Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at sNN = 2.76 TeV

Adamová, D.; Andrews, H.A.; Barnby, Lee; Evans, David; Graham, K.L.; Jones, Peter; Jusko, Anton; Krivda, Marian; Lietava, Roman; Villalobos Baillie, Orlando; Zardoshti, N.; ALICE Collaboration

DOI: 10.1103/PhysRevLett.118.222301

License: Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 12/09/2017

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?).
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 26. Dec. 2018
Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV

D. Adamová et al.*
(ALICE Collaboration)
(Received 21 February 2017; published 2 June 2017)

We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{NN}} = 2.76$ TeV. The measurements have been performed in the centrality range 0%–50% and for pion pair transverse momenta $0.2 < k_T < 0.7$ GeV/c. We find that the R_{side} and R_{out} radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via R_{side} oscillations, is found to be significantly smaller than the initial-state source eccentricity, but remains positive—indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The $3 + 1D$ hydrodynamic calculations are in qualitative agreement with observed centrality and transverse momentum R_{side} oscillations, but systematically underestimate the oscillation magnitude.

DOI: 10.1103/PhysRevLett.118.222301

It was first shown in 1960 that the distribution of pions emitted in $p\bar{p}$ collisions at small relative angles is affected by quantum statistical effects and is sensitive to the size of the emitting source [1]. Since then, the correlation technique with two identical particles at small relative momentum, often called intensity, or Hanbury Brown-Twiss (HBT) interferometry [2–6], has been used to study the space-time structure of the pion-emitting source from hadron-hadron and electron-positron to heavy-ion collisions (for a review, see Ref. [7]). The so-called HBT radii, obtained in these analyses, characterize the spatial and temporal extent of the source emitting pions of a given momentum, the extensions of the so-called homogeneity regions. Because of the position-momentum correlations in particle emission, the HBT radii become sensitive to the collective velocity fields, and as such provide information on the dynamics of the system evolution [7]. Recent measurements of the centrality dependence of the HBT radii in Pb-Pb collisions at LHC energies [8] further confirm the scaling of the effective source volume with the particle rapidity density as well as stronger radial flow at higher energies.

Pion interferometry of anisotropic sources (azimuthally differential femtoscopy) was suggested in Refs. [9,10], and the corresponding measurements [11] appeared shortly after strong directed and in-plane elliptic flow were measured in Au-Au collisions at the Alternating Gradient Synchrotron (AGS) [12,13]. Anisotropic flow, the response of the system to the initial geometry, is usually characterized by the Fourier decomposition of the particle azimuthal distribution and quantified by the harmonic strength and orientation of the corresponding flow plane. Azimuthally differential femtoscopic measurements can be performed relative to different harmonic flow planes, providing important complementary information on the particle source. For example, the measurements of HBT radii with respect to the first harmonic (directed) flow at the AGS [14] revealed that the source was tilted relative to the beam direction [15]. Azimuthal dependence of the HBT radii relative to the higher harmonic ($n > 2$) flow planes can originate only from the anisotropies in collective flow gradients [16,17] and the observation [18] of such a modulation unambiguously signals a collective expansion and anisotropy in the flow fields. In particular, measurements of HBT radii with respect to the second harmonic (elliptic) flow provide information on the evolution of the system shape, which is expected to become more spherical at freeze-out compared to the initial state due to stronger in-plane expansion. In the recent RHIC beam energy scan, it was found that the eccentricity at freeze-out decreases continuously with increasing beam energy [19], a trend consistent with predictions by hydrodynamic and hadronic transport models [20,21]. Earlier measurements [22,23] showed that even at the highest RHIC energies the source at freeze-out remains out-of-plane extended, albeit with eccentricities significantly lower than the initial ones. Hydrodynamical calculations [20] predicted that at the Large Hadron Collider (LHC) energies, about an order of magnitude higher than the top RHIC energy, the pion source should eventually become isotropic, or even in-plane extended.

In this Letter, we present the first azimuthally differential femtoscopic measurements relative to the second harmonic...
flow plane in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV from the ALICE experiment at the CERN-LHC and compare the results to previous measurements at RHIC energies and to model calculations.

