Model based control of permanent magnet AC servo motor drives

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Abstract—This paper presents an innovative control law for permanent magnet synchronous motor (PMSM) drive for high dynamics applications. This kind of system (three-phase inverter connected with a PMSM) exhibits nonlinear behavior. Classically, to control the speed and the current (torque), a linearized technique is often used to study the stability and to select the controller parameters at specific operating point. In this paper, a model based control based on the flatness property of the drive system is proposed. Flatness provides a convenient framework for meeting a number of performance specifications on the PMSM drive. To validate the proposed method, a prototype PMSM drive (1 kW, 3000 rpm) is realized in the laboratory. The proposed control law is implemented by digital estimation in a dSPACE 1104 controller card. Experimental results demonstrate that the nonlinear differential flatness-based control provides improved speed/current regulation relative to a classical linear PI vector control method.

Index Terms—Flatness control, permanent magnet synchronous motor (PMSM), pulse width modulation, vector control.

I. INTRODUCTION

PMSMs are extensively applied in rapidly developing industries owing to their fast response and highly efficient characteristics. Because power is only supplied to the stator without copper loss, it has an exceptional cooling characteristic compared with other motors. It has achieved rapid progress as a high performance and highly efficient motor [1], [2].

Control, robustness, stability, efficiency, and optimization of PMSM drives remain an essential area of research. Differential flatness theory (nonlinear approach) was first introduced by Fliess et al. [3]. This allowed an alternate representation of the system, where trajectory planning and nonlinear controller design is clear-cut. These ideas have been used lately in a variety of nonlinear systems across various engineering disciplines [4], [5], [6].

This paper presents the original control method based on the flatness properties for the speed/torque control of a PMSM drive. It will provide a significant contribution to the field of the motion control applications. In Section II, the inverter/motor model and the proposed control laws based on the differential flatness properties will be explained in detail. In Section III, experimental results will show the system performance during load cycles. The conclusions are presented in Section IV.

II. MODELING AND CONTROL

A. Mathematic Model of the PMSM/inverter

The sinusoidal pulse-width modulation technique (SPWM) is applied to an inverter in order to achieve a sinusoidal output voltage with a minimum of undesired harmonics. The power-invariant transformations from the stationary (abc) to the rotating reference frame (dq) are applied. Ignoring magnetic saturation, in dq-synchronous rotating frames, the equivalent circuit of PMSM inverter drive is shown in Fig. 1 and the differential equations of PMSM/inverter can be written as [7], [8]:

\[
\frac{di_d}{dt} = \frac{1}{L_d} \left(v_d - R \cdot i_d + \omega_e \cdot L_q \cdot i_q \right)
\]

\[
\frac{di_q}{dt} = \frac{1}{L_q} \left(v_q - R \cdot i_q - \omega_e \cdot L_d \cdot i_d - \alpha_e \cdot \psi_m \right)
\]
\[
\frac{d\omega_m}{dt} = \frac{1}{J} \left(T_e - B \cdot \omega_m - T_l \right)
\]
with,
\[
T_e = p \cdot i_q \left(\Psi_m - (L_q - L_d) i_d \right)
\]
\[
\omega_e = p \cdot \omega_m
\]
(3)

where, \(i_d\) and \(i_q\) the direct and quadrature motor currents (A); \(\Psi_m\) the permanent magnet flux linkage (Wb); \(L_d\) the d-axis inductance (H); \(L_q\) the q-axis inductance (H); \(\omega_e\) is the electrical angular frequency (rad/s); \(\omega_m\) the mechanical angular frequency (rad/s); \(p\) the number of pole pairs; \(T_e\) the electromagnetic torque (Nm); \(T_l\) the load torque (Nm); \(B\) is the friction coefficient (Nm s/rad); and \(J\) is the moment of inertia of the rotor. It should be noted here that a PMSM is always driven by a three-phase inverter; for this reason, \(R\) is simplified as losses in an inverter (static and dynamics losses; switching deadtime; voltage drops in IGBTs and Diodes) and in a PMSM (the stator winding resistance, hysteresis losses, and eddy current losses).

