was therefore explored in a further attempt to endorse the bulk fluorine contents deduced from crystallography and Mössbauer spectroscopy. Quantitative analysis of the decomposition products of oxide fluorides reduced in this way can often provide an accurate estimate of the fluorine content (see, for example, ref 22). Although this strategy could not address the bulk fluorine content in this study, it nevertheless provided some very interesting results. Figure 14 shows the mass losses from Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.31}$ and Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ during heating to 600 °C. XRPD analysis of each reduced product, Figure 15, revealed only one crystalline phase, Mg$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ and Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$, respectively. However, the mass losses associated with this reduction process were always larger than that expected from the NPD and Mössbauer spectroscopy data, and this was particularly pronounced for Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{0.49}$ and other materials studied containing cobalt. For example, the mass loss of 10.8% shown in Figure 14 for the cobalt containing phase studied in detail corresponds to the composition Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$F$_{2.1}$, which is unrealistic with respect to the
The NMR parameters for heating Co$_{0.50}$Fe$_{0.50}$Sb$_2$O$_4$ under flowing F$_2$ for varying time periods are given in i, j, and k. Haeberlen shift convention: \(|\delta_{iso} - \delta_{an}| \geq |\delta_{iso} - \delta_{an}| \geq |\delta_{22} - \delta_{iso}|, \delta_{iso} = (\delta_{11} + \delta_{22} + \delta_{33})/3, \Delta \delta = \delta_{22} - 1/2(\delta_{11} + \delta_{22}) = 3/2(\delta_{33} - \delta_{iso}), \eta_{\delta} = (\delta_{22} - \delta_{11})/(\delta_{33} - \delta_{iso})| \) where \(1 \geq \eta_{\delta} \geq 0\).
manifold must be from amorphous or small crystal size decomposition products formed by the channel Sb—F—Sb bridging species. A second “broad” component is required to complete the deconvolution of the spectrum shown in Figure 17e; this resonance at \(\delta_{\text{iso}} = 180 \text{ ppm} \) could be associated with the anisotropic behavior of the main broad resonance.

The \(^{19}\text{F} \) MAS NMR data from Co\(_{0.50}\)Fe\(_{0.50}\)Sb\(_2\)O\(_4\)F\(_{0.49}\) (see Figure 17g) can be deconvoluted in a similar fashion. Narrow resonances suggesting more ordered environments are observed at \(\delta_{\text{iso}} \approx -170 \text{ ppm} \), and these are assigned to the channel site, and possibly some contamination as occurs for Mg\(_{0.50}\)Fe\(_{0.50}\)Sb\(_2\)O\(_4\)F\(_{0.31}\). Three broad resonances indicating more disordered fluorine environments are observed at \(\delta_{\text{iso}} \approx 450, 480, \text{ and } 1190 \text{ ppm} \). The resonance centered at \(\delta_{\text{iso}} \approx 450 \text{ ppm} \) is spread over the entire observed 5000 ppm paramagnetic shift range and appears to relate to an F\(_2\)(Si) environment possibly located at the surface. As observed in Figure 17h, the postreduction product formed under 10% H\(_2\) in N\(_2\) results in a single resonance at \(\delta_{\text{iso}} \approx -160 \text{ ppm} \) and is assigned to poorly crystalline decomposition products CoF\(_2\), FeF\(_2\), and SbF\(_3\).

The lack of resolution evident in \(^{19}\text{F} \) MAS NMR data for the absorbed fluorine hinders the assignment of specific F environments. To assist with this problem, three samples were synthesized from the same parent Co\(_{0.50}\)Fe\(_{0.50}\)Sb\(_2\)O\(_4\) by heating under flowing F\(_2\) at 230 °C for different times (~10 s, 10 min, and 30 min). These spectra are shown in Figure 17i–k, respectively. The initial addition of F\(_2\) gives rise to two species characterized by a narrow \(^{19}\text{F} \) resonance at \(\sim -160 \text{ ppm} \) and a broader \(^{19}\text{F} \) resonance with a center of gravity at \(\sim 640 \text{ ppm} \). The narrow resonance can be assigned to the channel site (and possibly a contaminant), while the broader resonance emanates from the additional adsorbed/absorbed fluorine. The exposure of the material to F\(_2\) for 10 min increases the amount of the broad component and begins to show evidence of a third resonance, a paramagnetic shift anisotropic sideband manifold with a \(\delta_{\text{iso}} = 590 \text{ ppm} \) (\(\Delta \delta = 1800 \text{ ppm} \), \(\eta = 0.90 \)) (see Figure 17j). Upon further addition of F\(_2\) up to 30 min, the intensity of the broad resonance increases further, and the sideband manifold of the third resonance becomes fully resolved (\(\delta_{\text{iso}} = 590 \text{ ppm} \), \(\Delta \delta = 1970 \text{ ppm} \), \(\eta = 0.90 \)) (see Figure 17k). This resonance is attributed to absorbed fluorine, and the origin of the extensive sideband manifold is attributed to the electron–nuclear dipolar (pseudocontact) paramagnetic interaction arising from the fluorine being closer to the paramagnetic Co/Fe site, while the larger chemical shift can be accounted for by the Fermi contact hyperfine term.

