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ABSTRACT 67 

 68 

Aims  The 50th anniversary of the publication of the seminal book, The Theory of Island 69 

Biogeography, by Robert H. MacArthur and Edward O. Wilson is a timely moment to 70 

review and identify key research foci that could advance island biology. Here we take a 71 

collaborative horizon-scanning approach to identify 50 fundamental questions for the 72 

continued development of the field. 73 

 74 

Location  Worldwide. 75 

 76 

Methods  We adapted a well-established methodology of horizon scanning to identify 77 

priority research questions in island biology, and initiated it during the Island Biology 78 

2016 conference held in the Azores. A multidisciplinary working group prepared an 79 

initial pool of 187 questions. A series of online surveys was then used to refine a list of 80 

the 50 top priority questions. The final shortlist was restricted to questions with a broad 81 

conceptual scope, and which should be answerable through achievable research 82 

approaches. 83 

 84 

Results  Questions were structured around four broad and partially overlapping island 85 

topics, including: (Macro)Ecology and Biogeography, (Macro)Evolution, Community 86 

Ecology, and Conservation and Management. These topics were then subdivided 87 

according to the following subject areas: global diversity patterns (5 questions in total); 88 

island ontogeny and past climate change (4); island rules and syndromes (3); island 89 
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biogeography theory (4); immigration–speciation–extinction dynamics (5); speciation 90 

and diversification (4); dispersal and colonization (3); community assembly (6); biotic 91 

interactions (2); global change (5); conservation and management policies (5); and 92 

invasive alien species (4). 93 

 94 

Main conclusions  Collectively, this cross-disciplinary set of topics covering the 50 95 

fundamental questions has the potential to stimulate and guide future research in island 96 

biology. By covering fields ranging from biogeography, community ecology, and 97 

evolution to global change, this horizon scan has the potential to foster the formation of 98 

interdisciplinary research networks, enhancing joint efforts to better understand past, 99 

present and future of island biotas. 100 

 101 

 102 

Keywords 103 

Biodiversity conservation, community ecology, extinction, global change, island biology, 104 

island biogeography theory, island evolution, island macroecology, research priorities 105 

 106 

  107 
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INTRODUCTION 108 

 109 

In 1967 Robert H. MacArthur and Edward O. Wilson published The Theory of Island 110 

Biogeography (MacArthur & Wilson, 1967), where they expanded upon an earlier paper 111 

in which they first described their equilibrium theory (MacArthur & Wilson, 1963). In 112 

these works they developed a general mathematical theory to explain the regulation of 113 

species richness on islands. Their theory was based on the argument that island biotas 114 

eventually reach a dynamic equilibrium between processes that add species, particularly 115 

by immigration (plus, for more remote islands, speciation; see MacArthur & Wilson, 116 

1963), counterbalanced by processes that cause local extinction of species. Specifically, 117 

the model at the core of their theory predicts that the rates of these two key processes are 118 

determined by geographical context, represented in the first instance by island area and 119 

isolation. Whereas their general theory was motivated by a desire to formulate ecological 120 

and evolutionary theories based upon population level processes and to introduce a new 121 

rigour into the discipline of island biogeography, their theorizing was inspired by 122 

documented patterns of species abundance, species richness and turnover within and 123 

across islands (Lomolino & Brown, 2009; Wilson, 2010).  124 

 The seminal work of MacArthur and Wilson has subsequently stimulated a 125 

substantial research effort on island biogeography and biodiversity (Whittaker & 126 

Fernández-Palacios, 2007; Losos et al., 2010), and promoted the exploration of islands as 127 

model systems for a more general understanding of biological communities (e.g. Warren 128 

et al., 2015). The similarities between island archipelagos and fragmented continental 129 

landscapes have also triggered interest in applying MacArthur and Wilson’s theory in 130 
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conservation science; for instance, by deriving principles of protected area design and 131 

estimation of species extinctions in fragmented landscapes (e.g. Diamond, 1975). In 132 

addition to the colonization–extinction dynamics forming the core of MacArthur and 133 

Wilson's theory (MacArthur & Wilson, 1967), the authors included speciation as a term 134 

in the model within the 1963 description of equilibrium theory, and provided a 35-page 135 

chapter on ‘evolutionary changes following colonization’ within their 1967 monograph. 136 

Evolutionary processes, however, were set aside from the early chapters of the 137 

monograph, excluded from statements of the Core IBT (Island Biogeography Theory) and 138 

the famous intersecting curves graphic, and were not explicitly integrated in the neutral 139 

mathematical formulation of the model (leading to the erroneous but oft repeated claim 140 

that they ignored speciation). The subsequent development of molecular genetic tools for 141 

evolutionary analysis have prompted renewed interest in the integration of speciation into 142 

the Core IBT (e.g. Emerson & Gillespie, 2008; Rosindell & Phillimore, 2011; Valente et 143 

al., 2015), and improved estimation of historical immigration dynamics based on 144 

phylogenetic relationships among species (Ronquist & Sanmartín, 2011). The Core IBT 145 

is in essence a biologically neutral model – or close to it –, occupying the first 67 pages 146 

of the 1967 monograph, with much of the next 116 pages devoted to theory concerning 147 

population- and species-level traits of island biotas and their dynamics (MacArthur & 148 

Wilson, 1967). Progress on these latter themes has arguably been slower than on issues 149 

surrounding the Core IBT, but recent advances in genomic techniques, trait biology and 150 

analytical capacity should move forward this agenda (e.g. Gillespie et al., 2012; Heleno 151 

& Vargas, 2015; Santos et al., 2016a). Additionally, while the Core IBT referenced long-152 

term biological dynamics, it did not take into account the dynamic nature of islands 153 
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themselves, and here too, notable advances are being made (e.g. Whittaker et al., 2008; 154 

Borregaard et al., 2016; Fernández-Palacios et al., 2016). 155 

Fifty years on from its publication, MacArthur and Wilson’s (1967) book remains 156 

one of the most influential texts on ecology and evolution, with continued debate over its 157 

strengths and limitations. It has been, and will continue to be, a springboard for research 158 

on the origin and maintenance of biological communities, with particular reference to 159 

marine island systems, but also extending to other island-like systems. Half a century 160 

since this seminal contribution, it is time to review both the new and outstanding 161 

challenges facing the broad discipline of island biology, as well as particularly promising 162 

research avenues (see e.g. Warren et al., 2015; Santos et al., 2016b). In particular, this 163 

paper focuses on identifying the 50 most fundamental questions for present and future 164 

island biology research. Inspired by previous studies seeking to identify priority research 165 

questions within a scientific field based on a cornucopia of proven methods (e.g. Pretty et 166 

al., 2010; Sutherland et al., 2011; Sutherland et al., 2013; Seddon et al., 2014; Kennicutt 167 

et al., 2015), we present the outcome of a survey-based approach initiated at Island 168 

Biology 2016: the 2nd International Conference on Island Evolution, Ecology and 169 

Conservation, which was held at the University of Azores in Terceira Island, July 18–22, 170 

2016. 171 

 172 

 173 

MATERIALS AND METHODS 174 

 175 
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Prior to the Island Biology 2016 conference, a total of 21 conference attendees (see 176 

author list) were identified by the five survey coordinators (JP, RJW, PAVB, JMFP and 177 

BCE), to constitute the ‘50 fundamental questions in island biology’ working group in 178 

which each member encompasses expertise in at least one of the following subject areas: 179 

(i) (Macro-)Ecology and Biogeography, (ii) Speciation and Extinction, (iii) Community 180 

Ecology, (iv) Biotic Interactions, (v) Conservation Biology and Global Change, (vi) 181 

