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ABSTRACT
Inspiraling binary neutron stars are expected to be one of the most significant sources of gravitational-wave

signals for the new generation of advanced ground-based detectors. We investigate how well we could hope to
measure properties of these binaries using the Advanced LIGO detectors, which began operation in September
2015. We study an astrophysically motivated population of sources (binary components with masses 1.2 M�–
1.6 M� and spins of less than 0.05) using the full LIGO analysis pipeline. While this simulated population
covers the observed range of potential binary neutron-star sources, we do not exclude the possibility of sources
with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical
that analyses account for the full range of possible mass and spin configurations. We find that conservative prior
assumptions on neutron-star mass and spin lead to average fractional uncertainties in component masses of
∼ 16%, with little constraint on spins (the median 90% upper limit on the spin of the more massive component is
∼ 0.7). Stronger prior constraints on neutron-star spins can further constrain mass estimates, but only marginally.
However, we find that the sky position and luminosity distance for these sources are not influenced by the
inclusion of spin; therefore, if LIGO detects a low-spin population of BNS sources, less computationally
expensive results calculated neglecting spin will be sufficient for guiding electromagnetic follow-up.
Subject headings: gravitational waves – methods: data analysis – stars: neutron – surveys

1. INTRODUCTION
As we enter the advanced-detector era of ground-based

gravitational-wave (GW) astronomy, it is critical that we un-
derstand the abilities and limitations of the analyses we are
prepared to conduct. Of the many predicted sources of GWs,
binary neutron star (BNS) coalescences are paramount; their
progenitors have been directly observed Lorimer (2008), and
the advanced detectors will be sensitive to their GW emission
up to ∼ 400 Mpc away (Abbott et al. 2016a).

When analyzing a GW signal from a circularized compact
binary merger, strong degeneracies exist between parame-
ters describing the binary (e.g., distance and inclination). To
properly estimate any particular parameter(s) of interest, the
marginal distribution is estimated by integrating the joint pos-
terior probability density function (PDF) over all other parame-
ters. In this work we sample the posterior PDF using software
implemented in the LALINFERENCE library (Veitch et al.
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2015), specifically we use results from LALINFERNCE_NEST
(Veitch and Vecchio 2010), a nest sampling algorithm (Skilling
2006), and LALINFERENCE_MCMC (Christensen et al. 2004;
Röver et al. 2006; van der Sluys et al. 2008), a Markov-chain
Monte Carlo algorithm (Gregory 2005, chapter 12).

Previous studies of BNS signals have largely assessed pa-
rameter constraints assuming negligible neutron-star (NS) spin,
restricting models to nine parameters. This simplification has
largely been due to computational constraints, but the slow
spin of NSs in short-period BNS systems observed to date
(e.g., Mandel and O’Shaughnessy 2010) has also been used for
justification. However, proper characterization of compact bi-
nary sources must account for the possibility of non-negligible
spin, otherwise parameter estimates will be biased (Buonanno
et al. 2009; Berry et al. 2015). This bias can potentially lead
to incorrect conclusions about source properties, and even
misidentification of source classes.

Numerous studies have looked at the BNS parameter esti-
mation abilities of ground-based GW detectors such as the
Advanced Laser Interferometer Gravitational-Wave Observa-
tory (aLIGO; Aasi et al. 2015) and Advanced Virgo (AdV;
Acernese et al. 2015) detectors. Nissanke et al. (2010, 2011)
assessed localization abilities on a simulated non-spinning
BNS population. Veitch et al. (2012) looked at several poten-
tial advanced-detector networks and quantified the parameter-
estimation abilities of each network for a signal from a fiducial
BNS with non-spinning NSs. Aasi et al. (2013) demonstrated
the ability to characterize signals from non-spinning BNS
sources with waveform models for spinning sources using
Bayesian stochastic samplers in the LALINFERENCE library
(Veitch et al. 2015). Hannam et al. (2013) used approximate
methods to quantify the degeneracy between spin and mass es-
timates, assuming the compact objects’ spins are aligned with
the orbital angular momentum of the binary (but see Haster
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2 Farr et al.