The data were recorded in 2011 during the second Pb-Pb running period of the LHC. Approximately 2 million minimum bias events, 29.2 million central trigger events, and 34.1 million semicentral trigger events were used in this analysis. A detailed description of the ALICE detector can be found in Refs. [24,25]. The Time Projection Chamber (TPC) has full azimuthal coverage and allows charged-particle track reconstruction in the pseudorapidity range $|\eta| < 0.8$, as well as particle identification via the specific ionization energy loss dE/dx associated with each track. In addition to the TPC, the time-of-flight (TOF) detector was used for identification of particles with transverse momentum $p_T > 0.5$ GeV/c.

The minimum bias, semicentral, and central triggers used in this analysis all require a signal in both V0 detectors [26]. The V0 is a small angle detector of scintillator arrays covering pseudorapidity ranges $2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$ for a collision vertex occurring at the center of the ALICE detector. The V0 detector was also used for the centrality determination [8]. The results of this analysis are reported for collision centrality classes expressed as ranges of the fraction of the inelastic Pb-Pb cross section: 0%–5%, 5%–10%, 10%–20%, 20%–30%, 30%–40%, and 40%–50%. The position of the primary event vertex along the beam direction (V_z) was determined. Particles for which the pion momentum p_π was the largest were used in this analysis.

The TPC has 18 sectors covering the full azimuth with 159 pad rows radially placed in each sector. Tracks with at least 80 space points in the TPC have been used in this analysis. Tracks compatible with a decay in flight (kink topology) were rejected. The track quality was determined by the χ^2 of the Kalman filter fit to the reconstructed TPC clusters. The χ^2 per degrees of freedom was required to be less than 4. For primary track selection, only trajectories passing within 3.2 cm from the primary vertex in the longitudinal direction and 2.4 cm in the transverse direction were used. Based on the specific ionization energy loss in the TPC gas compared with the corresponding Bethe-Bloch curve, and the time of flight in the TOF detector, a probability for each track to be a pion, kaon, proton, or electron was determined. Particles for which the pion probability was the largest were used in this analysis. Pions were selected in the pseudorapidity range $|\eta| < 0.8$ and $0.15 < p_T < 1.5$ GeV/c.

The correlation function $C(q)$ was calculated as

$$C(q) = \frac{A(q)}{B(q)},$$

where $q = p_1 - p_2$ is the relative momentum of two pions, $A(q)$ is the same-event distribution of particle pairs, and $B(q)$ is the background distribution of uncorrelated particle pairs. Both the $A(q)$ and $B(q)$ distributions were measured differentially with respect to the second harmonic event-plane angle $\Psi_{EP,2}$. The second harmonic event-plane angle $\Psi_{EP,2}$ was determined using TPC tracks. To avoid self-correlation, each event was split into two subevents ($-0.8 < \eta < 0$ and $0 < \eta < 0.8$). Pairs were chosen from one subevent and the second harmonic event-plane angle $\Psi_{EP,2}$ was determined using the other subevent particles, and vice versa, with the event plane resolution determined from the correlations between the event planes determined in different subevents [27]. The background distribution is built by using the mixed-event technique [4] in which pairs are made out of particles from two different events with similar centrality (less than 2% difference), event-plane angle (less than 10° difference), and event vertex position along the beam direction (less than 4 cm difference). Requiring a minimum value in the two-track separation parameters $\Delta q^* = \Delta q_{\text{pair}} - \Psi_{EP,2}$, defined in the range (0, π) where q_{pair} is the pair azimuthal angle. The Bertsch-Pratt [5,6] out-side-long coordinate system was used with the long direction pointing along the beam axis, out along the transverse pair momentum, and side being perpendicular to the other two. The three-dimensional correlation function was analyzed in the Longitudinally Co-Moving System (LCMS), in which the total longitudinal momentum of the pair is zero, $p_{1,L} = -p_{2,L}$.

To isolate the Bose-Einstein contribution in the correlation function, effects due to final-state Coulomb repulsion must be taken into account. For that, the Bowler-Sinyukov fitting procedure [28,29] was used in which the Coulomb weight is only applied to the fraction of pairs (λ) that participate in the Bose-Einstein correlation. In this approach, the correlation function is fitted to

$$C(q, \Delta \varphi) = N \{(1 - \lambda) + \lambda K(q)[1 + G(q, \Delta \varphi)]\},$$

where N is the normalization factor. The function $G(q, \Delta \varphi)$ describes the Bose-Einstein correlations and $K(q)$ is the Coulomb part of the two-pion wave function integrated.
over a source function corresponding to $G(q)$. In this analysis, the Gaussian form of $G(q, \Delta \varphi)$ was used [30]:

\[
G(q, \Delta \varphi) = \exp \left[-q_{\text{out}}^2 R_{\text{out}}^2(\Delta \varphi) - q_{\text{side}}^2 R_{\text{side}}^2(\Delta \varphi)
- q_{\text{long}}^2 R_{\text{long}}^2(\Delta \varphi) - 2q_{\text{out}} q_{\text{side}} R_{\text{out}} R_{\text{side}}(\Delta \varphi)
- 2q_{\text{side}} q_{\text{long}} R_{\text{side}} R_{\text{long}}(\Delta \varphi) - 2q_{\text{out}} q_{\text{long}} R_{\text{out}} R_{\text{long}}(\Delta \varphi) \right],
\]

where the parameters R_{out}, R_{side}, and R_{long} are traditionally called HBT radii in the out, side, and long directions. The cross terms $R_{\text{out}} R_{\text{side}}$, $R_{\text{side}} R_{\text{long}}$, and $R_{\text{out}} R_{\text{long}}$ describe the correlation in the out-sidelong, and out-long directions, respectively.

The systematic errors on the extracted radii vary within 3%–9% depending on k_T and centrality. They include uncertainties related to the tracking efficiency and track quality, momentum resolution [31], different pair cuts ($\Delta \varphi$ and $\Delta \eta$), and correlation function fit ranges. Positive and negative pion pairs, as well as data obtained with two opposite magnetic field polarities of the ALICE L3 magnet, have been analyzed separately and a small difference in the results (less than 3%) has been also accounted for in the systematic error. The total systematic errors were obtained from adding the above systematic errors in quadrature.

Other than being differential in the event plane, this analysis is similar in most aspects to the analysis reported in [31], and further details can be found there. The results reported below were obtained with the second harmonic event plane [27] determined with the TPC tracks. It was checked that they are consistent with the results obtained with the event-plane angle determined with the V0 detector.

Figure 1 presents the dependence of R_{out}^2, R_{side}^2, R_{long}^2, R_{os}^2, and λ as a function of $\Delta \varphi = \varphi_{\text{par}} - \Psi_{\text{EP,2}}$ for the centrality 20%–30% and k_T ranges 0.2–0.3, 0.3–0.4, 0.4–0.5, and 0.5–0.7 GeV/c. Bands indicate the systematic errors. The results are not corrected for the event plane resolution of about 85%–95%.

![Figure 1](https://example.com/fig1.png)

FIG. 1. The azimuthal dependence of R_{out}^2, R_{side}^2, R_{long}^2, R_{os}^2, and λ as a function of $\Delta \varphi = \varphi_{\text{par}} - \Psi_{\text{EP,2}}$ for the centrality 20%–30% and k_T ranges 0.2–0.3, 0.3–0.4, 0.4–0.5, and 0.5–0.7 GeV/c. Bands indicate the systematic errors. The results are not corrected for the event plane resolution of about 85%–95%.

for such a correction [7], which produce very similar results [19] well within errors of this analysis. The results shown below have been obtained with the simplest method first used by the E895 Collaboration [14], in which the amplitude of oscillation is divided by the event plane resolution factor. The correction is about 5%–15%, depending on centrality. Figure 2 shows the average radii for different k_T values as a function of centrality. The average radii obtained in this analysis are consistent with the results reported in Ref. [31]. As expected, the radii are larger in more central collisions and at smaller k_T values, the latter reflecting the effect of radial flow [7,32]. The cross term $R_{\text{os}} R_{\text{ol}}$ is consistent with zero, as expected due to the symmetry of the system. Figure 2 also shows the average radii calculated for charged pions in the pseudorapidity range $|\eta| < 2$ from 3 + 1D hydrodynamic calculations [33], assuming freeze-out temperature $T_f = 150$ MeV and a constant shear viscosity to entropy density ratio $\eta/s = 0.08$. The 3 + 1D hydrodynamic calculations, while correctly describing the qualitative features of the average radii dependence on centrality and k_T, fail to describe our results quantitatively.