Dispersal and Colonization, and (vii) Palaeobiogeography and Palaeoecology. Two or 182 

three members of the working group were assigned to each subject area, and they had the 183 

possibility to recruit one or two more members to their panel. An eighth panel (viii) was 184 

also formed to identify any key questions that fell outside the scope of the seven original 185 

subject areas. Research interests within the ‘50 fundamental questions in Island Biology’ 186 

working group represent a broad array of geographic areas, model organisms, and 187 

networks of international collaborators. The members of each subject group were asked 188 

to identify at least 15 questions that they viewed as of fundamental interest within their 189 

subject panel. Members were encouraged to consult broadly with colleagues, with the 190 

mentioned option to invite non-conference attendees to join their panels, to provide 191 

additional expertise. A total of 197 questions were compiled in this process, which were 192 

screened for duplication or ambiguity by the five survey coordinators, resulting in a 193 

curated list of 187 questions (hereafter termed List 1; Fig. 1). To facilitate the practical 194 

implementation of the first voting, questions from List 1 were redistributed into four main 195 

island biology topics (e.g. see Carlquist, 1974; Whittaker & Fernández-Palacios, 2007; 196 

and Losos et al., 2010): (i) Island (Macro)Ecology and Biogeography (52 questions) 197 

included questions from the subject areas of (Macro-)Ecology and Biogeography, and 198 
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Palaeobiogeography and Palaeoecology; (ii) Island (Macro)Evolution (63 questions) was 199 

used to group questions on Speciation and Extinction, and Dispersal and Colonization; 200 

(iii) Island Community Ecology (27 questions) comprised questions from Community 201 

Ecology, and Biotic Interactions; and (iv) Island Conservation and Management (45 202 

questions) included questions from Conservation Biology and Global Change. The 407 203 

conference attendees of the Island Biology 2016 conference (see 204 

http://www.islandbiology2016.uac.pt) were invited to participate in four online surveys 205 

(Survey 1), one for each of the four amended groups of topics above. Across the four 206 

surveys, the conference attendees could score each question as ‘fundamental’, ‘not 207 

fundamental’, or leave the answer blank. The order of the questions was randomized for 208 

each new login, so that a specific order of presentation of questions could not bias the 209 

outcome of the surveys; this strategy was retained for the two following online surveys 210 

(see below). For each of the four topics, survey participants were also given the 211 

opportunity to submit one additional question, if they felt such a question was missing 212 

from List 1. 213 

 At the end of Survey 1, the original survey questions were ranked according to the 214 

total number of participants who scored a given question as ‘fundamental’, and the top 80 215 

questions selected (List 2). Then, the 44 new questions proposed by survey participants 216 

(List 3) were merged with an equivalent number of questions from List 2, specifically the 217 

44 lowest ranked key questions, to create a second survey (Survey 2) with 88 questions 218 

(List 4). The questions from List 4 were voted as ‘fundamental’ or ‘not fundamental’ by 219 

the 29 members of the ‘50 fundamental questions in island biology’ working group, and 220 

ranked. The top 44 questions of List 4 were then refined to eliminate redundant questions 221 
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or ambiguities through discussions among the coordinators of the survey, and then 222 

merged with the top 36 questions kept from List 2. The list of 80 questions (List 5) was 223 

then subject to a third online survey (Survey 3) involving a broader participation by 224 

extending the invitation to participate to approximately 400 attendees of the Island 225 

Biology 2014 conference held in Honolulu, Hawaii, some of whom did not attend the 226 

Island Biology 2016 conference, and also to the members of the following island biology 227 

related interest groups: American Society of Naturalists; British Ecological Society; 228 

Conservation Specialist Interest Group; Société Française d’Ecologie; Ecological Society 229 

of America; Hellenic Ecological Society; International Biogeography Society; New 230 

Zealand Ecological Society; the Spanish and the Portuguese Ecological Societies, and 231 

other specific working groups and e-mailing lists related to island biology that the authors 232 

could identify. 233 

 234 

Study shortcomings 235 

Across the different phases of this participative process, a determined effort was made to 236 

select experts, questions and voters, representative of the full breadth of island biology 237 

research. In addition, the inclusion of 48 questions suggested online by anonymous 238 

attendees of the Island Biology 2016 conference further contributed to increase the 239 

diversity of backgrounds and expertise reflected in the questions identified (see Fig. 1). 240 

However, despite these efforts, it would be naive to regard our list as definitive and 241 

unbiased, as it inevitably reflects the interests of the particular group of voters who were 242 

contacted and participated in our survey (see e.g. Sutherland et al., 2013; Seddon et al., 243 

2014). For instance, from the 27 initial questions on Palaeoecology & 244 
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Palaeobiogeography included in the online Survey 1, only one question [see Q28 in 245 

Results section] remained in the final list of 50 questions. This may reflect the fact that 246 

only about 10% of the final survey voters identified Palaeoecology & 247 

Palaeobiogeography as one of their fields of expertise (see Results). Such biases in the 248 

composition of the biologists sampled have undoubtedly influenced the balance of the 249 

questions presented here. Despite such shortcomings, by performing several voting and 250 

discussion rounds with a large group of experts from a wide range of organizations, fields 251 

and geographical regions (see Results, below), we hope to have minimized the 252 

consequences of individual preferences and other subjective choices.  253 

 254 

 255 

RESULTS 256 

 257 

The number of participants voting in the three rounds of online voting varied. In the first 258 

online survey (Survey 1), the number of participants was distributed into the four topics 259 

as follows: Island (Macro)Ecology and Biogeography (104 participants); Island 260 

(Macro)Evolution (84); Island Community Ecology (82); Island Conservation and 261 

Management (91). This round of voting was completely blind and no information about 262 

the scientific profile of the participants was requested. In the second online survey 263 

(Survey 2), only the 29 authors of this study voted, with each person voting on all the 264 

questions irrespective of topic area. 265 

 In the final round of online voting (Survey 3), 303 people participated, with the 80 266 

submitted questions receiving on average 286.6 (SD ± 2.3) votes. A large proportion of 267 
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the 80 questions (77 out of the 80) were considered as ‘fundamental’ by the majority of 268 

the voters, and the final ranking was thus based on the proportion of ‘fundamental’ votes 269 

with respect to the total numbers of votes (‘fundamental’ + ‘not fundamental’) received 270 

for each question. The percentage of fundamental votes varied between 79% (top) and 271 

39% (the 80th question), while the last question making it into the top 50 attracted 62% of 272 

positive votes.  273 

The scientific profile of the third survey participants was highly diverse, being 274 

distributed across thematic areas in island biology as identified by the participants 275 

themselves as follows: Conservation, Management & Global Change (290 participants); 276 

Community Ecology (141); Biogeography (137); Biotic Interactions (99); (Macro-277 

)Ecology (76); Dispersal (69); (Macro-)Evolution (58); Island Theory (45); 278 

Palaeoecology & Palaeobiogeography (30); and Plant or/& Animal Physiology (28). An 279 

additional 45 participants identified with 11 less common disciplines. In total, 68.7% 280 

(207) participants work on islands and/or island-habitat types, while 17.8% (54) voters 281 

focus their research on other ecological systems. Only 10.2% (31) participants work both 282 

on island and non-island systems. From the voters that provided information regarding 283 

the geographic circumscription of their study areas, the following insular systems were 284 

well represented: Oceania, including Australia, Melanesia, Micronesia, New Zealand, 285 

Polynesia, Galápagos and Juan Fernández (57 participants); North Atlantic including 286 

Macaronesia (39); Mediterranean (19); Caribbean (13); Indian Ocean, including the 287 

Mascarenes, Socotra and Madagascar (13); and Indonesia (6).  288 

Below we present the top 50 priority questions in island biology identified in the 289 

present study. For convenience in presenting the results, questions were compiled into the 290 
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four main island topics used earlier (see List 1 above): (i) Island (Macro)Ecology and 291 

Biogeography (including 16 questions); (ii) Island (Macro)Evolution (11); (iii) Island 292 

Community Ecology (8); and (iv) Island Conservation and Management (15). 293 

Information about each question’s final rank (#) and percentage of votes received (%) is 294 

also provided. 295 

 296 

Island (Macro)Ecology and Biogeography  297 

Global diversity patterns 298 

Q1. What are the relative roles of spatial, historical and ecological processes in driving 299 

taxonomic, phylogenetic and functional diversity patterns of insular systems? [# 7; % 300 

