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Highly Active and Stable AuNi Dendrite as Electrocatalyst for 
Oxygen Reduction Reaction in Alkaline Media†  

Jiali Wang,
a
 Fuyi Chen,*

a
 Yachao Jin,

a
 and Roy L. Johnston

b
 

Bimetallic AuNi nanodendrite catalysts have been prepared for oxygen reduction reaction (ORR) in alkaline media by the 

facile electrodeposition and electrochemical dealloying method. The dealloyed AuNi catalyst consists of hierarchical 

dendrites with high electrochemical active surface area. The half-wave potential (E1/2) of the dealloyed AuNi catalyst is 

0.896 V vs. RHE, exhibiting about 67 and 27 mV positive shift relative to the commercial Pt/C and as-prepared (before 

dealloying) AuNi catalysts, respectively. Compared to commercial Pt/C catalyst, the dealloyed AuNi achieves a 2.8-fold 

improvement in specific activity at 0.8 V vs. RHE and suffers less degradation of the ORR activity after 5,000 potential 

cycles. The ORR catalyzed by bimetallic AuNi catalyst proceeds through a four-electron pathway in basic solution. TEM and 

XPS characterizations indicate that the enhancement of ORR activity is attributed to the favorable morphology and 

electronic effect caused by the incorporation of Ni atoms into Au substrate. Dealloyed AuNi hierarchical dendrites possess 

the great application potential as cathode electrocatalysts in the metal-air batteries and alkaline fuel cells due to the facile 

preparation, high ORR activity and long-term cycling durability. 

Introduction 

Renewable energy technologies, such as metal-air batteries and 

alkaline fuel cells, have garnered considerable interests because 

they are expected to become the reliable sources of clean energy in 

both mobile applications and energy conversion/storage devices.
1-4

 

It is well acknowledged that the kinetics of oxygen reduction 

reaction (ORR, O2 + 2H2O + 4e
—

 → 4OH
—

) at the cathode of these 

electrochemical devices is intrinsically sluggish, thus, this reaction 

requires a large amount of catalysts to achieve adequate energy 

efficiency.
1-5

 Hitherto, platinum (Pt) has been regarded as the state-

of-the-art catalyst applied in such technologies. However, Pt and Pt-

based alloys suffer from severe durability problems,
3, 6

 together 

with high cost and scarcity,
7, 8

 limiting their wide-spread application 

in industry. Therefore, enormous efforts have been dedicated to 

develop the non-platinum catalysts with more economical metals 

and higher catalytic activity.
4, 6, 9-12

  

Among various non-platinum cathode catalysts, gold (Au) has 

attracted substantial attention.
13-17

 Numerous studies demonstrate 

that gold (Au) at the nanoscale exhibits good catalytic activity than 

the bulk Au for ORR.
15

 Tang et al. presented a novel strategy to 

grow ultrafine Au clusters (less than 2 nm) on the reduced graphene 

oxide (rGO) sheets, exhibiting excellent electrocatalytic activity 

toward ORR.
13

 Au/rGO hybrid consisting of Au nanodendrites (~30 

nm) was successfully synthesized in Chen’s group, which had a 

comparable onset potential to commercial Pt/C catalyst and 

showed a dominant four-electron pathway for ORR.
14

 However, 

these nanosized Au catalysts with high surface energy are tend to 

dissolve, aggregate and sinter during catalysis,
13

 moreover, Au 

nanoparticles used alone hardly have comparable or better ORR 

catalytic activity than that of commercial Pt/C catalyst.
13, 14

 Previous 

literatures reported that the ORR activities of metal catalysts were 

related to the oxygen adsorption energies, and both higher and 

lower oxygen adsorption energies had negative effects on the ORR 

activity.
18, 19

 According to the volcano plot reported by Nørskov,
18

 

there is still significant scope to improve the catalytic activities of 

metal catalysts through changing their oxygen adsorption energies, 

which is also manifested in the shift of d-band center with respect 

to the Fermi level.
19

 Downshift of the d-band center location with 

respect to Fermi level indicates that the oxygen absorption energy 

is lowered, and the vice versa for the unshift of d-band center. For 

example, Pt is recognized as the state-of-the-art catalyst with 

slightly strong oxygen binding energy, it has been approved that the 

ORR activity of Pt could be substantially improved by forming the 

Pt-M (M= Fe, Co, or Ni) alloys due to the downshift of d-band center 

as a result of the surface compressed strain and/or electronic 

effects.
20, 21

 Based on the volcano plot, it is widely accepted that the 

poor activities of Au and Ag towards ORR are attributed to the 

particularly weak binding energies of oxygen. Recent researches 

have showed that the oxygen adsorption energy of Ag can be 

improved through doping the transition metals (i.e., Cu) into Ag due 

to the upshift of d-band center with respect to Fermi level, and the 
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resulted AgCu alloy showed enhanced ORR activity compared to the 

monometallic Ag.
22-24

 Thus, it is reasonable to predict that alloying 

Au with transition metals (Ni, Co, Fe, etc.) with well-controlled sizes, 

components and geometrical structures could be one of the viable 

avenues to dramatically improve oxygen adsorption energy of Au to 

enhance the ORR activities. 

