Remarkable Diversity of Escherichia coli Carrying mcr-1 from Hospital Sewage with the Identification of Two New mcr-1 Variants
Zhao, Feifei; Feng, Yu; Lü, Xiaoju; McNally, Alan; Zong, Zhiyong

DOI: 10.3389/fmicb.2017.02094

License: Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 29/11/2017
This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 07. Dec. 2018
Remarkable Diversity of *Escherichia coli* Carrying *mcr-1* from Hospital Sewage with the Identification of Two New *mcr-1* Variants

Feifei Zhao1,2†, Yu Feng1,2†, Xiaoju Lü1,2, Alan McNally3 and Zhiyong Zong1,2,4*

1 Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China, 2 Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China, 3 Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom, 4 Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China

The plasmid-borne colistin-resistant gene *mcr-1* has rapidly become a worldwide public health concern. This study aims to determine the host bacterial strains, plasmids, and genetic contexts of *mcr-1* in hospital sewage. A 1-ml hospital sewage sample was cultured. Colistin-resistant bacterial colonies were selected on agar plates and were subjected to whole genome sequencing and subsequent analysis. The transfer of *mcr-1* between bacterial strains was tested using conjugation. New variants of *mcr-1* were cloned to test the impact of variations on the function of *mcr-1*. Plasmids carrying *mcr-1* were retrieved from GenBank for comparison based on concatenated backbone genes. In the sewage sample, we observed that *mcr-1* was located in various genetic contexts on the chromosome, or plasmids of four different replicon types (IncHI2, IncI2, IncP, and IncX4), in *Klebsiella pneumoniae*, *Kluyvera* spp. and seven *Escherichia coli* strains of six different sequence types (ST10, ST34, ST48, ST1196, ST7086, and ST7087). We also identified two new variants of *mcr-1*, *mcr-1.4* and *mcr-1.7*, both of which encode an amino acid variation from *mcr-1*. *mcr-1*-carrying IncX4 plasmids, which have a global distribution across the *Enterobacteriaceae*, are the result of global dissemination of a single common plasmid, while IncI2 *mcr-1* plasmids appear to acquire *mcr-1* in multiple events. In conclusion, the unprecedented remarkable diversity of species, strains, plasmids, and genetic contexts carrying *mcr-1* present in a single sewage sample from a single healthcare site highlights the continued evolution and dynamic transmission of *mcr-1* in healthcare-associated environments.