= 75.2] 301 

Q2. How do fundamental biogeographic processes interact through time and space to 302 

establish the island species–area relationship? [# 22; % = 70.5] 303 

Q3. How do taxonomic, phylogenetic and functional diversity compare between 304 

islands and ecologically similar continental areas? [# 27; % = 68.7] 305 

Q4. How important are islands as refuges for now extinct mainland lineages and/or 306 

ecosystems? [# 45; % = 64.5] 307 

Q5. How important are oceanic islands as generators of biodiversity and for the 308 

assembly of continental biota through reverse-colonization and/or colonization de 309 

novo? [# 49; % = 62.2] 310 

 311 

The questions in this section share an emphasis on fundamental large-scale topics. The 312 

first question [Q1], in particular, invokes a research agenda covering all types of island 313 
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systems and multiple facets of biodiversity. This question is a worthy reminder of the 314 

importance of integrating the dynamics of historical/geographical, long-term 315 

environmental, and contemporary ecological time-scales in analyses of insular biota. 316 

Island biologists need to be aware of and integrate knowledge from other natural 317 

sciences, in particular from earth systems science, in understanding long-term dynamics 318 

of island platforms as theatres for the evolutionary play (e.g. Price & Clague, 2002; 319 

Fernández-Palacios et al., 2011; Ali & Aitchison, 2014; Skipwith et al., 2016). How key 320 

biogeographical processes of dispersal/migration, speciation and extinction interact to 321 

shape the form of the island species–area relationship [Q2] remains an important topic 322 

and particular how these processes and patterns vary among different island contexts, 323 

including oceanic, continental-shelf, continental fragment, and habitat islands (e.g. 324 

Triantis et al., 2012; Patiño et al., 2014b; Matthews et al., 2016). Comparisons between 325 

taxonomic (typically the species as unit of analysis), phylogenetic and functional 326 

diversity responses across islands [see also Q29] and between islands and continents [Q3] 327 

represent a very recent development, on which little research has so far been conducted 328 

(but see e.g. Whittaker et al., 2014 and; Weigelt et al., 2015, for examples of intra and 329 

inter-archipelago analyses respectively). Our perception of the roles of islands [Qs 4, 5] 330 

as macroevolutionary sinks (sensu Goldberg et al., 2005), rather than as sources, has been 331 

challenged in recent years, and possibly needs to be reassessed (Bellemain & Ricklefs, 332 

2008). It was long understood that, in general, whereas islands received colonist species 333 

from continents, the reverse process rarely, if ever, happened (e.g. Carlquist, 1974). This 334 

unidirectional view of island colonization was consistent with the notion that islands, as 335 

species poor and disharmonic systems (i.e. lacking the full array of forms found on the 336 
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mainland) were typified by species that had become poor competitors (in the broad 337 

sense). Moreover, islands were viewed as refugial holdouts of persistence for a number of 338 

ancient forms (e.g. Yoder & Nowak, 2006; Vargas, 2007; Wood et al., 2015; Shaw & 339 

Gillespie, 2016), swept away by more recently evolved competitors from former 340 

mainland bastions. More recently, it has become apparent that so-called back-341 

colonizations (or boomerangs sensu Caujapé-Castells, 2011) from islands to mainlands, 342 

or movements across ocean basins via islands and colonization de novo of continents, 343 

have occurred and include some colonist lineages that have had great importance in 344 

shaping current biodiversity patterns. Examples include lineages of birds (e.g. Filardi & 345 

Moyle, 2005; Jønsson et al., 2011; Jønsson & Holt, 2015), insects (Grady & DeSalle, 346 

2008) and plants (Carine et al., 2004; Patiño et al., 2015; Condamine et al., 2016). For 347 

the very reason that addressing these questions requires an integrative approach with the 348 

intersection of disparate fields and methodological approaches, these broad questions [Qs 349 

1–5] remain of central importance within island biology, with evident potential to 350 

continue to generate significant changes in our understanding of this field. 351 

 352 

Island ontogeny and past climate change  353 

Q6. How do rates of colonization, speciation and extinction change during island 354 

ontogeny? [# 9; % = 73.4] 355 

Q7. How do diversification rates of island lineages change with island age? [# 38; % 356 

= 66] 357 

Q8. How important were past geological events and climate change in promoting 358 

island colonization and altering dispersal pathways? [# 20; % = 70.5] 359 
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Q9. How has climate change influenced speciation and extinction within islands? [# 360 

12; % = 72.7] 361 

Questions 6–9 embrace specific challenges to our understanding of the long-term 362 

dynamics of insular systems. Notwithstanding the diverse geological origins and 363 

developmental histories of islands, a substantial number of them are remote, volcanic in 364 

origin, and follow a broadly similar ontogeny. Typically, these islands begin with a 365 

building phase, followed by a gradual shift into erosion and subsidence, eventually 366 

leading to them becoming merely sub-ocean surface features. This developmental 367 

pathway, or certain variants of it, and their biological consequences are integrated within 368 

the general dynamic model of oceanic island biogeography (Whittaker et al., 2008; 369 

Borregaard et al., 2016), which offers predictions concerning rates of colonization, 370 

speciation, diversification and extinction and how they vary over the developmental 371 

history of islands. Testing such predictions for speciation and extinction is challenging 372 

(see [Qs 17–20]), and further complicated when island age is also integrated [Qs 6, 7]. It 373 

requires a focus on comparing island-specific rates among islands of different maturity 374 

across archipelagos, as opposed to within-lineage rates without implicit reference to 375 

island specific rates (sensu Bennett & O'Grady, 2013), suggesting a need for innovative 376 

approaches involving the comparative analysis of large numbers of time-calibrated 377 

phylogenies. 378 

Improved geodynamic data concerning past climate change, wind connectivity, 379 

ocean currents, and sea-level oscillations over the Pleistocene permit the development of 380 

more sophisticated models for inferring shifts in the configuration of islands and their 381 

environment (area, isolation and climate) through time, and their availability has 382 
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generated increasing interest in the implications of these long-term changes for island 383 

biodiversity patterns and processes (e.g. Carine, 2005; Dalsgaard et al., 2013; Ali & 384 

Aitchison, 2014; Rijsdijk et al. 2014; Ávila et al., 2016; Borregaard et al., 2016; 385 

Fernández-Palacios, 2016; Fernández-Palacios et al., 2016; Steinbauer et al., 2016a,b; 386 

Weigelt et al., 2016). Integrating colonization dynamics into these models [Q8] may 387 

benefit from recent comparative phylogenetic approaches (Ronquist & Sanmartín, 2011), 388 

while understanding how climate change has influenced rates and patterns of speciation 389 

and extinction on islands [Q9] appears to be a particularly challenging area of study. 390 

 391 

Island rules and syndromes 392 

Q10. Is trait evolution fundamentally different on islands than on continents? [# 42; 393 

% = 64.9] 394 

Q11. How robust are the various island rules and syndromes relating to body size, 395 

loss of dispersal, coloration, breeding system, woodiness, and clutch size, among 396 

others? [# 47; % = 63.3] 397 

Q12. To what extent are island populations genetically impoverished, compared to 398 

comparable mainland populations? [# 50; % = 62] 399 

 400 

Since the earliest days of scientific study of island biology, it has been understood that 401 

islands possess peculiar forms and otherwise atypical subsets of ecological and 402 

taxonomic groups (an aspect of island disharmony). Some part of this arises from a 403 

colonization filter through dispersal limitation. Following successful colonization and 404 

establishment on an island, recently arrived colonists are potentially exposed to a range of 405 
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novel biotic and abiotic conditions that have, in many instances, triggered notable 406 

morphological, behavioural and ecological shifts (e.g. Kavanagh & Burns, 2014; Traveset 407 

et al., 2015). Indeed, many of these features were remarked upon and formalized into 408 

syndromes or rules in classic works, particularly in Island Life by Alfred Russel Wallace 409 

(1880) and Island Biology by Sherwin Carlquist (Carlquist, 1974). Not surprisingly, 410 

chapter seven of MacArthur & Wilson’s book (1967), entitled ‘Evolutionary Changes 411 

Following Colonization’, dealt with some of the most intriguing island syndromes, such 412 

as the loss of dispersal capacity. Specifically, questions 10 and 11 reflect the long-lasting 413 

interest in phenomena such as flightlessness, gigantism, super-generalism, or secondary 414 

woodiness (reviewed in e.g. Jost, 2007; Whittaker & Fernández-Palacios, 2007; Losos & 415 

Parent, 2010; Lens et al., 2013), where empirical evidence has often provided conflicting 416 

signals (e.g. for the loss of dispersability, see Cody & Overton, 1996; Patiño et al., 2013; 417 