As one of the 3d metals, nickel (Ni) has been widely used to 

improve the catalytic activities of Pt,
25-27

 Pd
6, 28, 29

 and Ag,
30

 etc.. 

AuNi alloys have also been studied by researchers in the field of 

catalysis.
31-35

 Hosseini et al. designed the nanostructured 

Cu/Ni/AuNi catalyst using the electrodeposition process followed by 

galvanic replacement technique. The electrocatalytic activity of 

Cu/Ni/AuNi electrodes for borohydride electrooxidation was much 

higher than that of flat Au catalyst.
32

 Zeng et al. prepared well 

dispersive AuNi nanoparticles on graphite composite film, the 

nanoparticles exhibited the features of alloy and showed high 

electrocatalysis to hydroquinone.
33

 Yang et al. reported that 

nanospheric particles of AuNi bimetal by a facile co-reduction and 

annealing synthesis route exhibited a greatly enhanced 

electrocatalytic activity toward oxygen reduction reaction than that 

of pure Au nanoparticles.
31

 Naveen et al. fabricated AuNi@pTBA 

composite catalysts using the electrochemical deposition method 

and reported their better ORR catalytic activities and stabilities 

relative to the Pt/C catalyst.
35

 Although great progress has been 

achieved in AuNi alloys field, the current applications of AuNi alloys 

are focused on catalytic oxidation of borohydride,
32

 hydroquinone
33

 

or glucose,
34

 the reports for electrocatalytic oxygen reduction 

reaction are rare, resulting in the lack of systematically studies on 

the catalytic mechanism of AuNi catalysts for ORR. Moreover, the 

composite or polymer in the catalysts may block the electron 

transfer and mass transport, which seriously hamper their catalytic 

activities, and the simple and pure metallic catalysts without the 

influence of composite or polymer usually give more 

physicochemical insights into the catalyst design. Therefore, 

employing an effective synthesis method to fabricate pure metallic 

AuNi catalysts and then investigating their intrinsic ORR activities 

and catalytic mechanisms have become an interesting topic. 

It is widely accepted that the unique physicochemical properties 

of nanostructured alloys depend markedly on their sizes and 

morphologies.
36, 37

 Nanodendrite with highly hierarchical structure 

is a new class of multifunctional catalytic nanomaterials due to their 

high surface area, porous structure, high degree of conductivity and 

catalytic activity.
4, 37

 It has been documented that this kind of 

morphology could be manipulated via the surface engineering,
38

 

such as electrodeposition.
35

 Herein, we adopted the 

electrochemical deposition and dealloying method to fabricate a 

series of pure metallic AuxNiy (x = 1, y = 1, 2, 3) dendrite catalysts 

directly on the bare glassy carbon electrode, and examined their 

ORR activities and long-term cycling durability. The typical synthetic 

process of pure metallic AuNi catalysts is presented in Scheme 1. By 

adjusting the experimental parameters (details in the Supporting 

Information), the Au1Ni2 catalysts deposited at -0.6 V vs. SCE before 

and after dealloying exhibit remarkably enhanced catalytic activity. 

Therefore, Au1Ni2 catalysts deposited at -0.6 V vs. SCE before and 

after dealloying (labelled as the as-prepared and dealloyed AuNi 

catalysts for simplicity, respectively, in the discussion section) were 

taken for further experiments. The electrochemical parameters for  

 

Scheme 1 Schematic illustration of the facile preparation of the 

AuNi hierarchical dendrites. The method is based on the 

electrodeposition of Au and Ni atoms in HAuCl4 and NiSO4 solution 

and the removement of surface Ni atoms through electrochemical 

dealloying process in H2SO4 solution. As-prepared AuNi electrode 

exhibits dendrites structure with less branches, while dealloyed 

AuNi electrode shows hierarchical dendrites, like “feather”. 

 

the preparation of pure metallic AuNi catalysts are drastically 

different from those observed in previous study with AuNi@pTBA 

composite catalysts,
35

 presumably due to the absence of polymer. 

The electrochemical measurements demonstrate that the dealloyed 

AuNi catalyst outperforms the commercial Pt/C in both catalytic 

activity and durability. Because of the unique morphology 

advantage and the electronic effect, the dealloyed AuNi catalyst is 

further proved to be a promising electrocatalyst for the metal-air 

batteries and alkaline fuel cells. 