Keywords: colistin resistance, *mcr-1*, sewage, *Escherichia coli*, plasmid

INTRODUCTION

Colistin (also known as polymycin E) is an antibiotic and has long been one of the last resort treatments for infections caused by multi-drug resistant Gram-negative bacteria. However, bacterial strains that acquired resistance to colistin resistance have emerged worldwide (Olaitan et al., 2014). The mechanisms mediating resistance to colistin are mainly due to mutations or insertions in the chromosomal genes such as the *phoP-Q* and...
TABLE 1 | Sequence type (ST), plasmid, and resistance genes of the isolates.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>ST</th>
<th>ST complex</th>
<th>Plasmid carrying mcr-1<sup>a</sup></th>
<th>Aminoglycoside</th>
<th>β-lactam</th>
<th>Quinolone</th>
<th>Fosfomycin</th>
<th>MLS<sup>b</sup></th>
<th>Phenicol</th>
<th>Sulphonamide</th>
<th>Tetracycline</th>
<th>Trimethoprim</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>strA, strB, aac(3)-IId, aadA2, aadA1</td>
<td>bla<sub>CTX-M-14</sub>, bla<sub>TEM-1b</sub></td>
<td>oqxB, oqxA</td>
<td>fosA</td>
<td>hu(F), mph(A)</td>
<td>cm/IA1, floR</td>
<td>sul1, sul3</td>
<td>tet(M)</td>
<td>dfrA12</td>
<td></td>
</tr>
<tr>
<td>WCHEC1604</td>
<td>1196 446</td>
<td>IncX4, 31,229, Inc2, 62,098</td>
<td>blaq<sub>CTX-M-14</sub>, blaq<sub>TEM-1b</sub></td>
<td>oqxB, oqxA</td>
<td>fosA</td>
<td>hu(F), mph(A)</td>
<td>cm/IA1, floR</td>
<td>sul1, sul3</td>
<td>tet(M)</td>
<td>dfrA12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCHEC1606</td>
<td>7087 165</td>
<td>IncX4, 33,309</td>
<td>blaq<sub>CTX-M-14</sub>, blaq<sub>TEM-1b</sub></td>
<td>oqxB, oqxA</td>
<td>fosA</td>
<td>hu(F), mph(A)</td>
<td>cm/IA1, floR</td>
<td>sul1, sul3</td>
<td>tet(M)</td>
<td>dfrA12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCHEC1609</td>
<td>10 10</td>
<td>IncH12, IncN 300,307</td>
<td>blaq<sub>CTX-M-14</sub>, blaq<sub>TEM-1b</sub></td>
<td>oqxB, oqxA</td>
<td>fosA</td>
<td>hu(F), mph(A)</td>
<td>cm/IA1, floR</td>
<td>sul1, sul3</td>
<td>tet(M)</td>
<td>dfrA12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCHEC1612</td>
<td>48 10</td>
<td>IncX4, 33,309</td>
<td>blaq<sub>CTX-M-14</sub>, blaq<sub>TEM-1b</sub></td>
<td>oqxB, oqxA</td>
<td>fosA</td>
<td>hu(F), mph(A)</td>
<td>cm/IA1, floR</td>
<td>sul1, sul3</td>
<td>tet(M)</td>
<td>dfrA12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCHEC1614</td>
<td>34 10</td>
<td>IncX4, 33,309</td>
<td>blaq<sub>CTX-M-14</sub>, blaq<sub>TEM-1b</sub></td>
<td>oqxB, oqxA</td>
<td>fosA</td>
<td>hu(F), mph(A)</td>
<td>cm/IA1, floR</td>
<td>sul1, sul3</td>
<td>tet(M)</td>
<td>dfrA12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCHEC1618</td>
<td>34 10</td>
<td>IncX4, 33,309</td>
<td>blaq<sub>CTX-M-14</sub>, blaq<sub>TEM-1b</sub></td>
<td>oqxB, oqxA</td>
<td>fosA</td>
<td>hu(F), mph(A)</td>
<td>cm/IA1, floR</td>
<td>sul1, sul3</td>
<td>tet(M)</td>
<td>dfrA12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCHEC1622</td>
<td>7086 155</td>
<td>IncP, 49,897</td>
<td>blaq<sub>CTX-M-14</sub>, blaq<sub>TEM-1b</sub></td>
<td>oqxB, oqxA</td>
<td>fosA</td>
<td>hu(F), mph(A)</td>
<td>cm/IA1, floR</td>
<td>sul1, sul3</td>
<td>tet(M)</td>
<td>dfrA12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aReplicon type and size of plasmids are shown.

^bResistance genes that were located on plasmids carrying mcr-1 are underlined.

^cMLS: macrolide, lincosamide, and streptogramin B.
pmrA-B and ccrA-B two-component systems and the regulator gene mgrB (Olaitan et al., 2014). A plasmid-borne colistin resistance gene, mcr-1, has recently been found in *Escherichia coli* and in a lesser extent *Klebsiella pneumonia* (Liu et al., 2016). *mcr-1* encodes a phosphoethanolamine (PEA) transferase enzyme that is capable of adding PEA to the lipid A moiety of lipopolysaccharides (LPSs), the initial target of colistin (Liu et al., 2016). Besides *E. coli* and *K. pneumonia*, *mcr-1* has been detected in various species of the *Enterobacteriaceae* in many countries (Schwarz and Johnson, 2016), imposing an emerging threat for human and animal health. During a screening study for colistin-resistant bacterial isolates in hospital sewage, we found that *mcr-1* genes including two new variants were carried by plasmids of various replicon types in multiple *E. coli* strains.

MATERIALS AND METHODS

Strains

Sewage (1 ml) was collected from the influx of the wastewater treatment plant at West China Hospital in November 2015. West China Hospital is a 5,000-bed tertiary teaching hospital and serves as one of the major referral medical centers in western China. All sewages produced in the hospital were processed in the plant. The sewage sample was mixed with 100 ml brain heart infusion broth (Oxoid, Basingstoke, United Kingdom) in a 500-ml flask. After overnight incubation at 37°C, the culture suspension was diluted to 0.5 McFarland standard and an 100 µl aliquot was plated onto a CHROMAgar Orientation agar plate (CHROMAgar, Paris, France) containing 4 µg/ml colistin and 64 µg/ml linezolid. The plate was then incubated at 37°C overnight. Pink colonies that represent

TABLE 2 | General features of the seven genomes.