Kavanagh & Burns, 2014; Vargas et al., 2014).  418 

A few decades ago, a number of seminal studies (e.g. Frankham, 1997) introduced 419 

the idea that island populations are typically characterized by low levels of genetic 420 

diversity [Q12]. Recent analyses of spatial distribution of genetic variation across island 421 

and continental regions have, however, provided evidence that the expectation of low 422 

genetic diversity cannot always be generalized to island assemblages (e.g. Fernández-423 

Mazuecos & Vargas, 2011; Hutsemékers et al., 2011; García-Verdugo et al., 2015; but 424 

see Illera et al., 2016). It seems likely that future research on island syndromes will need 425 

to continue to pay critical attention to: (i) the statistical robustness of the patterns 426 

concerned (e.g. Meiri et al., 2008); (ii) causal explanations for the patterns, including the 427 

extent to which they reflect in situ evolutionary change versus non-random 428 
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colonization/persistence (e.g. Valido et al., 2004; Lomolino et al., 2013); and (iii) the 429 

mechanistic explanations for such distinctive evolutionary pathways (e.g. Burns et al., 430 

2012; Novosolov et al., 2013; Itescu et al., 2014). As these island-specific syndromes 431 

develop from the same eco-evolutionary processes that operate on mainlands, research on 432 

islands and continental counterparts (e.g. closely related taxa) [Q12] will be key to 433 

enhancing our fundamental understanding of the underlying mechanisms.  434 

 435 

Island biogeography theory 436 

Q13. How do the dynamics of island communities scale up to generate the 437 

biogeographical patterns predicted by island biogeographical theories? [# 37; % = 438 

66.3] 439 

Q14. How can we reconcile island biogeography theories with other ecological and 440 

evolutionary theories to contribute to a general biodiversity theory? [# 15; % = 72.1] 441 

Q15. How applicable are island biogeographical theories derived from real islands to 442 

other forms of insular system, such as sky islands and seamounts? [# 48; % = 62.7] 443 

Q16. How can we best incorporate population genetic and/or phylogenetic data to 444 

advance models of island biogeography? [# 28; % = 68.3] 445 

 446 

Island biogeography has always been a driver for the development of general theories in 447 

ecology and evolution. Hubbell’s (2001) ‘neutral theory of biodiversity and 448 

biogeography’ is one prominent example of how reflection on island theory (specifically 449 

MacArthur and Wilson’s theory) in a broader context, has continued to generate novel 450 

research directions (e.g. Warren et al., 2015; Santos et al., 2016b). Neutral theory 451 
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provides one approach to scaling up from local scale species abundance distribution 452 

patterns and dynamics to emergent biogeographical patterns [Q13], as exemplified by 453 

recent work by Rosindell and colleagues (e.g. Rosindell & Phillimore, 2011; Rosindell & 454 

Harmon, 2013). Although questions specifically on species abundance distributions failed 455 

to make the final cut in the present survey, the significance of improving understanding 456 

of species abundances in insular settings, and how they link to other macroecological 457 

patterns (such as species–area relationships) is implicit in questions 13, 14, and 33 (see 458 

e.g. Fattorini et al., 2016). 459 

Another facet of island theory that can be traced back directly to MacArthur & 460 

Wilson (1967) is the application of theory developed with marine islands (i.e. ‘real 461 

islands’) in mind to other insular contexts [Q15], be they mountain tops (sky islands, e.g. 462 

Sklenář et al., 2014; Steinbauer et al., 2016b), or other habitat islands isolated by a 463 

contrasting non-water matrix type (e.g. Kisel et al., 2011; Matthews et al., 2016). 464 

MacArthur & Wilson themselves highlighted the application of their equilibrium theory 465 

to habitat islands in the context of the fragmentation of formerly extensive, contiguous 466 

ecosystems by anthropogenic land use change, and this remains an area of interest and 467 

contention, with the quantitative implications of such processes for biodiversity 468 

conservation remaining uncertain (Triantis et al., 2010; Axelsen et al., 2013; He & 469 

Hubbell, 2013; Matthews et al., 2016).  470 

 Island biogeographic theory invokes historical biological processes (colonization, 471 

speciation, extinction) to explain contemporary species distribution patterns, which has 472 

yielded a large body of phylogenetic and population genetic island-focussed research. 473 

Such studies help advance models of island biogeography [Q16], link short term, within-474 
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island ecological processes to patterns emerging on large spatial or evolutionary scales, 475 

and thus help to unify theories of ecology and biogeography (e.g. Johnson et al., 2000; 476 

Steinbauer, 2017; see also Qs 17–20). Future statistical advances toward this goal may 477 

include comparing the fit of data among the predictions of competing phylogenetic and 478 

population genetic simulation models (e.g. Chan et al., 2014; Patiño et al., 2015), or 479 

combining phylogenetic and population genetic perspectives into unified statistical 480 

frameworks (e.g. Rannala & Yang, 2003). Combining a phylogenetic perspective with 481 

population genetic approaches may also help to establish links between 482 

macroevolutionary patterns and underlying microevolutionary mechanisms (e.g. Ricklefs 483 

& Bermingham, 2001; Jordal & Hewitt, 2004; Roderick et al., 2012; Paun et al., 2016), 484 

thus advancing our understanding of island biogeographic history. 485 

 486 

 487 

Island (Macro)Evolution 488 

Immigration–speciation–extinction dynamics 489 

Q17. How does the spatial configuration of an archipelago (e.g. intra-archipelagic 490 

connectivity) influence colonization, speciation and extinction over time? [# 23; % = 491 

70.1] 492 

Q18. What is the nature of the relationship between rates of extinction and island 493 

isolation, if any? [# 46; % = 64.1] 494 

Q19. How do the extinction probabilities of island endemic species compare to those 495 

of non-endemic species? [# 33; % = 67.2] 496 
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Q20. How important are diversity-dependent processes for island colonization, 497 

speciation and extinction? [# 11; % = 73] 498 

Q21. How do anthropogenic extinctions affect estimates of speciation and natural 499 

extinction on island systems? [# 43; % = 64.8] 500 

 501 

Island biodiversity emerges from the accumulation of species through time by 502 

colonization and establishment from outside areas, anagenetic change, and extensive 503 

diversification, all being counterbalanced by the depletive effects of extinction. The 504 

relative roles of these macroevolutionary processes are predicted to be functionally 505 

interrelated (e.g. MacArthur & Wilson, 1963, 1967; Emerson & Kolm, 2005; Emerson & 506 

Gillespie, 2008; Whittaker et al., 2008; Rominger et al., 2016), but understanding their 507 

dynamics over time remains a central challenge in island biology. Geographical context 508 

plays an important role in determining how colonization, extinction and speciation [Qs 509 

17, 18] dynamically vary and interact over time (see Cabral et al., 2014; Papadopoulou & 510 

Knowles, 2015b). While the effect of geography on macroevolution is well understood 511 

for some processes (e.g. cladogenesis generally increases with island area; see Kisel & 512 

Barraclough, 2010), for others, this relationship remains largely unknown (e.g. extinction 513 

versus isolation in Q18). Time-calibrated phylogenies have been of particular interest in 514 

investigating the processes of speciation and colonization, but they provide no direct 515 

evidence for extinction. Thus, while rates of diversification can be derived directly from 516 

dated phylogenies, estimating the underlying rates of colonization, speciation and 517 

extinction is more challenging. However, it is now possible to apply a model-based 518 

approach to estimate how these processes vary through time (Valente et al., 2014, 2015), 519 

22 

https://paperpile.com/c/NTxRzf/3a5T0+zJl2v+SpFG+Okhke+fR8C/?locator_label=book,page,page,page,page&prefix=e.g.,,,,


suggesting that there is further potential for phylogenetics to inform island biogeography. 520 

It is important that we note here that Q18 does not, in fact, specify a context involving 521 

extinction of endemic species, and the question of how extinction rate varies with 522 

isolation can be posed for a wide range of island systems and degrees of isolation, 523 

including for instance among non-endemic species on habitat islands (as e.g. Brown & 524 

Kodric-Brown, 1977). 525 

Endemic species distributions have been used together with comparative 526 

phylogenetic analysis to infer colonization, speciation and extinction dynamics with 527 

island ontogeny (Emerson & Oromí, 2005; Givnish et al., 2009; Rosindell & Phillimore, 528 