Experimental section 

Chemicals and materials 

Gold(III) chloride trihydrate (HAuCl4), nickel(II) sulfate hexahydrate 

(NiSO4∙6H2O), sodium sulfate (Na2SO4), sulfuric acid (H2SO4), and 

potassium hydroxide (KOH) were purchased from Tianjin Fuchen 

Chemical Reagent Co., Ltd. (China). Ethanol was purchased from 

Xi'an Shunda. All the chemicals used in this experiment were of 

analytical grade and used without any further purification. Pt/C 

catalyst (20 wt % Pt, fuel cell grade) was commercially available 

from Johnson Matthey Fuel Cells. All aqueous solutions were 

prepared with ultra-pure distilled water (18.25 MΩ cm). All 

experiments were carried out at room temperature. 

Preparation of the AuNi catalysts 

Prior to the preparation of the nanostructured AuNi dendrites, the 

glassy carbon electrode (GCE) was polished with 0.3 um alumina 

slurry and was sonicated for a few minutes in acetone and then in 

the distilled water. The GCE as the working electrode was placed 

facing a gold foil auxiliary electrode, and a saturated calomel 

electrode (SCE) was used as the reference electrode. The 

electrochemical depositions were performed in three different 

kinds of precursor solutions with 0.1 M Na2SO4 used as the support 

electrolyte. These precursor solutions contained 15 mM HAuCl4 + 15 

mM NiSO4, 15 mM HAuCl4 + 30 mM NiSO4 and 15 mM HAuCl4 + 45 

mM NiSO4, the corresponding samples were labelled as Au1Ni1, 

Au1Ni2 and Au1Ni3, respectively. The applied potentials during the 

electrodeposition were varied from -0.5 V to -0.7 V vs. SCE. The 

obtained products were taken out from the precursor solutions 

immediately after deposition process to prevent galvanic 

displacement reaction between Ni atoms and Au
3+

 cations and 
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washed carefully with distilled water, then dried by nitrogen at 

room temperature. After the potentiostatic deposition, the as-

prepared samples were subject to the electrochemical dealloying 

process within the potential range of 0.0 to 1.6 V vs. Ag/AgCl in a 

N2-purged 0.5 M H2SO4 solution at a scan rate of 50 mV s
-1

 for 20 

cycles. Ag/AgCl electrode was used as the reference electrode 

during the dealloying process. For comparison purpose, pure Au 

was also deposited on the GCE under the same experimental 

conditions using the precursor solutions without NiSO4. In order to 

ensure the reproducibility of each sample, we fabricated at least 

three separated samples for each kind of catalyst under the same 

experimental conditions. By calculating the transferred electron 

numbers during the deposition, the loading for the dealloyed AuNi 

catalyst was 0.17 mg. 

Physical characterization 

The phase and crystallinity of the AuNi dendrites were 

characterized using the X-ray diffraction (XRD) spectroscope with Cu 

Kα radiation (PANalytical X’Pert Pro MPD). The working potential 

and current employed were 40 KV and 40 mA, respectively. The 

morphologies and structures were observed by field emission 

scanning electron microscopy (SEM, FEI NovaSEM 450) and high-

resolution transmission electron microscopy (HRTEM, FEI Tecnai 

F30). X-ray photoelectron spectroscopy (XPS) measurements were 

carried out on an ESCALAB 250 instrument (Al Kα, ultrahigh vacuum 

is 10
-9

, hν = 1486.6 eV) to examine the surface components and 

electron structure, the binding energy was calibrated by the C 1s 

(284.5 eV). 

Electrochemical characterization 

Electrochemical measurements were carried out in 0.1 M KOH  

 

solutions at room temperature using the CHI 660C electrochemical 

workstation (Shanghai Chenhua Apparatus, China). The 

conventional three-electrode system including a glassy carbon 

electrode (d = 5 mm, geometric area 0.196 cm
2
), Hg/HgO electrode 

and Pt wire electrode as the working, reference and counter 

electrode, respectively, was used. Linear scanning voltammetry (LSV) 

and cyclic voltammetry (CV) with a sweep rate of 10 mV s
-1

 from 0.2 

to -0.8 V vs. Hg/HgO were conducted in O2 and N2-saturated 0.1 M 

KOH solutions. The rotation disk electrode (RDE) polarization curves 

in O2-saturated 0.1 M KOH solution at different rotation rates were 

used to evaluate the number of electron transferred during ORR. 

The electrochemical active surface areas (ECSAs) of the Au-based 

catalysts were evaluated by integrating the charge associated with 

the reduction of a gold surface oxide monolayer in N2-saturated 0.5 

M H2SO4 solution in the range of 0.0 to 1.6 V vs. Ag/AgCl at a sweep 

rate of 50 mV s
-1

, assuming the used charge density is 390 μC cm
-

2
.
39

 The ECSA of commercial Pt/C catalyst was determined by 

measuring the charge associated with hydrogen 

adsorption/desorption in N2-saturated 0.1 M KOH solution at a 

sweep rate of 50 mV s
-1

, in which the charge density is 210 μC cm
-

2
.
37, 40

 For the sake of clarity, all potentials in the paper were 

referred to the reversible hydrogen electrode (RHE) unless 

indicated. 