<table>
<thead>
<tr>
<th>Strain</th>
<th>ST</th>
<th>Clean reads</th>
<th>Draft genome size (bp)</th>
<th>GC content</th>
<th>No. of contigs</th>
<th>No. of contigs ≥ 1,000 bp</th>
<th>No. of coding sequences</th>
<th>No. of tRNA genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCHEC1604</td>
<td>1196</td>
<td>4,567,732</td>
<td>5,413,166</td>
<td>50.27</td>
<td>201</td>
<td>101</td>
<td>5,102</td>
<td>88</td>
</tr>
<tr>
<td>WCHEC1606</td>
<td>7087</td>
<td>3,944,022</td>
<td>4,867,654</td>
<td>50.67</td>
<td>141</td>
<td>83</td>
<td>4,545</td>
<td>84</td>
</tr>
<tr>
<td>WCHEC1609</td>
<td>10</td>
<td>4,198,787</td>
<td>4,978,999</td>
<td>50.68</td>
<td>242</td>
<td>118</td>
<td>4,664</td>
<td>75</td>
</tr>
<tr>
<td>WCHEC1613</td>
<td>48</td>
<td>48,400</td>
<td>5,168,735</td>
<td>50.66</td>
<td>4</td>
<td>4</td>
<td>4,875</td>
<td>90</td>
</tr>
<tr>
<td>WCHEC1614</td>
<td>34</td>
<td>4,437,287</td>
<td>4,725,432</td>
<td>50.75</td>
<td>197</td>
<td>117</td>
<td>4,453</td>
<td>81</td>
</tr>
<tr>
<td>WCHEC1618</td>
<td>34</td>
<td>5,208,807</td>
<td>4,707,492</td>
<td>50.80</td>
<td>166</td>
<td>99</td>
<td>4,415</td>
<td>82</td>
</tr>
<tr>
<td>WCHEC1622</td>
<td>7086</td>
<td>4,093,859</td>
<td>4,910,938</td>
<td>50.65</td>
<td>232</td>
<td>134</td>
<td>4,832</td>
<td>78</td>
</tr>
</tbody>
</table>

ST, sequence type. *The features of strain WCHEC1613 are from PacBio sequencing.*

TABLE 3 | mcr-1 variants.