2011; Shaw & Gillespie, 2016), and may provide a further means to address the influence 529 

of geographical context. Gains may also be made if it were possible to infer per species 530 

contemporary extinction risk due to anthropogenic change processes (a theme covered at 531 

least partially by Q19), which may also aid conservation strategies (e.g. Qs 42–45). 532 

Several models of island biogeography have either implicitly (the taxon cycle, see 533 

Ricklefs & Bermingham, 2002) or explicitly (the general dynamic model, Whittaker et 534 

al., 2008) related the single island endemic status of species to increased extinction 535 

probability relative to other species on the same island. Thus, question 19 can be 536 

addressed not only in a contemporary conservation context but also in relation to longer-537 

term natural turnover. Although extinction is a difficult parameter to quantify, simply 538 

understanding whether there is a fundamental difference in extinction risk between 539 

endemic and non-endemic species [Q19] would be a significant step forward. 540 

MacArthur and Wilson (1967) expressed their intuition of a negative feedback of 541 

diversity on the accumulation of species on an island [Q20], either through an increased 542 
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extinction rate or through a decreased colonization rate by means of niche saturation by 543 

early colonists. Their argument illustrates the early foundation of a still debated question: 544 

is there a limit to the number of species a given area can sustain? This question has been 545 

the subject of recent discussions (Harmon & Harrison, 2015; Rabosky & Hurlbert, 2015) 546 

and its longevity pertains in part to the difficulty of measuring turnover rates let alone 547 

negative diversity feedbacks on evolutionary processes such as speciation. However, a 548 

number of recent methodological developments (Rabosky, 2006; Etienne et al., 2012; 549 

Valente et al., 2015) promise improved analytical power and have already revealed that 550 

diversity-dependence in both colonization and speciation can potentially be inferred from 551 

empirical data based on island phylogenies (Valente et al., 2015). The issue of diversity-552 

dependence [Q20] is central to understanding island biodiversity dynamics, equilibrium 553 

and biotic interactions on evolutionary time-scales [Q6] and promises to remain a key 554 

topic over at least the next few years. 555 

There is no a single path to extinction, and the role of humans as drivers of 556 

distribution range shifts and extinctions in both recent historical and prehistorical time 557 

has increasingly gained relevance on islands. This significance can be mirrored in the 558 

species listed by the IUCN as extinct, of which 61% were confined to islands (Tershy et 559 

al., 2015), and among the 20 world territories with the highest percentages of extinct and 560 

threatened species in both bird and mammal group lists, 19 and 17 are insular, 561 

respectively (Vié et al., 2009); remarkable statistics given that the 19 bird and 17 562 

mammal territories themselves represent a mere 0.6% and 1.9% of the Earth’s subaerial 563 

landmass, respectively (Vié et al., 2009). Compounding these issues is the unknown 564 

degree to which island taxa have been eliminated as a consequence of human 565 
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colonization of islands and before their scientific documentation [Q21]. For birds in the 566 

Pacific, to take the most infamous example, extrapolations from the relatively small 567 

number of islands studied in detail, suggest that hundreds of undocumented species 568 

extinctions may have taken place following Polynesian colonization (Steadman, 2006), 569 

undermining efforts to estimate natural rates of speciation and extinction from these 570 

insular systems [Q21]. 571 

 572 

Speciation and diversification 573 

Q22. What functional traits (e.g. relating to dispersal capacity, reproduction, trophic 574 

ecology) are associated with high diversification rates within and across island 575 

systems? [# 2; % = 77.9] 576 

Q23. What traits best predict which groups will undergo adaptive radiation on 577 

islands? [# 17; % = 71.1] 578 

Q24. What is the relative importance of ecological versus geographical speciation on 579 

islands? [# 31; % = 67.8] 580 

Q25. What is the influence of gene flow among islands and/or between islands and 581 

mainland areas on speciation rates? [# 19; % = 70.8] 582 

 583 

Spectacular species radiations are perhaps the best known feature of oceanic islands 584 

(Losos & Ricklefs, 2009). However, the majority of lineages either do not diversify at all, 585 

or only to a very limited extent, with high diversification rates typically restricted to a 586 

limited number of lineages within an island or archipelago (for animals see e.g. Ricklefs 587 

& Bermingham, 2007; and Illera et al., 2012; and for plants see e.g. Patiño et al., 2014a). 588 
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Answering the question of why only some lineages diversify is central to a deeper 589 

understanding of island community assembly, the origin of biological diversity in general 590 

[Q22], and adaptive radiations in particular [Q23]. Diversified lineages are often 591 

associated with ecological divergence and adaptive radiation, but non-ecological 592 

mechanisms are also expected in insular settings where the interaction of geology, 593 

topography and climate promote speciation by local geographic isolation [Q24]. 594 

As the number of independent phylogenetic and population genetic studies 595 

increases, comparative analyses can shed light on the functional traits associated with 596 

accelerated diversification rates [Q22]. This approach has recently demonstrated that a 597 

herbaceous dry-fruited ancestral syndrome is frequently associated with diversified plant 598 

lineages across different archipelagos (García-Verdugo et al., 2014). A more complete 599 

understanding of the contribution and functional relevance of speciation to island 600 

community assembly will require not only identifying the traits associated with 601 

diversification, but also the drivers underlying their change, and thus those traits that 602 

underscore adaptive radiation [Q23]. Distinguishing among the drivers of natural 603 

selection, sexual selection and non-selective processes for speciation is not a trivial task, 604 

as multiple drivers may underlie trait divergence. This interconnectedness among the 605 

different drivers of speciation and diversification [Qs 22–24] is exemplified by delphacid 606 

planthoppers of the genus Nesosydne in the Hawaiian islands. The species of Nesosydne 607 

are recognised as an adaptive radiation linked to host plant use, however, sexual selection 608 

and non-selective processes also contribute to reproductive isolation via divergence of 609 

sexual signals (Goodman et al., 2015). Another interesting aspect of trait evolution will 610 
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be to determine whether similar traits promote high diversification rates in both islands 611 

and mainland areas [see Q10]. 612 

Molecular data can provide insight into the importance of geography and gene 613 

flow in the speciation process, both within islands and among islands and mainland areas 614 

[Qs 24, 25]. Intuitively, small amounts of gene flow would seem likely to retard 615 

speciation, but it is increasingly recognised that, at least under some circumstances, 616 

introgression may promote speciation, and that this might be particularly relevant within 617 

insular settings (see Warren et al., 2015; Faria et al., 2016). To understand the influence 618 

of gene flow among islands and mainland areas on speciation rates [Q25], robust 619 

estimates of historical gene flow are required. The advent of high-throughput cost-620 

effective genomic sequencing approaches for non-model organisms will fuel further 621 

advances in our understanding of the interplay between isolation, gene flow and 622 

speciation (e.g. Papadopoulou & Knowles, 2015a). 623 

 624 

Dispersal and colonization 625 

Q26. What is the importance of founder effects for the evolution of island lineages? 626 

[# 8 % = 74.4] 627 

Q27. How frequent is inter-island dispersal and is it enough to form an archipelago-628 

wide metacommunity, or are islands better understood as functionally independent 629 

communities? [# 26 % = 69.1] 630 

Q28. How can palaeoecology contribute to the understanding of species arrival, 631 

establishment and spread on islands? [# 35 % = 66.8] 632 

 633 
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High dispersal rates among islands will push populations toward genetic homogeneity, 634 

whereas low dispersal rates will facilitate divergence among populations on different 635 

islands and high rates of inter-island cladogenetic speciation (Emerson & Faria, 2014). 636 

Despite colonization, establishment and divergence rates being crucial within island 637 

biogeographic theory, both the frequency of dispersal events between islands [Qs 26, 27] 638 

and actual dispersal mechanism responsible for inter-island colonization are unknown for 639 

most species (for plants see Heleno & Vargas, 2015). The arrival of colonizing 640 

propagules to remote islands is intrinsically a rare event and even when they make this 641 

journey, successful colonization is contingent on their reproduction and the establishment 642 

of a viable population, which can be equally challenging. In the extreme, the founder may 643 

be a single gravid female, a female with stored sperm, or a parthenogenetic individual, or 644 

at most, a small group of individuals. Thus, the limited genetic diversity transported by 645 

these individuals may be decisive for the outcome. Theory suggests that such founder 646 

effects may be a driver of insular evolution, speciation and further diversification (e.g. 647 