B. Current Control Loop

As mentioned in section II. A, \(L = L_d = L_q\) and refer to equations (3) and (4). To prove that the system is flat [6], [9], one defines the flat output \(y = [y_1, y_2]^T\), control variable \(u = [u_1, u_2]^T\), and state variable \(x = [x_1, x_2]^T\) as follows:

\[
y = \begin{bmatrix} i_d \\ i_q \end{bmatrix}, \quad u = \begin{bmatrix} v_d \\ v_q \end{bmatrix}, \quad x = \begin{bmatrix} i_d \\ i_q \end{bmatrix}
\]
(6)

Then, the state variables of \(x\) can be written as

\[
x = \begin{bmatrix} \varphi_1(y_1) \\ \varphi_2(y_2) \end{bmatrix}
\]
(7)

From (1) and (2), the control variables of \(u\) can be calculated from the flat outputs \(y\) and its time derivatives (inverse dynamics [6]):

\[
u_1 = L \cdot i_d + R \cdot i_d - \omega_e \cdot L \cdot i_q = \psi_1(y_1, y_1, y_2)
\]
\[
u_2 = L \cdot i_q + R \cdot i_q + \omega_e \cdot L \cdot i_d + \omega_e \cdot \Psi_m
\]
\[
\psi_1(y_1, y_2, y_2) = v_{q \text{REF}}
\]
(8)

Desired references for the \(dq\)-currents are represented by \(y_{\text{REF}}\) \((= v_{d\text{REF}})\) and \(y_{\text{REF}}\) \((= i_{\text{REF}})\). Feedback control laws achieving an exponential asymptotic tracking of the setpoints are given by the following expression [5]:

\[
\begin{align*}
\dot{y}_1 &= y_{1\text{REF}} + K_{11} (y_1 - y_{1\text{REF}}) + K_{12} \int_0^\tau (y_1 - y_{1\text{REF}}) d\tau = 0 \\
\dot{y}_2 &= y_{2\text{REF}} + K_{11} (y_2 - y_{2\text{REF}}) + K_{12} \int_0^\tau (y_2 - y_{2\text{REF}}) d\tau = 0
\end{align*}
\]
(9)

where \(K_{11}\) and \(K_{12}\) are the controller parameters. One may set the following as a desired characteristic polynomial:

\[
p(s) = s^2 + 2 \zeta_1 \omega_n s + \omega_n^2
\]
(10)

\[
K_{11} = 2 \zeta_1 \omega_n; \quad K_{12} = \omega_n^2
\]
(11)

where \(\zeta_1\) and \(\omega_n\) are the desired dominant damping ratio and natural frequency and new variables are defined \(\lambda_1 = y_1\) and \(\lambda_2 = y_2\).

Trajectory planning is an important step in the implementation of a flatness-based control. It is thus noteworthy to give a well-known waveform such that all the transient state behaviors can be predicted. Next, to limit the transient current, a second order filter is used such that the current command \(i_{\text{COM}}\) is always limited by

\[
i_{\text{COM}}(s) = \frac{1}{i_{\text{REF}}(s)} = \frac{1}{\frac{s}{\omega_{n2}}^2 + \frac{2\zeta_2}{\omega_{n2}} s + 1}
\]
(12)

where \(\zeta_2\) and \(\omega_{n2}\) are the desired dominant damping ratio and natural frequency.

C. Speed Control Loop

The outer loop concerns the speed regulation where the flat output is chosen as \(y_3 = \omega_m\), a control variable \(u_3 = i_{q\text{REF}}\) and a state variable \(x_1 = \varphi_1(y_3)\). So, the flatness based speed controller output generates the command of the \(q\)-axis current, \(i_{q\text{COM}}\). According to mechanical equations (3) – (5), and on the assumption that \(i_q(= y_2) = i_{q\text{COM}}\) because the inner current loop bandwidth is estimated to be faster than the bandwidth of the external speed loop, control variable \(u_3(= i_{q\text{COM}})\) can be expressed in an inverse dynamics term as:

\[
u_3 = \left(J \cdot \dot{\omega}_m + T_L - B \cdot \omega_m \right)/p \cdot \Psi_m = \psi_3(y_3, y_3)
\]
\[
= i_{q\text{COM}}
\]
(13)