<table>
<thead>
<tr>
<th>Accession numbers</th>
<th>Nucleotide mutations</th>
<th>Amino acid variations</th>
<th>Locations of amino acid variations</th>
<th>Host strain</th>
<th>Source</th>
<th>Country</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcr-1.2</td>
<td>KX2936309</td>
<td>T8A</td>
<td>Q3L</td>
<td>TM domain</td>
<td>K. pneumoniae</td>
<td>Human rectal swab</td>
<td>Italy</td>
<td>2014</td>
</tr>
<tr>
<td>mcr-1.3</td>
<td>KU934208</td>
<td>G111A, G112A</td>
<td>I38V</td>
<td>TM domain</td>
<td>E. coli</td>
<td>Chicken</td>
<td>China</td>
<td>Unknown</td>
</tr>
<tr>
<td>mcr-1.4</td>
<td>KU934208</td>
<td>G111A, G112A</td>
<td>I38V</td>
<td>TM domain</td>
<td>E. coli</td>
<td>Chicken</td>
<td>China</td>
<td>Unknown</td>
</tr>
<tr>
<td>mcr-1.5</td>
<td>KY283125</td>
<td>C1354T</td>
<td>H452Y</td>
<td>Region between α6 and β7 unit, PEA transferase domain</td>
<td>E. coli</td>
<td>Sewage</td>
<td>China</td>
<td>2015</td>
</tr>
<tr>
<td>mcr-1.6</td>
<td>KY352406</td>
<td>A1263G, A1867G</td>
<td>T215A, R399H</td>
<td>Region prior to β1 unit, PEA transferase domain</td>
<td>E. coli</td>
<td>Sewage</td>
<td>China</td>
<td>2015</td>
</tr>
<tr>
<td>mcr-1.7</td>
<td>KY352406</td>
<td>G643A</td>
<td>A215T</td>
<td>Region prior to β1 unit, PEA transferase domain</td>
<td>E. coli</td>
<td>Sewage</td>
<td>China</td>
<td>2015</td>
</tr>
<tr>
<td>mcr-1, unnamed 1</td>
<td>MADO1000 0078.1</td>
<td>T933A, C946T, T947C, A967T, T987C, A999G</td>
<td>N311K, L316S, I323F</td>
<td>Region between β4 and β6 unit, PEA transferase domain</td>
<td>E. coli</td>
<td>Lizard</td>
<td>Germany (imported from Vietnam)</td>
<td>2013</td>
</tr>
<tr>
<td>mcr-1, unnamed 2</td>
<td>MOFD0100 0034.1</td>
<td>C1396A</td>
<td>H466N</td>
<td>Region between β6 and β7 unit, PEA transferase domain</td>
<td>E. coli</td>
<td>Chicken</td>
<td>China</td>
<td>2014</td>
</tr>
<tr>
<td>mcr-1, unnamed 3</td>
<td>MTKG0100 0192.1</td>
<td>G24C</td>
<td>W8C</td>
<td>TM domain</td>
<td>E. coli</td>
<td>Seawater</td>
<td>Brazil</td>
<td>2016</td>
</tr>
</tbody>
</table>
FIGURE 1 | Phylogenetic analysis of IncX4 plasmids. The accession numbers of the plasmids are shown in Supplementary Table 1. Those carrying mcr-1 are indicated in red, while pKP37-BE carrying mcr-2 is shown in blue. The tree was constructed using concatenated sequences of 17 genes belonging to the IncX4 backbone.

E. coli were screened for mcr-1 as described previously (Liu et al., 2016). Species identification of the colonies was established by partially sequencing the gyrB gene as described previously (Yamamoto and Harayama, 1995). MICs of amikacin, cefotaxime, ciprofloxacin, colistin, imipenem, polymyxin B, and tigecycline were determined using the microdilution broth method following recommendations of the Clinical Laboratory Standards Institute (CLSI) (CLSI, 2013).

Cloning of mcr-1 Variants

The complete coding sequence of mcr-1.1, mcr-1.4, and mcr-1.7 was amplified with primers mcr1-up1 (TGCCGTAATTATCCCACCGT) and mcr1-dw1 (ACCAATCAGCGACCATCAGA) using PrimeSTAR Max DNA Polymerase (Takara, Dalian, China). Amplicons were ligated to the pMD20-T vector using the Mighty TA-cloning kit (Takara). The ligated fragments were transformed into E. coli DH5α. pMD20-T::mcr-1.1-, pMD20-T::mcr-1.4-, or pMD20-T::mcr-1.7-containing transformants were selected on LB agar plates containing 2 µg/mL colistin. The presence of mcr-1.1, mcr-1.4, or mcr-1.7 in transformants was confirmed by PCR and sequencing. MICs of colistin were determined for transformants carrying pMD20-T::mcr-1.1, pMD20-T::mcr-1.4, or pMD20-T::mcr-1.7 using the broth microdilution method (CLSI, 2013).

Strain Typing

Pulsed-field gel electrophoresis (PFGE) was performed using the protocol for non-O157 E. coli of PulseNet International. E. coli strains were assigned to the phylogenetic groups A, B1, B2, and D using PCR as described previously (Clermont et al., 2000).

Conjugation

Conjugation experiments were carried out in BHI broth and on filter. The azide-resistant E. coli strain J53 was used as the recipient and transconjugants were selected on LB agar plates containing 2 µg/ml colistin plus 150 µg/ml sodium azide. The presence of mcr-1.1, mcr-1.4, or mcr-1.7 in transconjugants was confirmed using PCR and sequencing.