Results and discussion 

Fig. 1a shows the cyclic voltammetry (CV) curves of the dealloyed 

AuNi, as-prepared AuNi, pure Au and commercial Pt/C catalysts in 

0.1 M KOH solution saturated with N2 and O2. For the dealloyed 

AuNi catalyst in the N2-saturated solution, the CV curve is 

featureless over the potential range (other catalysts show the

 
Fig. 1 Comparison of ORR activities of dealloyed AuNi, as-prepared AuNi, commercial Pt/C and pure Au catalysts at room temperature: (a) 

Cyclic voltammetry (CV) curves recorded in O2-saturated 0.1 M KOH solution with a sweep rate of 10 mV s
-1

, and CV of dealloyed AuNi in 

N2-saturated 0.1 M KOH (magenta line). (b) ORR polarization curves recorded in O2-saturated 0.1 M KOH solution with a sweep rate of 10 

mV s
-1 

and a rotation rate of 1600 rpm. The current densities in both (a) and (b) were normalized in reference to the geometric area of the 

RDE (0.196 cm
2
). (c) Specific activities at 0.8 V vs. RHE. The inset shows the CV curves of dealloyed AuNi, as-prepared AuNi and pure Au 

catalysts in N2-saturated 0.5 M H2SO4 solution by sweeping the potential from 0.0 to 1.6 V vs. Ag/AgCl with a sweep rate of 50 mV s
-1

. (d) 

Comparative mass-corrected Tafel plots of dealloyed AuNi, as-prepared AuNi and commercial Pt/C. 
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similar results, not shown). By contrast, when in the O2-saturated 

solution, all catalysts exhibit apparent reduction current peak. A 

strong reduction current peak is found at 0.94 V for dealloyed AuNi 

catalyst, more positive than those of the as-prepared AuNi (0.9 V), 

commercial Pt/C (0.87 V) and pure Au catalysts (0.83 V), suggesting 

that the dealloyed AuNi catalyst exhibits higher catalytic activity 

toward oxygen reduction reaction. To further confirm the excellent 

ORR activity of the dealloyed AuNi catalyst, the linear sweep 

voltammetry (LSV) curves of these catalysts were measured at a 

rotating disk electrode (RDE) in O2-saturated 0.1 M KOH solution 

with the rotation rate of 1600 rpm, as shown in Fig. 1b. As one of 

the most important descriptors in the quantitative assessments of 

ORR performance, the half-wave potential (E1/2) of the dealloyed 

AuNi catalyst is 0.896 V, which has a 86, 67 and 27 mV positive shift 

compared to those of pure Au (0.810 V), commercial Pt/C (0.829 V) 

and as-prepared AuNi catalysts (0.869 V), respectively. In addition, 

the onset potential (Eonset) of the dealloyed AuNi catalyst is found to 

be the most positive among all the catalysts, which is close to those 

obtained from cyclic voltammetry measurements in Fig. 1a. The 

specific values for diffusion-limiting current density, E1/2 and Eonset of 

these ORR catalysts are summarized and compared in Table. 1. 

These results highlight that oxygen reduction is markedly facilitated 

by the incorporation of non-noble metal Ni atoms into the Au 

substrate, and further improved by obtaining more active sites from 

the dealloying process. 

As shown in the inset in Fig. 1c, the ECSA of dealloyed AuNi 

catalyst was measured to be 11.5 cm
2
, which is about 1.3-fold 

higher than those of as-prepared AuNi and commercial Pt/C, 

respectively, and 3.4-fold higher than that of pure Au. The 

dealloyed AuNi catalyst displays a larger electrochemical active 

surface area and offers more accessible Au active sites in oxygen 

reduction, which mainly originates from the hierarchical dendrite- 

like nanostructure with higher level of porosity. We then calculated 

the specific activities (SAs) of these catalysts by normalizing kinetic 

current (Ik) to the ECSA at 0.8 V (Fig. 1c and Table 1). The values of 

the specific activities increase in the sequence: pure Au < 

commercial Pt/C < as-prepared AuNi < dealloyed AuNi. The 

dealloyed AuNi catalyst exhibits more than 2.8-fold enhancement in 

SA as compared to that of the commercial Pt/C catalyst at 0.8 V. 