Mayr, 1954; Carson, 1968; Templeton, 1980), but they may equally select for 648 

evolutionary lineages that are less negatively affected by low genetic variation and 649 

inbreeding. Importantly, and while the relevance of these founder effects can be 650 

particularly clear for the evolution of island lineages [Q26], they can also be highly 651 

relevant for evolution within habitat islands such as caves, lakes or mountain tops (e.g. 652 

Wessel et al., 2013). This may be particularly relevant if reduced dispersal ability is a 653 

characteristic of island lineages in general and highly diversified lineages in particular 654 

[see Qs 11 and 22].  655 
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One of the key attributes that make islands ideal models for ecology and evolution 656 

is their well-defined borders (Whittaker & Fernández-Palacios, 2007). However, most 657 

islands are embedded in regional groups of islands so that the nearest coast is not of a 658 

continent but of another island. In addition, islands of high elevation are environmentally 659 

diverse (at least in climatic regimes) and source regions for potential colonisers can then 660 

differ between habitats (Steinbauer, 2017). Therefore, archipelago configurations and 661 

environmental gradients can blur the lines of what seems the most relevant unit to study 662 

for particular topics within island biology: the archipelago, the island, or ecozones within 663 

the island. Intuitively, the relevance of archipelago-level process will largely depend on 664 

the frequency of inter-island dispersal, so that when dispersal is low, island-level 665 

processes dominate, and when dispersal is high, archipelago-level processes become 666 

increasingly relevant. Ultimately, inter-island dispersal can be so important that single-667 

island populations are better understood in their broader context, as part of an 668 

archipelagic metapopulation (Hanski, 1998). As the empirical observation of inter-island 669 

movements is logistically challenging, population genetic data are particularly valuable 670 

for estimating the frequency of inter-island dispersal and thus for exploring question 27. 671 

Recent studies are providing novel insights in this direction (e.g. García-Verdugo et al., 672 

2014; Garrick et al., 2014; Spurgin et al., 2014; Hendrickx et al., 2015; Vargas et al., 673 

2015; Faria et al., 2016), but more research is needed to generate fine-grained spatial 674 

genetic data within focal archipelagos and to provide general answers. 675 

 Palaeoecology is a field of emerging importance in island biology. Palaeoecology 676 

has been used to understand the consequences of human colonization, frequently 677 

characterised by concomitant waves of extinction (Sadler, 1999; van der Geer et al., 678 
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2016). In addition, climate data have been integrated in attempts to distinguish plant 679 

community compositional changes in response to shifts in climate from those in response 680 

to human activity (e.g. Nogué et al., 2013). Extending the application of palaeoecology to 681 

investigate species arrival, establishment, and spread on islands [Q28] may be more 682 

feasible for species of recent origin, such as those that were introduced by early human 683 

colonizers. However, there is also potential for the analysis of much older native species, 684 

where temporal patterns of trait change can also be integrated [see Q23] to understand 685 

radiations (e.g. DeMiguel, 2016). Finally, alongside palaeoecological techniques, the 686 

emerging field of palaeogenomics, based on the analysis of ancient DNA, can become 687 

increasingly relevant for conservation by informing management and restoration 688 

decisions [see Qs 42–46, below] of island ecosystems under past and present 689 

anthropogenic pressure (e.g. Wilmshurst et al., 2014). 690 

 691 

Island Community Ecology 692 

Community assembly 693 

Q29. How do taxonomic, phylogenetic and functional diversities of island 694 

communities change during assembly and disassembly of island systems? [# 39; % = 695 

65.7] 696 

Q30. How do island area, elevation and isolation influence the community 697 

composition and dynamics of island systems? [# 1; % = 78.9] 698 

Q31. What are the relative roles of island age, phylogenetic group and functional 699 

ecology in determining natural (background) extinction rates among oceanic island 700 

taxa? [# 21; % = 70.5] 701 
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Q32. How does the order of colonization influence emergent outcomes in the 702 

assembly of island biotas? [# 13; % = 72.1] 703 

Q33. How important are rare species for the functioning of island communities? [# 704 

30; % = 67.8] 705 

Q34. How does in situ evolution drive the functioning of island ecosystems? [# 14; % 706 

= 72] 707 

  708 

Comparisons of species richness among islands are evolving with the incorporation of 709 

more informative estimators of diversity using taxonomic, phylogenetic and functional 710 

trait data. How these measures of diversity respond to island ontogenetic change at the 711 

community level, and how they are influenced by other abiotic parameters [Qs 29–31] 712 

remains largely unexplored (but see Santos et al., 2011, 2016a; Whittaker et al., 2014; 713 

Cardoso et al., 2015). The unpredictability that accompanies island assembly by 714 

colonization raises the question of how important colonization order (i.e. priority effects) 715 

may be in explaining assembly patterns on both ecological and evolutionary timescales 716 

[Q32]. For example, for evolutionary patterns of assembly it has been suggested that a 717 

‘founder takes all’ density-dependence principle may account for tendencies towards 718 

monophyly in diverse genera of flowering plants that have diversified in situ on certain 719 

oceanic archipelagos (Silvertown, 2004; Silvertown et al., 2005). In addition, 720 

phylogenetic evidence supports the proposition that a ‘progression-rule’ pattern of 721 

younger species being derived from older species found on successively older islands is 722 

commonplace among oceanic archipelagos (Carstensen et al., 2013; Shaw & Gillespie, 723 

2016).  Waters et al. (2013) suggest that it is likely that dispersal of related lineages is 724 
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ongoing, but that establishment of the first founding lineages effectively reduces the 725 

probability of establishment by subsequent migrants (see also Schaefer et al., 2011). 726 

Extending this logic, one can propose that abundance or range size differences between 727 

functionally similar species may be a consequence of colonization order, although over 728 

longer time scales, taxon cycle dynamics may develop a sequential pattern of 729 

colonization, followed by population expansion and subsequent contraction of range of 730 

earlier colonists (e.g. Wilson, 1961; Ricklefs & Bermingham, 2002; Carstensen et al., 731 

2013; Economo et al., 2015). Given the historical dimension to this topic, comparative 732 

phylogenetic analyses for the estimation of relative colonization times should continue to 733 

be a profitable approach. 734 

The majority of the species on Earth present restricted distributions and/or small 735 

abundances, with comparatively few being cosmopolitan in distribution. Remote islands 736 

possess high numbers of endemic species, which are, by nature of the limited size of 737 

islands, rare in the sense that they have small global ranges. What is less clear is whether, 738 

in the absence of human interference, island endemic species are also rare in terms of 739 

population sizes and local density, which constitutes distinct forms of rarity. The 740 

implications of the potential loss of rare species for other species with which they 741 

interact, and for overall patterns of ecosystem form and function, remain under-742 

researched [Q33], with most illustrations of ecological cascades focussed on a limited 743 

range of vertebrate taxa (e.g. giant tortoise, bird communities), which may well have 744 

originally been rare only in the sense of having restricted ranges. To address this issue 745 

will require better data on species distribution and abundance as well as systematic and 746 
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comprehensive community-level assessments of ecosystem form and function (e.g. 747 

Traveset et al., 2013; Trøjelsgaard et al., 2013). 748 

Similarly, the importance of local assembly and in situ evolution for ecosystem 749 

functioning [Q34] remains underexplored (see Warren et al., 2015). As one of the few 750 

case studies in the literature, Rominger et al. (2016) compiled ecological, genetic and 751 

phylogenetic data from a suite of Hawaiian endemic arthropods across a geological 752 

chronosequence to investigate the relative roles of dispersal and in situ differentiation in 753 

the assembly of plant–herbivore networks. Similar, comparative, plot-based and 754 

experimental approaches to exploit the natural chronosequences provided by oceanic 755 

islands hold promise for addressing questions [e.g. Qs 29, 32] posed in this section 756 

seeking to integrate ecological and evolutionary theory (e.g. Heleno et al., 2010; 757 

Trøjelsgaard et al., 2013).  758 

 759 

Biotic interactions 760 

Q35. How do climate and sea-level changes influence biotic interactions on islands? 761 