It is similar to the inner current control loops. A desired reference for the mechanical speed is represented by \(y_{3\text{REF}}(= \omega_{\text{REF}})\). A feedback control law is given by the following expression:

\[
\lambda_3 = y_{3\text{REF}} + K_{21} (y_{3\text{REF}} - y_3) + K_{22} \int_0^\tau (y_{3\text{REF}} - y_3) d\tau
\]
(14)

where \(K_{21} = 2 \zeta_3 \omega_n\) and \(K_{22} = \omega_n^2\).

Finally, in view of the nature of the derived feedback control law (16), we need to generate the current command for the inverter. Because our focus is on a smooth accelerator or brake (known as a soft-start system), we restrict the reference profiles to smooth changes between stationary regimes. Next, the motion trajectory planning is defined as

\[
\omega_{\text{REF}}(s) = \frac{1}{\omega_{\text{COM}}(s)} = \frac{1}{\frac{s}{\omega_{n4}}^2 + \frac{2\zeta_4}{\omega_{n4}} s + 1}
\]
(15)
Fig. 2. Proposed a differential flatness based speed/torque control of a PMSM drive.

D. Control Conclusion

In Fig. 2, the proposed control algorithm, as detailed earlier, is depicted. The external speed control algorithm generates a current command $i_{q\text{COM}}$. This signal must be saturated within an interval $[i_{q\text{Max}}, i_{q\text{Min}}]$. The inner current control algorithm estimates the voltage references. These result in voltage references v_d and v_q.

Based on the power electronic constant switching frequency ΔS and cascade control structure, the outer speed control loop must operate at a cutoff frequency $\Delta n_3 \ll \Delta n_2 \ll \Delta n_1 \ll \Delta S$ [6]. However, to increase the speed response, one may set $\Delta n_4 = \Delta n_3$. For system damping ratios, one may set $\hat{\omega}_4 = \hat{\omega}_3 = \hat{\omega}_2 = \hat{\omega}_1 = 1 \, \text{pu}$. Once the flat outputs are stabilized, the whole system is stable because all the variables of the system are expressed in terms of the flat outputs.

Moreover, for the inverse dynamics term (15), the proposed control algorithm needs to estimate the load torque T_L. Then, a classic linear observer named “the disturbance observer” is implemented [10].

III. EXPERIMENTAL VALIDATION

In order to authenticate the proposed control algorithm and control laws, a small-scale test bench of the PMSM drive was implemented in our laboratory, as presented in Fig. 3. The PMSM used in this effort was a brushless AC servomotor (1 kW, 3000 rpm; LEROY SOMER MOTOR). The three-phase inverter was initially designed for more general purposes, so that three IGBT module SKM50GB123D (SEMIKRON: 1200 V, 50 A) are used for six switches S_1-S_6. The PMSM/Inverter specification and parameters are presented in Table I used for following experimentations. The machine parameters were obtained from the offline identifications, in which the PMSM was connected with the inverter. For this reason, the simplified resistance R is quite high, because it represents some losses in the cables, the inverter, and motor.

Parameters associated with the speed/torque regulation loops can be seen in Table II. Moreover, these control loops, which generated voltage references v_d and v_q, were implemented in the real-time card dSPACE DS1104 (see Fig. 3) using MATLAB–Simulink.

A. Inner Current Control Loop Test

First, the performance comparison between a classical linear control and a nonlinear control based on a differential flatness approach for current i_d and i_q regulation of a PMSM drive is presented as follows. A classic PI transfer function for the current control is given by

$$P_I(s) = K_{PI} + \frac{K_{Ii}}{s}$$

where K_{PI} and K_{Ii} are the controller parameters. To give a practical comparison between the control methods, the parameters of the linear controller K_{PI} and K_{Ii} were tuned to obtain the best possible performance [1]. In this case, $K_{PI} = 8 \, \text{V} \cdot \text{A}^{-1}$, and $K_{Ii} = 3316 \, \text{V} \cdot \text{(As)}^{-1}$. For the differential flatness approach, the nonlinear controller gains used were $K_{I1} = 3000 \, \text{rad} \cdot \text{s}^{-1}$ and $K_{I2} = 250000 \, \text{rad}^2 \cdot \text{s}^{-2}$ ($\hat{\omega}_1 = 1$ and $\omega_{n3} = 1500 \, \text{rad} \cdot \text{s}^{-1}$), see table II.