Moreover, the kinetics of ORR can be further examined through the 

mass transport corrected Tafel plots. Fig. 1d gives the comparative 

Tafel plots of as-prepared AuNi, dealloyed AuNi, and commercial 

Pt/C catalysts. The dealloyed AuNi catalyst has a Tafel slope of 

53.40 mV dec
-1

 in comparison to 68.78 and 79.47 mV dec
-1 

obtained  

 

 

 

Fig. 2 Bright Field TEM images of (a) as-prepared AuNi and (b) 

dealloyed AuNi catalysts. The insets for upper, in-between and 

lower images in both (a) and (b) are the corresponding SEM, dark 

field TEM and SAED patterns, respectively. HRTEM images of (c) as-

prepared AuNi and (d) dealloyed AuNi catalysts. The insets are the 

corresponding Fast Fourier Transform (FFT) patterns obtained on 

the area marked by the square. 

 

for as-prepared AuNi and commercial Pt/C catalysts, respectively. It 

should be noted that the Tafel slopes show typical Temkin 

adsorption isotherms of oxygenated species, the ORR activity on 

the dealloyed AuNi catalyst with lower Tafel slope can be effectively 

enhanced due to the facile oxygen adsorption and the subsequent 

oxygen reduction.
3, 41

  

The above electrochemical measurements indicate that the 

dealloyed AuNi catalyst shows exceptional ORR activities relative to 

the commercial Pt/C and even outperforms ever reported Au alloy 

electrocatalysts in alkaline media (Table S3†). Therefore, the 

fabricated AuNi catalysts before and after dealloying were further 

characterized by TEM, SEM, HRTEM, SAED and XPS to investigate 

the mechanism of the improved catalytic activity. The TEM and SEM 

images of the as-prepared AuNi catalyst are shown in Fig. 2a, it is 

clearly observed that the as-prepared AuNi catalyst has the 

dendritic morphologies with less secondary branches. After

Table 1 The onset potential (Eonset, V), half-wave potential (E1/2, V), diffusion-limiting current density (jd, mA cm
-2

), kinetic current (Ik, mA), 

electrochemical active surface area (ECSA, cm
2
) and the specific activity (SA, mA cm

-2
) for various catalysts. Standard deviation (SD). 

Catalysts name 
Eonset 

(V) ±SD 
E1/2 

(V) ±SD 
jd 

(mA cm
-2

) ±SD 
Ik at 0.8 V 
(mA) ±SD 

ECSA 
(cm

2
) ±SD 

SA at 0.8 V 
(mA cm

-2
) ±SD 

Pure Au 0.90±0.002 0.810±0.001 3.75±0.026 0.52±0.043 3.4±0.013 0.15±0.010 

Commercial Pt/C 0.97±0.003 0.829±0.002 4.98±0.014 1.62±0.028 9.0±0.025 0.18±0.005 

As-prepared AuNi 1.00±0.002 0.869±0.002 4.86±0.010 3.96±0.022 9.2±0.021 0.43±0.006 

Dealloyed AuNi 1.03±0.001 0.896±0.003 4.86±0.017 5.65±0.014 11.5±0.020 0.50±0.008 
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dealloying, the presence of abundant hierarchical dendrites with 

side branch tips slitting from the trunk, like “feather”, is observed, 

as shown in Fig. 2b, which leads to higher surface-to-volume ratio. 

The clear contrast between the skeletons and background shown in 

the dark field TEM images (in-between insets in Fig. 2a and 2b) 

further indicates the formation of the developed dendritic structure. 

According to the previous reports, the hierarchical structures of 

AuNi dendrites which possess the morphology advantages can 

profoundly improve the ORR activities.
8, 14, 25

 The compositions of 

the AuNi catalysts were examined by EDX (Table 2), the results 

show that the Ni contents decrease from 13.75 at % in the as-

prepared AuNi catalyst to 5.24 at % in the dealloyed AuNi catalyst, 

illustrating that the partial Ni atoms are removed by dealloying 

process, and both the as-prepared and dealloyed samples have Au-

enriched surfaces. As seen from Table. S2†, the compositions of 

these catalysts and the precursor feeding ratios could not 

quantitatively match quite well. It is rationally attributed to the 

large potential difference between Au(III) and Ni(II) (Au
3+

/Au, +1.50 

V vs. SHE (standard hydrogen electrode) and Ni
2+

/Ni, -0.257 V vs. 

SHE). It can be assumed that Au(III) will be preferentially deposited 

over the Ni(II) on the GCE, then the preformed Au nanostructures 

used as nucleic centers facilitate the co-deposition of Ni
2+

 and Au
3+

. 

At the surface of the Au, Ni
2+ 

cations can be reduced at the less 

negative potentials due to the underpotential deposition.
42

 Actually, 

we also have performed a control experiment, where almost no 

nanomaterials were deposited on the GCE surface at -0.6 V vs. SCE 

in the pure Ni precursor solution, which more firmly verify the 

above conclusion. 