[# 18; % = 71] 762 

Q36. How do biotic interactions (within and between trophic levels) influence 763 

immigration, extinction and speciation rates on islands? [# 3; % = 77.2] 764 

 765 

The Quaternary period (the last 2.588 Myr) has been a period of major climatic 766 

fluctuation between glacial and inter-glacial conditions, which have driven associated 767 

eustatic changes in sea-level, with an amplitude of the order of 120–130 m. Interglacial 768 

periods are times of high sea-level stands while the lowest sea-levels are typical of late 769 
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glacial stages (e.g. the Last Glacial Maximum c. 21 ka). These changes result in altered 770 

island area, elevation, and effective degree of isolation, largely in synchrony with 771 

changing regional climate regimes. Indeed, many islands have emerged and submerged, 772 

or joined and been parted from larger land-masses, reiteratively, during this period.  773 

On theoretical grounds, islands affected by such processes are expected to have 774 

shown pulses of enhanced immigration and/or extinction, e.g. with sea-level rise after the 775 

LGM driving pulses of extinction, especially from former land-bridge islands. In turn 776 

these changes must be linked to altered patterns of biotic interaction via competition, 777 

predation, predator-release, altered pollination or dispersal networks [Q35]. Recent 778 

improvements in understanding of both regional climate and sea-level adjustments open 779 

the possibility to search for such effects in the structure of contemporary island biotas. 780 

Conversely, over time, ecological and evolutionary adjustments in biotic interactions can 781 

be expected to alter rates of immigration, extinction and speciation and thus equilibrial 782 

levels of species diversity (Wilson, 1969; Whittaker & Jones, 1994; Gravel et al., 2011) 783 

[Q36], although quantifying such effects remains challenging. Similarly, how those 784 

interactions and dynamics have been and may be modified under future climate change 785 

and, for instance associated sea-level change, is a topic of considerable uncertainty 786 

(Tylianakis, 2009; Montoya & Raffaelli, 2010). In a recent review, Barraclough (2015) 787 

summarises that, among other consequences, ecological interactions among species can 788 

promote evolutionary changes through coevolution, and/or alter evolutionary outcomes 789 

by influencing selection pressures relative to specific abiotic conditions. Such divergent 790 

outcomes depend on species numbers and the distribution of interaction strengths across 791 

the interaction network space.  792 
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 One framework for analysing changes in interaction networks was provided by 793 

Holt (1996, 2009) who put forward a model on the spatial limitations to food web size 794 

and structure, based on Core IBT, called the trophic theory of island biogeography. In a 795 

subsequent development, Gravel et al. (2011) developed a stochastic model of multi-796 

species occupancy dynamics, which showed that trophic interactions could have a 797 

substantial impact on how immigration and extinction rates determine patterns of species 798 

richness on islands. Their model focuses on herbivory or predation, but it does not 799 

consider mutualistic interactions (like pollination or seed dispersal) or host–parasite 800 

interactions, which are crucial for biodiversity maintenance and island colonization. 801 

Nonetheless, Gravel et al. (2011) also found that immigration–extinction dynamics could 802 

promote greater occupancy of generalist versus specialist taxa in small areas. Although 803 

their approach is promising, it relies on mechanistic models for simplifying and linking 804 

whole-community empirical evidence (Barraclough, 2015). Further improvements to 805 

such models, for example, by incorporating mutualistic and/or host-parasite interactions, 806 

will be of value for understanding the role of biotic interactions in island community 807 

assembly. 808 

 809 

Island Conservation and Management 810 

Global change 811 

Q37. How, if at all, do island biotas differ from continental biotas in their response to 812 

global change? [# 32; % = 67.5] 813 

Q38. Are island species more prone to extinction than their closest relatives on the 814 

mainland, and if so, why? [# 4; % = 75.5] 815 
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Q39. How can we identify which island taxa are most at risk from global change and 816 

what are their risk-associated traits? [# 5; % = 75.4] 817 

Q40. What determines anthropogenic extinction rates among island taxa? [# 25; % = 818 

69.7] 819 

Q41. How do anthropogenic changes within islands impact on the capacity of island 820 

species to respond successfully to climate change? [# 44; % = 65.3] 821 

 822 

The Earth’s ecosystems and their biotas are increasingly transformed by direct and 823 

indirect human pressures (e.g. Barnosky et al., 2012), a process particularly evident on 824 

many islands (Caujapé-Castells et al., 2010; Kueffer & Kaiser-Bunbury, 2014; Tershy et 825 

al., 2015). Thus, it remains crucial to better understand how island systems may respond 826 

to anthropogenic threats such as habitat loss, biological invasion and climate change. This 827 

urgency is clearly captured by our survey-based approach, with the two first questions of 828 

this subsection focusing on how island and continental biotas differ in their response to 829 

global-change processes in which humans are increasingly dominant [Qs 37, 38]. Island 830 

organisms are often characterized by globally small population sizes, limited 831 

geographical distribution ranges, and endemics of narrow distribution, driven by limited 832 

habitat availability and unique traits resulting from prolonged evolutionary isolation (e.g. 833 

Whittaker & Fernández-Palacios, 2007). It is generally thought that these features, in 834 

combination with multiple anthropogenic change agents on islands, combine to make 835 

island species more prone to human-induced extinction than their continental 836 

counterparts [Qs 37, 38]. Despite long-standing hypotheses (e.g. Elton, 1958), most 837 

studies have focussed either on island or continental systems, and more comparative 838 
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studies are urgently needed, to provide better resolution on levels of island endangerment 839 

and the specific factors and combinations of them that drive extinction risk (but see e.g. 840 

Bowen & Vuren, 1997; Siliceo & Díaz, 2010; Traveset et al., 2016). 841 

Despite the increasing interest in species responses to ongoing global change, 842 

current predictions and conclusions greatly vary among regions and taxa (e.g. Urban, 843 

2015). Rising rates of extinction create an urgent need to identify the traits and 844 

mechanisms that render species vulnerable to extinction [Qs 39, 40], by answering 845 

questions such as to what extent phylogenetic lineages are equally at risk from the same 846 

anthropogenic threats (e.g. Ducatez & Shine, 2016). Although some traits (e.g. large-847 

bodied animals, flightlessness, strong ecological specialization) have been associated 848 

with species rarity and their proneness to extinction (e.g. Boyer, 2008; Kirkpatrick & 849 

Peischl, 2012; Illera et al., 2016), case studies document that adaptive mechanisms can 850 

counter the genetic disadvantages associated with small population sizes, rescuing 851 

species from the negative consequences of anthropogenic environmental change (e.g. 852 

Lavergne et al., 2012). Therefore, studies that identify the level of risk that global change 853 

poses to species and the specific traits that contribute to extinction risk on islands should 854 

remain a priority [Qs 39, 40], with a particular focus on how climate change may interact 855 

with other threat factors [Q41]. Gaining such information can help identify, forecast and 856 

mitigate anthropogenic threats, ultimately leading to the development of more cost-857 

effective preventative and management strategies (Cardillo & Meijaard, 2012). 858 

 859 

Conservation and management policies 860 
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Q42. How can we identify islands that are more susceptible to biodiversity loss in the 861 

coming decade, and what are the most efficient and cost-effective methods (i.e. 862 

policy; education; research; management) for safeguarding their biodiversity? [# 6; % 863 

= 75.3] 864 

Q43. What are the best strategies for in situ conservation of island species impacted 865 

by non-native species? [# 16; % = 71.6] 866 

Q44. What are the most effective methods for responding to the anthropogenic 867 

extinction crisis on islands? [# 29; % = 68.3] 868 

Q45. How can we best implement long-term monitoring schemes on islands to 869 

provide quantitative evidence of changes within island ecological systems? [# 36; % 870 