Genome Sequencing and Analysis

Genomic DNA was prepared using the QIAaamp DNA Mini Kit (Qiagen, Hilden, Germany). Purified DNA was 150-bp paired-end whole genome sequenced to around 200 × coverage using the HiSeq X10 Sequencer (Illumina, San Diego, CA, United States). Reads were de novo assembled into contigs using SPAdes (Bankevich et al., 2012). In addition, strain WCHEC1613 was also sequenced using the long-read PacBio RSII Sequencer (Pacific Biosciences, Menlo Park, CA, United States). The assembly was initially built from the PacBio reads alone using program Canu (Koren et al., 2017) with default settings. To obtain high-quality

1http://www.pulsenetinternational.org/protocols/pfge/
reads for correction, the Illumina reads were trimmed using Trimmomatic (Bolger et al., 2014) with 3, 25, and 50 as the size of sliding window, threshold of mean quality, and minimum length of reads, respectively. The filtered reads were then mapped against the initial assembly to obtain a coordinate sorted BAM file and subsequently a filtered VCF file (minDP10 and minQ30) using Smalt\(^2\) (version 0.7.4), SAMtools (version 1.3.1) (Li et al., 2009), and VCFtools (version 0.1.14) (Danecek et al., 2011). The final assembly of WCHEC1613 was created by correcting SNPs and indels from the BAM file using PacBio-utilities\(^3\).

Sequence type (ST) was assigned using the genomic sequence to query the Enterobase database\(^4\). Antimicrobial resistance genes were predicted using ResFinder\(^5\). Plasmid sequences carrying \(mcr-1\) were completely circularized by PCR and Sanger sequencing. For \(mcr-1\) that was not carried by plasmid, its chromosomal location was confirmed by PCR to link the contig containing \(mcr-1\) and those containing housekeeping genes belonging to the chromosome.

Phylogenetic Analyses for IncX4, IncI2, and IncHI2 Plasmids
The sequence of all available IncX4, IncI2, or IncHI2 plasmids regardless of the carriage of \(mcr-1\) were retrieved from the GenBank (Supplementary Tables 1–3). Genes present on all analyzed IncX4, IncI2, or IncHI2 plasmids were considered as backbone genes, which were identified using OrthoFinder (Emms and Kelly, 2015). Sequences of backbone genes were concatenated and were then aligned to construct a phylogenetic tree for IncX4, IncI2, or IncHI2 plasmids, respectively, using RAxML (Stamatakis, 2014) with a 1,000-bootstrap test.

Detecting IS\(\text{Apl1}\)-Formed Circular Intermediate
Reverse PCR was performed to amplify \(mcr-1\) and its surroundings in strain WCHKP_1511 (Zhao et al., 2017), which contains an intact IS\(\text{Apl1}\) upstream of \(mcr-1\) and an interrupted IS\(\text{Apl1}\) downstream as described previously (Li et al., 2017) and the amplicon was sequenced.

RESULTS AND DISCUSSION
Seven \(mcr-1\)-Carrying \(E. coli\) Strains of Six STs
A total of nine pink colonies (indictive of \(E. coli\)) were recovered on CHROMAgar agar plates containing 4 \(\mu g/ml\) colistin and 64 \(\mu g/ml\) linezolid from sewage. The nine isolates were designated WCHEC1604, WCHEC1606, WCHEC1609, WCHEC1612, WCHEC1613, WCHEC1614, WCHEC1615, WCHEC1618, and WCHEC1622 here. All of the isolates were

\(^1\)https://www.sanger.ac.uk/resources/software/smalt/
\(^2\)https://github.com/douglasgscofield/PacBio-utilities
\(^3\)http://enterobase.warwick.ac.uk/
\(^4\)http://genomicepidemiology.org/
identified as *E. coli*, were resistant to colistin (MICs, 4 or 8 µg/ml) and polymyxin B (MIC, 4 µg/ml), and were found to carry *mcr-1* by PCR.

The nine isolates displayed seven different PFGE patterns (data not shown) with two pairs of isolates (WCHEC1612/WCHEC1613, WCHEC1614/WCHEC1615) having identical PFGE patterns, suggesting that the nine isolates belonged to seven strains. Therefore, seven isolates were included for further studies with WCHEC1612 and WCHEC1615 being excluded. All seven strains were susceptible to amikacin, ceftazidime, ciprofloxacin, imipenem, and tigecycline except one strain (WCHEC1604) that was resistant to ciprofloxacin (MIC, 8 µg/ml) and one (WCHEC1609) that was intermediate to ceftazidime (MIC, 8 µg/ml). Nonetheless, all seven strains carried multiple antimicrobial resistant genes (*Table 1*).