A \(^{19}\text{F} \) MAS NMR study focusing on the importance that Fe plays in the reaction with fluorine gas was undertaken by varying the Fe content (\(x \)) in the Co\(_{0.50}\)Fe\(_{y}\)Sb\(_2\)O\(_4\)F\(_{z}\) system (see Figure 18 and Table 8). As the Fe in the sample increases from Co\(_{0.50}\)Fe\(_{0.25}\)Sb\(_2\)O\(_4\)F\(_{z}\) (Figure 18c) to Co\(_{0.50}\)Fe\(_{0.50}\)Sb\(_2\)O\(_4\)F\(_{z}\) (Figure 18a), the percentage of the fluorine that is absorbed within the channels is observed to increase, as evidenced by the emerging dominance of the disordered resonance at \(\delta_{\text{iso}} = 1200 \text{ ppm} \) (Figure 18a,b). Hence, this experiment unambiguously demonstrates that the amount of fluorine absorbed into the channel structure, but not being chemically bonded to Sb, is strongly dependent on the Fe concentration in the initial oxide.

4. CONCLUSIONS

Phases related to FeSb\(_2\)O\(_4\) and which contain some Fe\(^{2+}\) cations, have been shown to undergo topotactic fluorine insertion when heated at low temperatures in 10% F\(_2\) in nitrogen. The fluorine occupies sites within the structural channels of the FeSb\(_2\)O\(_4\) structure and forms bridges between two Sb\(^{3+}\) ions in a way that leaves space for the cation lone-pair of electrons to occupy a stereochemical position. The charges...
associated with the F^- ions are balanced primarily by oxidation of Fe^{2+} to Fe^{3+}, although a small amount of oxidation of Sb^{3+} to Sb^{5+} may also occur. Fluorination of $\text{Mg}_{0.50}\text{Fe}_{0.50}\text{Sb}_2\text{O}_4$ and $\text{Co}_{0.50}\text{Fe}_{0.50}\text{Sb}_2\text{O}_4$ was studied in detail and the fluorinated products order antiferromagnetically ($T_N = 49(1)$ and $80(1)$ K, respectively) but with different magnetic ground states (C-type order) compared to their oxide parent phases (A-type order). This is attributed to a change in magnetic interactions resulting from the oxidation of Fe^{2+} to Fe^{3+}.

Characterization of the oxide-fluorides is hampered by the presence of significant fluorine in addition to that bonded to Sb in the channels. No evidence for this was indicated by NPD data, and it is assumed that the fluorine is adsorbed on surface sites or absorbed within the channels. This proposal was supported by the presence of a large ^{19}F MAS solid state NMR signal that indicated the presence of disordered fluorine. Fluorine contamination prevented reliable chemical analysis for the bulk fluorine content, which was necessarily based on NPD refined values. Reduction of the fluorinated materials under hydrogen removed not only the adsorbed/absorbed fluorine but also the channel fluorine. The phase is restored to its original state, although ^{19}F solid state NMR studies indicate that the channel fluorine probably remains in the material, and forms binary fluorides (amorphous or with very small crystal sizes) that will depend on the starting composition.

AUTHOR INFORMATION

Corresponding Authors
*(C.G.) E-mail: c.greaves@bham.ac.uk.
(J.V.H.) E-mail: J.V.Hanna@warwick.ac.uk.

ORCID
Colin Greaves: 0000-0002-9568-3697

Notes
The authors declare no competing financial interest. Data associated with the results shown in this paper are accessible from the University of Birmingham Archive: http://epapers.bham.ac.uk/3026/.

ACKNOWLEDGMENTS

We thank EPSRC for financial support of this research (EP/L014114/1) and also Spanish MINECO (Project MAT 2015-64110-C2-1-P). We are grateful to EPSRC, EU, and ILL for the provision of NPD facilities and we thank Dr. Emma Suard and Dr. Sarah Horswell for assistance in collecting the NPD data at ILL. The X-ray diffractometers TG analyser used in this research were obtained through Birmingham Science City: Creating and Characterising Next Generation Advanced Materials (West Midlands Centre for Advanced Materials Project 1), with support from Advantage West Midlands (AWM) and part funded by the European Regional Development Fund (ERDF). The Advanced Materials Facility is part of the Centre for Chemical and Materials Analysis in the School of Chemistry at the University of Birmingham. J.V.H. thanks the EPSRC, the University of Warwick and the Birmingham Science City Program for partial funding of the solid state NMR infrastructure at Warwick. The latter program accessed the Birmingham Science City Advanced Materials Project 1: Creating and Characterising Next Generation Advanced Materials, which derived support from Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF).

REFERENCES

(7) Cumby, J. C.; de Laune, B. P.; Greaves, C. The Structures and Magnetic Properties of $\text{FeCo}_x\text{Sb}_2\text{O}_4$ and $\text{MnCo}_x\text{Sb}_2\text{O}_4$, $0 \leq x \leq 1$. *J. Mater. Chem. C* 2016, 4, 201–208.

(12) de Laune, B. P.; Whitaker, M. J.; Marco, J. F.; Thomas, M. F.; Berry, F. J.; Lees, M. R.; Greaves, C. Synthesis and magnetic characterisation of $\text{Fe}_{x}\text{Mg}_{1-x}\text{Sb}_2\text{O}_4$, $x = 0.25, 0.50, 0.75$ and their oxygen-excess derivatives, $\text{Fe}_{x}\text{Mg}_{1-x}\text{Sb}_2\text{O}_{4+x}$, $0 \leq x \leq 1$. *J. Mater. Chem. C* 2017, 5, 4985–4995.

(22) Gurusinghe, N. M. N.; Fones, J. C.; Marco, J. F.; Berry, F. J.; Greaves, C. Fluorine insertion into the Ruddlesden-Popper phase
La$_2$BaFe$_5$O$_7$: the structure and magnetic properties of La$_2$BaFe$_5$O$_7$F$_4$.