Figure 3 shows the relative amplitudes of the radius oscillations $R_{\text{out}}^2/ R_{\text{side,0}}^2$, $R_{\text{side,2}}^2/ R_{\text{side,0}}^2$, $R_{\text{long,2}}^2/ R_{\text{long,0}}^2$, and $R_{\text{os,2}}^2/ R_{\text{side,0}}^2$. When comparing our results to the ones obtained by the STAR experiment, we observe similar relative oscillations; however, STAR results [22,23] show...
radius. As shown in Ref. [32] the relative amplitudes of side radii oscillations are mostly determined by the spatial source anisotropy and are less affected by dynamical effects such as velocity gradients. The source eccentricity at freeze-out ϵ_{final} can be estimated from R_{side}^2 oscillations at small pion momenta with an accuracy within 20%–30% as $\epsilon_{\text{final}} \approx 2R_{\text{side},2}^2/R_{\text{side},0}^2$ [32].

Figure 4 presents $2R_{\text{side},2}^2/R_{\text{side},0}^2$ for different k_T ranges as a function of the initial-state eccentricity for six different centralities and four k_T bins. For the initial eccentricity, we have used the nucleon participant eccentricity from the Monte Carlo Glauber model for both, Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV [18] and Pb-Pb collision at $\sqrt{s_{NN}} = 2.76$ TeV [35]. Our results for all k_T bins are significantly below the values of the initial eccentricity indicating a more intense expansion in the in-plane direction. Due to relatively large uncertainties of the RHIC results for narrow k_T bins, we compare our results only to the average STAR data [22] in $0.15 < k_T < 0.6$ GeV/c and to PHENIX results [18] corresponding to $0.2 < k_T < 2.0$ GeV/c ($(k_T) = 0.53$ GeV/c). We find a smaller final-state anisotropy in the LHC regime compared to RHIC energies. This trend is qualitatively consistent with expectations from hydrodynamic and transport models [20,21]. The final-state eccentricity remains positive also at the LHC, evidence of an out-of-plane elongated source at freeze-out. In Fig. 4, we also compare our results to the 3+1D hydrodynamic calculations [33], which were performed for similar centralities and k_T ranges as in the experiment. This model slightly underestimates the final source eccentricity.

In conclusion, we have performed a measurement of two-pion azimuthal differenceal femtoscopy relative to the second harmonic flow plane in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The out, side, and out-side radii exhibit clear oscillations while the long radius is consistent with a
constant. The relative amplitudes of oscillations only weakly depend on k_T, with the side-radii oscillation slightly increasing with k_T. The final-state source eccentricity, estimated via side-radius oscillations, is noticeably smaller than at lower collisions energies, but still exhibits an out-of-plane elongated source at freeze-out even after a stronger in-plane expansion. The final eccentricity is slightly larger than that predicted by existing hydrodynamic calculations.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research—Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nationaal instituut voor subatomaire fysis (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cuba, Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

(ALICE Collaboration)
Dipartimento di Scienze e Innovazione Tecnologiche dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

National and Kapodistrian University of Athens, Physics Department, Athens, Greece, Athens, Greece

Lawrence Berkeley National Laboratory, Berkeley, California, USA

Moscow Engineering Physics Institute, Moscow, Russia

Nagasaki Institute of Applied Science, Nagasaki, Japan

Institute of Experimental Physics, Academy of Sciences, Košice, Slovakia

Hiroshima University, Hiroshima, Japan

Institute of Technology Bombay (IIT), Mumbai, India

Indian Institute of Technology Indore, Indore, India

Indonesian Institute of Sciences, Jakarta, Indonesia

Inha University, Incheon, South Korea

Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France

Institute for Nuclear Research, Academy of Sciences, Moscow, Russia

Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands

Institute for Theoretical and Experimental Physics, Moscow, Russia

Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Institute of Physics, Bhubaneswar, India

Institute of Space Science (ISS), Bucharest, Romania

Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico

Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France, Saclay, France

Joint Institute for Nuclear Research (JINR), Dubna, Russia

Korea Institute of Science and Technology Information, Daejeon, South Korea

KTO Karatay University, Konya, Turkey

Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS–IN2P3, Clermont-Ferrand, France

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France

Laboratori Nazionali di Frascati, INFN, Frascati, Italy

Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy

Lawrence Berkeley National Laboratory, Berkeley, California, USA

Moscow Engineering Physics Institute, Moscow, Russia

Nagasaki Institute of Applied Science, Nagasaki, Japan

National and Kapodistrian University of Athens, Physics Department, Athens, Greece, Athens, Greece
Deceased.
Also at Georgia State University, Atlanta, Georgia, USA.
Also at Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
Also at M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.