Draft genome sequences of the seven selected isolates were generated by Illumina whole genome sequencing, which were assembled into 141–242 contigs (83–134 contigs ≥ 1,000 bp in length; N50, 97,014–253,501 bp) with a 50.27–50.80% GC content, respectively (*Table 2*). Strain WCHEC1613 was also sequenced using PacBio, which generated 48,400 reads and 451,334,091 bases. A hybrid assembly of the PacBio data with the Illumina reads formed four circular contigs representing one chromosome and three plasmids for strain WCHEC1613.

The seven strains were belonged to six STs, ST10, ST34, ST48, ST1196, ST7086, and ST7087 with the latter two being new types, which have not been identified before. ST7086 has a single allele (*fumC*) different from ST155, while ST7087 differs from ST165 by one allele (*mdh*). Of note, strains WCHEC1614 and WCHEC1618 belonged to the same ST (ST34) but there were 554 single nucleotide polymorphisms (SNPs) between their genomes, suggesting that the two strains are likely divergent over a manner of years rather than days or weeks (Stoesser et al., 2016). Therefore, in a single sewage sample, we identified seven *E. coli* strains belonging to six different STs. Previous reports of *mcr-1* gene carriage in *E. coli* have identified a similarly diverse range of STs carrying the resistance gene (Kong et al., 2016; El Garch et al., 2017; Quan et al., 2017; Wang et al., 2017), though none have reported such diversity in a single confined sample type. This indicates that the dissemination of *mcr-1* is not due to expansions of high-risk clones, but rather that *mcr-1* is frequently being acquired across the *E. coli* population in multiple independent events. In the same hospital sewage sample, there were also two blue colonies that were found to carry *mcr-1*. The two blue colonies were identified as *Kluyvera* spp. and *K. pneumoniae* and have been reported elsewhere (Zhao and Zong, 2016; Zhao et al., 2017). Nonetheless, hospital sewage accumulates high density of bacteria, while antibiotics, disinfectants, and their metabolic products are disposed of into hospital sewage and impose selection pressure in favor of the existence of antimicrobial resistant bacteria (Kummerer, 2004),
which might explain the diversity of \(\textit{mcr-1} \)-carrying isolates seen here.

Two New \(\textit{mcr-1} \) Variants

Sequencing the whole coding sequence of \(\textit{mcr-1} \) revealed the original \(\textit{mcr-1} \), designated \(\textit{mcr-1.1} \) here, in eight isolates, one of which (strain WCHEC1604) contained two \(\textit{mcr-1} \) variants including \(\textit{mcr-1.1} \) and a new variant, designated \(\textit{mcr-1.7} \) here. The remaining strain, WCHEC1606, had another new variant of \(\textit{mcr-1.1} \), designated \(\textit{mcr-1.4} \) here. Both \(\textit{mcr-1.4} \) and \(\textit{mcr-1.7} \) have a single nucleotide substitution (G1318T and G643A, respectively) compared to \(\textit{mcr-1.1} \), resulting in an amino acid substitution (G1318T and A215T, respectively). In addition to \(\textit{mcr-1.4} \) and \(\textit{mcr-1.7} \), there are seven variants of \(\textit{mcr-1} \) in GenBank. Four variants have a single amino acid variation from \(\textit{mcr-1.1} \), while the remaining three have two or three amino acid substitutions compared with \(\textit{mcr-1.1} \) (Table 3).

The \(\textit{mcr-1} \) contains a transmembrane domain and a PEA transferase domain with 8α, 12β, and 12η units (Gao et al., 2016). The variations of \(\textit{mcr-1.4} \) and \(\textit{mcr-1.7} \) occurred in the region prior to the β1 unit and in the α6 unit of the PEA transferase domain, respectively, both of which have been found not to influence the function of \(\textit{mcr-1} \) (Gao et al., 2016). MICs of colistin against transformants containing pMD20-T::\(\textit{mcr-1.4} \) and pMD20-T::\(\textit{mcr-1.7} \) were both 4 µg/ml. Among other \(\textit{mcr-1.1} \) variants, only \(\textit{mcr-1.2} \) has been characterized at present. MIC of colistin against an \(\textit{E. coli} \) transconjugant containing \(\textit{mcr-1.2} \) was 8 µg/ml (Di Pilato et al., 2016). Therefore, \(\textit{mcr-1.2} \), \(\textit{mcr-1.4} \), and \(\textit{mcr-1.7} \) have unaltered activity against colistin compared to \(\textit{mcr-1.1} \). The impact of amino acid substitutions seen in other \(\textit{mcr-1} \)
variants on the function of mcr-1 remains unclear and warrants further investigations.