= 66.7] 871 

Q46. How can conservation interests best be integrated with other island stakeholder 872 

interests (particularly tourism) on populated islands? [# 41; % = 65.3] 873 

 874 

Whereas island biologists are well aware that solutions to island conservation problems 875 

require broad interdisciplinary approaches (Kingsford et al., 2009), the questions in this 876 

and the next section [Qs 42–50] are deliberately oriented to scientific issues within island 877 

biology that may inform management strategies [Q42]. While the impacts of non-native 878 

species [Q43, see also Qs 47–50] are not unique to islands, remote islands provide some 879 

of the most familiar and dramatic cases (e.g. the impact of brown tree snake on Guam, 880 

and of rats, cats, rabbits, mongoose and goats on many islands), with much recent effort 881 

devoted to developing effective control and eradication methods that minimize non-target 882 

effects [Qs 42–46]. The scale of the problem is such that, despite notable successes (see 883 
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e.g. Olivera et al., 2010; Rivera-Parra et al., 2012; Nogales et al., 2013; Stokstad, 2013; 884 

Robinson & Copson, 2014), increased efforts are evidently needed. The integration of 885 

biodiversity conservation goals with those of other stakeholders [Qs 42, 46] is an area 886 

where much less published work exists and the potential for political conflict is rife (e.g. 887 

Fernández‐Palacios & de Nascimento, 2011; Fernandes et al., 2015), but in which the 888 

engagement of biologists with other specialists in the development of strategies and 889 

monitoring of impacts is surely crucial (e.g. Gil et al., 2011; Bentz et al., 2013). 890 

 891 

Invasive alien species 892 

Q47. What are the impacts of novel biotic interactions between and among alien and 893 

native species on island biodiversity and ecosystem functioning? [# 10; % = 73.3] 894 

Q48. How does the invasion stage (i.e. colonization, establishment, and long-term 895 

adaptation) of alien taxa affect distribution ranges and biotic interactions of native 896 

insular biotas? [# 24; % = 69.8] 897 

Q49. To what extent can alien species act as functional substitutes for extinct native 898 

species on islands? [# 40; % = 65.5] 899 

Q50. How do the ecological effects of introduced species differ from those of 900 

naturally arriving colonist species on islands? [# 34; % = 66.9] 901 

 902 

Biotic invasions constitute one of the greatest threats to island native biodiversity (e.g. 903 

Caujapé-Castells et al., 2010; Kueffer et al., 2010; McCreless et al., 2016). Given their 904 

geographic isolation, replicated numbers and discrete zonal ecosystems, islands are 905 

model systems for understanding how biological invasions affect community structure 906 
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and ecosystem function, eventually leading to more efficient conservation and 907 

management strategies. A major challenge and a priority in island conservation is to 908 

better understand the responses of ecosystems (Kueffer et al., 2010) and, particularly, 909 

biotic interactions networks (Sax & Gaines, 2008; Heleno et al., 2013) to invasion [Q47]. 910 

It has been proposed that the underlying determinants and subsequent outcomes of 911 

invasions may vary depending on the invasion stage (i.e. the introduction–naturalization–912 

invasion continuum; for a review see Richardson & Pyšek, 2012). Little is known (but 913 

see Traveset et al., 2013) about how the different invasion stages negatively impact 914 

geographic distributions and biotic interactions of native insular biotas [Q48]. With a 915 

majority of the economic and practical efforts focused on the ‘invasion’ stage 916 

(Richardson & Pyšek, 2012), research that broadens and improves our understanding of 917 

the factors implicated in the establishment and naturalization of introduced organisms 918 

[Q48] will have important consequences for the management and control of biological 919 

invasions on islands. 920 

Following the logic of MacArthur and Wilson (1967; see also the ‘saturation 921 

point’ proposed by Sax & Gaines, 2008), the natural and/or anthropogenic addition of 922 

new colonizers can potentially result in the local extinction of measurable numbers of 923 

native species, with knock-on consequences for ecosystem functions performed by lost 924 

species (e.g. McConkey & Drake, 2006). More information is needed on the functional 925 

roles played by alien species on islands and the extent to which some may become 926 

effective substitutes for extinct native species [Q49] (Traveset et al., 2013). The existing 927 

literature shows a clear bias towards certain taxonomic groups (for birds, see e.g. Heleno 928 

et al., 2013) and the limited evidence to date suggests that introductions rarely fully 929 
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compensate the functional roles of lost native species (Sobral et al., 2016; but see Olesen 930 

et al., 2002). Studies in which the effects of new natural colonizers and those introduced 931 

by humans are compared [Q50] remain virtually absent, due at least in part to the 932 

difficulties in defining nativeness in organisms for which there is no historical (e.g. fossil, 933 

observation) and/or molecular evidence (e.g. Essl et al., 2015; Patiño & Vanderpoorten, 934 

2015). 935 

 936 

 937 

DISCUSSION 938 

 939 

We conducted this horizon-scanning exercise to help advance the field of island biology 940 

through the identification of 50 key questions to coincide with the 50th anniversary of 941 

MacArthur and Wilson’s seminal monograph. The intention was to generate and select 942 

questions of broad scope, answerable through realistic research approaches. Although 943 

updates of the present list of questions will be necessary in the coming years, we hope 944 

that this contribution will supplement recent efforts to pinpoint challenges and advances 945 

in island biology research (e.g. Fernández-Palacios et al., 2015; Warren et al., 2015; 946 

Borges et al., 2016; Borregaard et al., 2016; Santos et al., 2016b), as it captures many of 947 

the top issues and challenges identified as cross-cutting subject areas. Such a multilateral 948 

approach may foster the formation of interdisciplinary networks formed by island 949 

ecologists, evolutionary biologists, managers and policy makers. 950 

 It is clear that addressing many of the 50 questions will benefit from an 951 

interdisciplinary and integrative approach. To take one methodological area as 952 
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illustrative, phylogenetics has been a core element within research across the first three 953 

subject areas of our study. It features explicitly within five questions [Qs 1, 3, 16, 29, 31], 954 

and is implicit within many others [e.g. Qs 7, 18, 20, 32]. As the number of published 955 

phylogenies increases, researchers will likely find new ways to exploit them, and novel 956 

approaches published in recent years (e.g. Ronquist & Sanmartín, 2011) provide a firm 957 

foundation for continued advances. We suggest that the field is likely to see increased 958 

efforts to integrate across large numbers of independent phylogenies to address 959 

macroecological and macroevolutionary questions in island biology.  960 

Despite the long and critical influence of islands on ecological and evolutionary 961 

theories, the focus of efforts has typically remained limited to the scale of individual 962 

islands or single archipelagos. In the coming years, the analysis of biogeographical 963 

dynamics performed through the comparative study of multiple archipelagos may provide 964 

us with a better understanding of the regulation of biodiversity at higher levels of spatial 965 

organization (e.g. Price & Wagner, 2011; Cabral et al., 2014; Triantis et al., 2015). To 966 

achieve this will require suitable comparable data across islands and archipelagos, and it 967 

is here that we believe that much progress can be made over the next 50 years. Coarse-968 

grained analyses of island-scale biota such as those of Price and Wagner (2011), Cabral 969 

et al. (2014), Patiño et al. (2014b) and Triantis et al. (2015) can reveal recurrent patterns 970 

that either invoke or suggest process-based explanations. We predict that analogous but 971 

spatially fine-grained comparative analyses across islands and archipelagos will prove 972 

equally enlightening. Recent plot- or site-based approaches among and within habitats 973 

within islands (e.g. Heleno et al., 2010; Emerson et al., 2017), among islands (e.g. 974 

Rominger et al., 2016) and among archipelagos (Cicconardi et al., 2017) offer useful and 975 

42 



powerful frameworks. The key will be to coordinate across geographic regions to 976 

generate comparable data through replicated (or at least comparable) sampling. Such 977 

sampling can be directed towards questions from across the four subject areas within 978 

which the 50 questions have been grouped, with the importance for conservation and 979 

management having already been demonstrated (Heleno et al., 2010). Such sampling 980 

calls for increased connectivity among research programs. This is in itself a logistical and 981 

financial challenge, but with the potential for high rewards. 982 

The 50 fundamental questions identified in this paper emphasize the potential for 983 

island biology to inspire and guide empirical, theoretical and applied research questions 984 

related to ecological, evolutionary and conservation science. We hope that this first list of 985 

questions compiled under the legacy of MacArthur and Wilson’s Theory of Island 986 

Biogeography Theory provides a source of inspiration for constructive discussions about 987 

the future agenda of island research and a fruitful arena for the coming generations of 988 

island biologists. 989 

 990 
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Figure 1 Conceptual scheme showing the procedure used to identify the 50 fundamental questions in island biology (50FQIB). 1564 
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