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Increasing K0 in the granular fill had a negligible influence on settlement. This may be due to the 
simplistic choice of material model, which assumes constant stiffness. More sophisticated models, 
e.g. Duncan and Chang (1970) or Wolff and Visser (1994), which account for stiffening under 
increasing mean normal effective stress and strain-hardening under increasing deviator stress, may 
indicate a greater influence of K0. This is important in understanding an unbound pavement response 
to a single wheel load (as suggested by Brown, 1996). It is likely such sophisticated modelling of the 
pavement is not as necessary for large, multi-wheeled vehicles, as the influence of the pavement 
layers on composite response is greatly reduced (Table 4). 

 

4.5. Comparison of principal stress rotation 

Significant rotation of the principal axes occurs within the pavement layers in front or behind a single 
wheel even at relatively low utilisations (Figure 13). Below the pavement, only small principal stress 
rotation occurs at low utilisation. This is more pronounced for weaker subgrade models, and can be 
attributed to two factors: firstly lower bearing capacity (and therefore lower wheel pressures for the 
same degree of utilisation) means smaller relative changes to the in-situ stress state. Secondly, the 
higher relative pavement stiffness causes greater load spreading (Figure 3), reducing principal stress 
rotation in the subgrade (Figure 13). Inclination of principal stresses reduces with depth, as self-
weight stresses become dominant. 

For the multi-wheel model at low utilisation, the subgrade principal stresses show little inclination, 
which reduces further with depth and increases with increasing utilisation. At high utilisation (80%), a 
zone of principal stress reversal is apparent directly beneath the pavement (Figure 14) as the passive 
part of the failure mechanism is mobilised. This coincides with development of large plastic strains 
throughout the entire compression zone and yield being initiated in parts of the extension zone 
(Figure 11). 

 

5. Practical considerations for heavy haul roads 
Simplified modelling indicates the response of an unbound pavement-subgrade system is 
fundamentally different when subject to loading from a large vehicle with many closely spaced wheels 
rather than a single wheel. The influence of the pavement layer and subgrade surface, dominant for 
the single wheel case, is reduced; behaviour is more strongly influenced by soil at depth (see Figure 
4, Figure 8 and Table 4). Designing these roads by investigating the subgrade surface only, and 
specifying a granular layer thickness to minimise irrecoverable subgrade strain from single, separate 
wheel loads, as is done for conventional roads, is thus inappropriate.  

A different site investigation and design approach is necessary for roads carrying large, multi-wheeled 
vehicles. Surface tests, such as the commonly used CBR test, dynamic probing or in-situ surface 
stiffness tests (Frost, 2000), will still be useful in understanding resistance to rutting on the scale of a 
single wheel but less useful in understanding the behaviour of deeper soils when exposed to 
repetitions of multi-wheeled vehicles. The risk of degradation on a whole vehicle-scale mechanism will 
require investigation to greater depths using investigation techniques more common to design of large 
foundations, such as percussive drilling or Cone Penetration Tests. Furthermore, monitoring of the 
pavement surface for rutting may not give an indication of deeper-seated strain development, which is 
likely to manifest over a larger area. Under large strains close to or exceeding yield, excess pore 
water pressures are expected to accumulate in the subgrade; monitoring pore water pressures at 
depth via piezometers in boreholes may therefore be more effective. 
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Figure 1: Problem definition: a) vehicle geometry and b) ground model for analysis. N.b. as a plane strain analysis is 
used, the model geometry is based solely on the section view; plan view is for information only. 

 



 
Figure 2: Load-settlement response at centreline of multi-wheel Mohr-Coulomb model for a 1.5m total pavement depth, 
showing impact of adding cohesion to the uppermost 0.25m of the pavement layer.  


