Plasmids Carrying mcr-1
We sought to determine whether there are signatures of plasmid dissemination through the E. coli population present in our sewage sample. In two strains (WCHEC1609 and WCHCEC1614), mcr-1 was located on the chromosome, while in the remaining five strains, mcr-1 was carried by a plasmid belonging to four different replicon types including IncHI2, IncI2, IncP, and IncX4 (Table 1). Of note, mcr-1.1 was located on an IncX4 plasmid and mcr-1.7 was on an IncI2 plasmid in strain WCHCEC1604. It is remarkable that mcr-1-carrying plasmids of four replicon types were found in a single 1 ml sewage sample at one site. All IncI2, IncP, and IncX4 mcr-1-carrying plasmids in this study could be transferred by conjugation at a frequency of 10^{-5} to 10^{-7} cells per recipient cell by mating, while the mcr-1-carrying IncHI2 plasmid was not.

The mcr-1.1 gene was carried by IncX4 plasmids in two strains, WCHCEC1604 and WCHCEC1618, designated pMCR_1604-IncX4 and pMCR_WCHEC1618, respectively. mcr-1.4 in strain WCHCEC1606 was also located on an IncX4 plasmid (designated pMCR_WCHEC1606). pMCR_1604-IncX4 is 31,229 bp in length and is 2,080 bp less than the 33,309-bp pMCR_WCHEC1618 and pMCR_WCHEC1606, which was likely due to homologous recombination between the two copies of the dual-containing region. pMCR_WCHEC1606 differed from pMCR_WCHEC1618 by only a single nucleotide substitution, which was the one defining mcr-1.4, suggesting that mcr-1.4 evolved from mcr-1.1 by a point mutation on the IncX4 plasmid. IncX4 plasmids carrying mcr-1 have been found in E. coli or K. pneumoniae strains in Africa (South Africa), Asia.
(China), Europe (Estonia, Italy, Netherlands, and Switzerland), and North (United States) and South America (Brazil), suggesting a global distribution. Phylogenetic analysis based on all 17 backbone genes of IncX4 plasmids (Supplementary Table 1) revealed that all mcr-1-carrying IncX4 plasmids formed a clade with several non-mcr-1-carrying IncX4 plasmids (Figure 1), suggesting that the mcr-1-carrying IncX4 plasmids were likely from a common ancestor and the acquisition of mcr-1 onto the IncX4 backbone occurred recently. By contrast, mcr-2-carrying IncX4 plasmid pKP37-BE was distinct from mcr-1-carrying IncX4 plasmids (Figure 1).

The mcr-1.7 in strain WCHEC1604 was carried by a 62,098-bp IncI2 plasmid, designated pMCR_1604-IncI2 here. Phylogenetic analysis based on all 27 backbone genes of IncI2 plasmids (Supplementary Table 2) revealed that mcr-1-carrying plasmids belonged to a number of clades and mixed with plasmids without mcr-1, suggesting that IncI2 plasmids were likely to have acquired mcr-1 in multiple events rather than a single plasmid expansion into different strains (Figure 2). pMCR_1604-IncI2 was most closely related (99% identity and 93% coverage) to pECJS-61-63 (GenBank accession no. KX276657), the counterpart of a plasmid containing both IncFIB and IncN replicons, pMR0516mcr (GenBank accession no. KX276657), carrying mcr-1.1 from E. coli in United States (McGann et al., 2016). It is likely that pMCR_WCHEC1613 was formed by the fusion of two plasmids, which contain IncHI2 and IncN replicon, respectively. Phylogenetic analysis based on all 33 backbones genes of IncHI2 plasmids (Supplementary Table 3) revealed that all mcr-1-carrying IncHI2 plasmids were clustered together with a few non-mcr-1-carrying IncHI2 plasmids (Figure 3), suggesting that the mcr-1-carrying IncHI2 plasmids arose from a common ancestor and the acquisition of mcr-1 onto the IncHI2 backbone occurred recently.