According to the selected area electron diffraction (SAED) 

patterns (lower insets in the Fig. 2a and 2b), both the as-prepared 

and dealloyed AuNi catalysts show the typical polycrystalline 

structures with mixed diffraction rings that belong to face-centered 

cubic (fcc) structured Au and Ni. The diffraction spots of Au (111), 

(220), (222) facets and Ni (111), (220) facets are observed for as-

prepared AuNi catalyst, and the diffraction spots of Au (111), (220) 

facets and Ni (111), (200) facets are observed for dealloyed AuNi 

catalyst. Fig. 2c shows the high-resolution TEM (HRTEM) image of 

the as-prepared AuNi catalyst, from which the crystalline nature can 

be analyzed. Based on the HRTEM image, a highly ordered 

continuous fringe pattern is clearly observed. The crystallographic 

planes indicate that the spacings of the lattice fringes are 2.35 Å 

and 2.04 Å, corresponding to (111) plane of face-centered cubic Au 

and Ni, respectively. As shown in Fig. 2d, the interplanar spacing of 

2.35 Å matches with the Au (111) plane and the spacing of 2.04 Å 

with the Ni (111) for the dealloyed AuNi catalyst. 

 

 

Table 2 The EDX and XPS composition analysis of as-prepared and 

dealloyed AuNi catalyst. 

Catalysts name 

EDX bulk  
composition (at %) 

XPS surface 
composition (at %) 

Au  Ni  Au  Ni  

As-prepared AuNi 86.25 13.75 86.31 13.69 

Dealloyed AuNi 94.76 5.24 95.00 5.00 

 

 
Fig. 3 XRD spectra of the as-prepared AuNi, dealloyed AuNi and 

pure Au. 
 

The X-ray diffraction (XRD) patterns of pure Au, as-prepared and 

dealloyed AuNi catalysts are shown in Fig. 3. For as-prepared and 

dealloyed AuNi catalysts, the typical face-centered cubic phases of 

metallic Au and Ni are clearly observed. The characteristic 

diffraction peaks located at 38.24°, 44.4°, 64.6°, 77.6°, and 81.7° are 

attributed to the (111), (200), (220), (311), and (222) planes of Au 

for both as-prepared and dealloyed AuNi catalysts. Ni diffraction 

peaks are observed at 44.5°, 51.8°, and 76.3°, which correspond to 

(111), (200), and (220) planes, respectively. The broad peak at 

around 43° is attributed to the glassy carbon. Compared to the 

corresponding peaks of pure Au, the Au(111) peak positions in the 

XRD patterns of as-prepared and dealloyed AuNi are slightly shifted 

(+0.04 degree) and broadened. Based on the Bragg equation, the 

interplanar spacings of Au (111) in as-prepared and dealloyed AuNi 

dendrites are 0.2352 nm, which are nearly equal to that of pure Au 

(0.2354 nm, calculated by Bragg equation). Furthermore, one can 

note that the intensity of Ni (111) peaks in dealloyed AuNi catalyst 

visibly decreases, implying the reduction of Ni contents after the 

dealloying process, which is consistent with the results of EDX and 

XPS analysis. 

X-ray photoelectron spectroscopy (XPS) was further employed 

to analyze the elemental compositions and surface electron 

structures of the as-prepared and dealloyed AuNi catalysts. The 

survey spectra of these two catalysts are shown in Fig. 4a, in which 

peaks of Au and Ni are clear, and the intensity of Ni decreases 

greatly after dealloying in comparison to that of as-prepared AuNi 

catalyst, which is similar with the result of XRD. Specifically, the Ni 

contents analyzed by XPS in as-prepared and dealloyed AuNi 

catalysts are 13.69 and 5.0 at %, respectively, which matches well 

with the EDX results (Table 2), illustrating that the distribution of Ni 

atoms is uniform in both bulk and surface. Fig. 4b compares the 

deconvoluted XPS spectra of Ni2p before and after dealloying. The  
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Fig. 4 (a) The XPS survey spectra of the as-prepared AuNi and dealloyed AuNi catalysts. (b) High-resolution Ni2p spectra of the as-prepared 

AuNi and dealloyed AuNi catalysts. (c) High-resolution Au4f spectra of pure Au, as-prepared AuNi and dealloyed AuNi catalysts. (d) Valence 

band spectrum (VBS) of the pure Au, as-prepared AuNi and dealloyed AuNi catalysts. 
 