Figs. 4 and 5 show the experimental results obtained for both controllers during the current command $i_{q\text{COM}}$ step from -1 A to 1 A, whereas $i_{d\text{COM}} = 0 \, \text{A}$. It should note here that for the linear PI control $i_{q\text{COM}} = i_{q\text{REF}}$. They shows $i_{q\text{COM}}$, i_d, i_C, the speed n, the stator curents i_A and i_C. One may observe that the settling time (around 40 ms) of the current i_q from both controllers are closed; however, the current i_q response by the flatness control is smoother than the PI control.

B. Speed/Current Control Loop Test

To compare the performance of the flatness-based speed control, a traditional linear control method was also implemented on the test stand. A linear feedback PI transfer function is given by the following expression:

$$P_{II}(s) = K_{Pn} + \frac{K_{In}}{s}$$

where K_{Pn} and K_{In} are the controller parameters. To give a practical comparison between the control methods, the parameters of the linear controller K_{Pn} and K_{In} were tuned to obtain the best possible performance [1]. In this case,
step at the speed command of 1000 r/min. The oscilloscope waveforms show: Ch1: the speed reference \(n_{\text{REF}} \) (\(= n_{\text{COM}} \)) Ch2: the speed measurement \(n \); Ch3: the q-axis current reference \(i_{\text{q,REF}} \); Ch4: the q-axis current \(i_q \); Ch5: the d-axis current \(i_d \); Ch6: the phase current \(i_a \); Ch7: the phase current \(i_b \); and the trajectories of the transient stator current vector. For the PI speed control, the speed settling time is around 0.3 s. For the flatness speed control, the speed settling time is around 0.16 s. The flatness-based control shows good stability and optimum response of the speed regulation to its desired reference. Although dynamic response of the linear control law could be improved relative to that shown in the figures, this enhancement comes at the expense of a reduced stability margin. From the results above, we conclude that flatness-based control provides better performance than the classical PI controller.

IV. CONCLUSIONS

The proposed control approach, based on the differential flatness control, presents the dynamics, stability, and efficiency of the PMSM drive. The average model of the PMSM drive system is flat. A trajectory planning algorithm that allows for speed/torque regulation in finite time has also been presented. Theoretically, the flatness-based control shows better performance than a classical controller (PI controllers) for transitions between equilibrium points, particularly in a nonlinear system.

Finally, the nonlinear flatness-based control is a model-based control approach. It requires to know system parameters (such stator resistance, etc.) to obtain the differential flatness property [refer to the dynamics term \((8), (9) \)]. For future works, some online state observers (or parameter observers) including improved load torque observer will be studied to progress the system performance.

REFERENCES

Fig. 4. Experimental result: PI based current control at a current $i_{q\text{COM}}$ step from $-1\,\text{A}$ to $1\,\text{A}$.

Fig. 5. Experimental result: Flatness based current control at a current $i_{q\text{COM}}$ step from $-1\,\text{A}$ to $1\,\text{A}$.

Fig. 6. Experimental result: PI based speed/current control at a speed n_{COM} step from $1500\,\text{r/min}$ to $1500\,\text{r/min}$.

Fig. 7. Experimental result: Flatness based speed/current control at a speed n_{COM} step from $1500\,\text{r/min}$ to $1500\,\text{r/min}$.
Fig. 8. Experimental result: PI based speed/current control at a speed regulation of 1000 r/min and a load torque step from 0.6 Nm to 2.66 Nm.

Fig. 9. Experimental result: flatness based speed/current control at a speed regulation of 1000 r/min and a load torque step from 0.6 Nm to 2.66 Nm.