In WCHEC1622, mcr-1.1 was carried by a 49,897-bp IncP plasmid, designated pMCR_WCHEC1622, which was almost identical (100% coverage and 99% identity) to pMCR_1511 (Figure 4), an IncP plasmid recovered from K. pneumoniae in the same sewage sample (Zhao et al., 2017). Like pMCR_1511, pMCR_WCHEC1622 belongs to a new clade of IncP (Zhao et al., 2017). As IncP plasmids are broad-host-range, the carriage of mcr-1 on IncP plasmids has the potential to mediate the dissemination of mcr-1 from the Enterobacteriaceae to other bacterial species.

Genetic Contexts of mcr-1

The mcr-1 has been typically seen in three types of genetic contexts, i.e., mcr-1-pho, ISApl1-mcr-1-pho, and ISApl1-mcr-1-pho-ISApl1 (Gao et al., 2016; Snesrud et al., 2016; Li et al., 2017) with pho referring to a gene (also called pap in some publications) encoding a putative phosphoesterase and ISApl1 being an insertion sequence of the IS30 family. All three types of the mcr-1 genetic context were seen in the seven E. coli strains here (Figure 5). Two copies of ISApl1 bracketing mcr-1 and pho (ISApl1-mcr-1-pho-ISApl1) could form a composite transposon termed Tn6330, which is able to generate a circular intermediate (ISApl1-mcr-1-pho) by excision from a
plasmid and the intermediate could then insert into another plasmid (Li et al., 2017) and possibly could also insert into chromosome. A previous study (Li et al., 2017) found that the circular intermediate is formed by the ISAp1 downstream of mcr-1. However, in this study, the ISAp1-mcr-1-pho circular intermediate was obtained from pMCR_1511, in which the ISAp1 downstream of mcr-1 was interrupted (Figure 6). This suggests that the ISAp1 upstream of mcr-1 participated in the formation of the ISAp1-mcr-1-pho circular intermediate by its own or via recombination with the ISAp1 downstream of mcr-1.

CONCLUSION

Therefore, in a single (1 mL) hospital sewage sample, we observed multiple Enterobacteriaceae species, multiple strains of E. coli, multiple plasmids, and multiple genetic contexts carrying multiple variants of mcr-1. This suggests that mcr-1 is undergoing rapid evolution within healthcare environments and is being rapidly disseminated across plasmids, strains, and species.

Nucleotide sequence accession numbers: Reads and the Whole Genome Shotgun Sequencing project of E. coli strain WCHEC1604, WCHEC1606, WCHEC1609, WCHEC1613, WCHEC1614, WCHEC1618, and WCHEC1622 have been deposited into DDBJ/EMBL/GenBank under accession MUWZ00000000, MSR800000000, MSQX000000000, CP019213, MSQY000000000, MSQZ000000000, and MSRA000000000, respectively. The sequence of pMCR_1604-IncX4, pMCR_1604-IncI2, pMCR_WCHEC1606, pMCR_WCHEC1613, pMCR_WC HEC1618, and pMCR_WCHEC1622 has been deposited into DDBJ/EMBL/GenBank under accession numbers KY582848, KY829117, KY463451, CP019214, KY463454, and KY463452, respectively.

REFERENCES

AUTHOR CONTRIBUTIONS

ZZ: Designed the experiments, analyzed the data, and wrote the manuscript. FZ and YF: Performed the experiments and analyzed the data. XL and AM: Contributed to analyzing the data and co-wrote the manuscript.

ACKNOWLEDGMENTS

The work was supported by a grant from the National Natural Science Foundation of China (project no. 81572030; to ZZ) and a joint grant from the National Natural Science Foundation of China (project no. 8151101182 to ZZ) and the Newton Advanced Fellowship, Royal Society (NA15363), United Kingdom (to AM and ZZ). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2017.02094/full#supplementary-material

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Zhao, Feng, Lü, McNally and Zong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.