 

binding energies of Ni2p1/2 and Ni2p3/2 orbits are 869.5 and 852.3 

eV for both samples, which are the same as the binding energies of 

Ni
0
 atom,

43
 indicating the formation of metallic Ni. Moreover, the 

characteristic satellite peaks are observed at 872.7 and 856.3 eV of 

Ni2p1/2 and Ni2p3/2. These satellite peaks can be attributed to 

Ni(OH)2, which is in good agreement with the previous literature.
44, 

45
 Fig. 4c depicts the Au4f core-level (CL) of pure Au, as-prepared 

and dealloyed AuNi catalysts. Pure Au displays a doublet with the 

binding energies located at 87.7 and 84.1 eV for Au4f5/2 and Au4f7/2, 

respectively, corresponding to the zero-valence Au.
14, 31

 Compared 

to pure Au catalyst, the binding energies for both as-prepared AuNi 

(87.6 and 83.9 eV) and dealloyed AuNi (87.5 and 83.9 eV) shift to 

the lower values.
43, 46

 Previous reports show that the shift in binding 

energies is associated with the variation in the d-band center. A CL 

shift to a lower binding energy value means that a positive shift in 

d-band center with respect to the Fermi level,
21

 which favors Au 

with stronger oxygen absorption energy and higher ORR activity. To 

further determine this conclusion, the valence band spectrum (VBS) 

of these three catalysts were also measured, as shown in Fig. 4d, 

the d-band center of dealloyed AuNi (red dashed line) is closer to 

the Fermi energy level than those of as-prepared AuNi (black 

dashed line) and pure Au (blue dashed line). Therefore, it can be 

concluded that the electronic effect explained by the d-bond theory 

play a major role in improving the ORR activity of the AuNi 

catalyst.
18, 19, 47

 

To further examine the reaction pathway and kinetics of AuNi 

catalysts towards oxygen reduction reaction, the linear sweep 

voltammetry (LSV) curves were taken on a rotating disk electrode 

from 400 to 2000 rpm. One can see from Fig. 5a, c and Fig. S6a, c† 

that the catalytic current densities increase with an increase in the 

rotating rates, which indicates that the catalytic reaction of the 

AuNi catalysts for ORR is controlled by the mass transport of O2 to 

the surface of the catalysts.
4
 The electron-transfer number was 

further analyzed by the Koutecky-Levich (K-L) plots, as the disk 

voltammetric current density (j) may involve both kinetic (jk) and 

diffusion-limiting (jd) current densities contributions. The K-L plots 

show the inverse current density (j
-1

) as a function of the inverse of 

the square root of the rotating speed (ω
-1/2

). The slopes of their 

linear fit lines are used to calculate the electron transfer number (n). 

The Koutecky-Levich equation is expressed in Eq 1-3:
48

 

j
-1

 = jk
-1

 + jd
-1

 = jk
-1

 + (Bω
1/2

)
-1

                            (1) 

B = 0.62nFC0D0
2/3

ν
-1/6

                                  (2) 

jk = nFkC0                                            (3) 

Where j is the measured current density, jk and jd are the kinetic 

and diffusion-limiting current densities of the ORR, respectively, B is 

the Levich slope, ω is the angular velocity of the disk (ω = 2πf, f is 

the linear rotation speed in rpm), n is the overall number of the 

electrons transferred during O2 reduction, F is the Faraday constant 

(96485 C mol
-1

), C0 denotes the bulk concentration of O2 (1.2×10
-6
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Fig. 5 The rotation-rate-dependent ORR polarization curves of (a) as-prepared AuNi and (c) dealloyed AuNi catalysts in O2-saturated 0.1 M 

KOH solution with a sweep rate of 10 mV s
-1

. The Koutecky-Levich plots (j
-1

 vs. ω
-1/2

) of (b) as-prepared AuNi and (d) dealloyed AuNi 

catalysts at different potentials.  
 

 

mol cm
-3

), D0 represents the diffusion coefficient of O2 (1.9×10
-5

 cm
2
 

s
-1

) in 0.1 M KOH aqueous solution, ν is the kinetic viscosity of the 

electrolyte (0.01 cm
2
 s

-1
).

49, 50
  

Fig. 5b, d and Fig. S6b, d† show the corresponding K-L plots of 

the as-prepared AuNi, dealloyed AuNi, Pt/C and pure Au catalysts 

over the potential range of 0.2 to 0.8 V. It can be seen from the K-L 

plots that all the experimental data show good linearity within the 

corresponding potential range, indicating a first-order reaction with 

respect to dissolved oxygen.
3, 12

 The number of electrons 

transferred per oxygen molecule for as-prepared AuNi, dealloyed 

AuNi, commercial Pt/C and pure Au catalysts are derived to be 3.8, 

3.9, 4.0 and 2.8 at 0.7 V, respectively. The calculated results exhibit 

that the ORR catalyzed by dealloyed AuNi and as-prepared AuNi 

catalysts occur through a four-electron pathway, i.e., direct 

reduction of O2 to OH
—

, which is similar to that by commercial Pt/C 

catalyst
51

 and superior to that by pure Au. Furthermore, the  

 

 

transferred electron numbers (n) at other potentials of these 

catalysts are listed in Fig. S7†, the numbers of electrons transferred 

during ORR for all the catalysts are almost constant with the variety  

of potentials. Besides, the rotation-rate-dependent ORR 

polarization curves and the corresponding K-L plots of other 

catalysts involved in our experiments are also shown in Fig. S8†. 

The catalytic stability of the catalyst in an electrochemical 

environment is important for their realistic applications.
3, 52

 Here, 

the catalytic durability of dealloyed AuNi and commercial Pt/C 

catalysts were evaluated by applying continuous potential cycling 

(5,000 cycles) between 0.5 and 1.0 V with a scan rate of 100 mV s
-1

 

in O2-saturated 0.1 M KOH solution at room temperature. ECSAs 

and LSV polarization curves at 1600 rpm for these two catalysts 

before and after the potential cycling have been measured to 

investigate the degradation of catalytic activities. As shown in Fig. 6, 

it is obvious that the dealloyed AuNi catalyst exhibits excellent long- 

 

Table 3 Comparison of the electrochemical activity of dealloyed AuNi with commercial Pt/C before and after potential cycling. 

 Before cycling After cycling Variation 

Catalysts name 
Eonset 
(V) 

E1/2 
(V) 

jd 
(mA cm

-2
) 

SA 
(mA cm

-2
) 

Eonset 
(V) 

E1/2 
(V) 

jd 
(mA cm

-2
) 

SA 
(mA cm

-2
) 

Δ E1/2 
(mV) 

Δ jd 

(%) 
Δ ECSA 

(%) 

Commercial Pt/C 0.97 0.829 4.98 0.18 0.93 0.769 4.17 0.07 60 19 44.7 

Dealloyed AuNi 1.03 0.896 4.86 0.50 1.01 0.858 4.66 0.36 38 4.3 27.6 
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Fig. 6 Comparison of ORR activities of dealloyed AuNi dendrites and commercial Pt/C before and after 5,000 cycles. (a) CV curves of 

dealloyed AuNi dendrites in N2-saturated 0.5 M H2SO4 solution at a sweep rate of 50 mV s
-1

. (b) ORR polarization curves of dealloyed AuNi 

dendrites in O2-saturated 0.1 M KOH solution. (c) CV curves of Pt/C in N2-saturated 0.1 M KOH solution with a sweep rate of 50 mV s
-1

. (d) 

ORR polarization curves of Pt/C in O2-saturated 0.1 M KOH solution. 
 

term stability compared with commercial Pt/C catalyst under the 

same test condition. Over continuous potential cycling, the 

dealloyed AuNi catalyst shows only 38 mV negative shift in the half- 

wave potential and a loss of 4.3 % relative to the initial diffusion-

limiting current density, and its ECSA remains a high value of 72.4% 

of the pristine surface area. In contrast, commercial Pt/C catalyst 

exhibits a more negative shift of 60 mV (Table 3) in E1/2 and loses 

19 % of the diffusion-limiting current density, and undergoes a 

nearly 44.7% loss in ECSA after 5,000 cycles. It is widely accepted 

that Pt nanoparticles usually suffer Ostwald ripening and tend to 

form larger particles, leading to the significant decrease in the ECSA 

and the catalytic activity. Moreover, the carbon corrosion also 

accelerates its more severe loss of ORR activity.
53

 However, the 

dealloyed AuNi catalyst in our experiment was synthesized without 

the carbon support, thus, avoiding the carbon corrosion problem. 

More importantly, the enhanced stability of the dealloyed AuNi 

catalyst is probably attributed to the stability of dendrite structure 

caused by the Au-rich surfaces after electrochemical deposition and 

dealloying.
21, 54

 The structure and morphology evolution of the 

dealloyed AuNi dendrites before and after the potential cycling 

were observed by TEM. Fig. S9† shows that there is not obvious 

change in the structure and morphology of this dealloyed AuNi 

dendrites. Therefore, these experimental observations suggest the 

dealloyed AuNi catalyst be a promising alternative for Pt forms as 

effective cathode catalyst for ORR in basic solution. 

Conclusion 

In summary, this work presents a facile method to synthesize the 

high-performance AuNi catalyst for oxygen reduction reaction in 

alkaline media. The synthesized AuNi catalyst is tailored to be the 

dendritic morphology by electrodepositon and dealloying approach. 

The dealloyed AuNi catalyst exhibits significantly enhanced catalytic 

activity and durability after 5,000 potential cycling in comparison 

with the state-of-the-art Pt/C catalyst. The improvement of the ORR 

catalytic activity for dealloyed AuNi can be ascribed to the unique 

morphology and electronic effect characterized by TEM and XPS. 

Consequently, the dealloyed AuNi dendrite is a potential candidate 

as the advanced ORR catalyst with excellent electrochemical activity, 

high cycling stability, and easy preparation in the field of the 

renewable energy technologies. 
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AuNi hierarchical dendrites were fabricated by facile electrodeposition and dealloying method 

with exceptional ORR activity and remarkable long-term stability. 
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