et al. 2015). Rodriguez et al. (2014) simulated a collection
of loud signals from non-spinning BNS sources in several
mass bins and quantified parameter estimation capabilities in
the advanced-detector era using non-spinning models. Chatzi-
ioannou et al. (2015) introduced precession from spin–orbit
coupling and found that the additional richness encoded in
the waveform could reduce the mass–spin degeneracy, helping
BNSs to be distinguished from NS–black hole (BH) binaries;
Littenberg et al. (2015) conducted a similar analysis of a large
catalog of sources and found that it is difficult to infer the pres-
ence of a mass gap between NSs and BHs (Özel et al. 2010;
Farr et al. 2011; Kreidberg et al. 2012), although this may
still be possible using a population of a few tens of detections
(Mandel et al. 2015). Finally, Singer et al. (2014) and the
follow-on Berry et al. (2015) represent an (almost) complete
end-to-end simulation of BNS detection and characterization
during the first 1–2 years of the advanced-detector era. These
studies simulated GWs from an astrophysically motivated BNS
population, then detected and characterized sources using the
search and follow-up tools that are used for LIGO–Virgo data
analysis (Aasi et al. 2014; Abbott et al. 2016c). The final stage
of the analysis missing from these studies is the computation-
ally expensive characterization of sources while accounting
for the compact objects’ spins and their degeneracies with
other parameters. The present work is the final step of BNS
characterization for the Singer et al. (2014) simulations using
waveforms that account for the effects of NS spin.

We begin with a brief introduction to the source catalog used
for this study and Singer et al. (2014) in section 2. Then, in
section 3 we describe the results of parameter estimation from
a full analysis that includes spin. In section 3.1 we look at
mass estimates in more detail, and spin-magnitude estimates in
section 3.2. In section 4 we consider the estimation of extrinsic
parameters: sky position (section 4.1) and distance (section
4.2), which we do not expect to be significantly affected by the
inclusion of spin in the analysis templates. We summarize our
findings in section 5. A comparison of computational costs
for spinning and non-spinning parameter estimation is given
in appendix A.

2. SOURCE SIMULATION AND SELECTION
We have restricted our study to the first year of the advanced-

detector era, using the same 250 simulations that Singer et al.
(2014) analysed with non-spinning parameter estimation. For
these, Gaussian noise was generated using the ‘early’ 2015
aLIGO noise curve found in Barsotti and Fritschel (2012). Ap-
proximately 50,000 BNS sources were simulated, using the
SpinTaylorT4 waveform model (Buonanno et al. 2003, 2009), a
post-Newtonian inspiral model that includes the effects of pre-
cession, to generate the GW signals. Component masses were
uniformly distributed between 1.2 M� and 1.6 M�, which
reflects the range of observed BNS masses (Özel et al. 2012).
Component spins were isotropically oriented, with magnitudes
χ1,2 = c|S1,2|/Gm2

1,2 drawn uniformly between 0 and 0.05;
here |S1,2| are the NSs’ spin angular momenta and m1,2 their
mass, the indices 1 and 2 correspond to the more and less
massive components of the binary, respectively. The range of
simulated spin magnitudes was chosen to be consistent with
the observed population of short-period BNS systems, cur-
rently bounded by PSR J0737−3039A (Burgay et al. 2003;
Brown et al. 2012) from above. Finally, sources were dis-
tributed uniformly in volume (i.e. uniform in distance cubed)
to a maximum distance at which the loudest signal would pro-

duce a network signal-to-noise ratio (S/N) of ρnet = 5 (Singer
et al. 2014), where ρnet =

∑
i ρ

2
i is the individual detector S/Ns

ρi combined in quadrature.
Of this simulated population, detectable sources were se-

lected using the GSTLAL_INSPIRAL matched-filter detection
pipeline (Cannon et al. 2012) with a single-detector S/N
threshold ρ > 4 and false alarm rate (FAR) threshold of
FAR < 10−2 yr−1. The FAR for real detector noise is largely
governed by non-stationary noise transients in the data that can
mimic GWs from compact binary mergers, which Berry et al.
(2015) demonstrate make negligible difference to parameter
estimation for the (low-FAR, BNS) signals considered here.
Because our simulated noise is purely stationary and Gaussian
with no such artifacts, FAR estimates are overly optimistic.
To compensate, an additional threshold on the network S/N
of ρnet > 12 was applied. This S/N threshold is consistent
with the above FAR threshold when applied to data similar to
previous science runs (Abbott et al. 2016a; Berry et al. 2015).
A random subsample of 250 detections were selected for pa-
rameter estimation with LALINFERENCE.11 This mass and
spin distributions of this subset is statistically consistent with
those the sources were drawn from (Berry et al. 2015). See
Singer et al. (2014) for more details regarding the simulated
data and GSTLAL_INSPIRAL analyses.

3. SPINNING ANALYSIS
Singer et al. (2014) details the detection, low-latency local-

ization, and medium-latency (i.e. non-spinning) follow-up of
the simulated signals in 2015. In this work we perform the ex-
pensive task of full parameter estimation that accounts for non-
zero compact-object spin. Whereas Singer et al. (2014) used
the (non-spinning) TaylorF2 waveform model, we make use
of the SpinTaylorT4 waveform model (Buonanno et al. 2003,
2009), parameterized by the fifteen parameters that uniquely
define a circularized compact binary inspiral.12

We assume the objects to be point masses with no tidal
interactions. The estimation of tidal parameters using post-
Newtonian approximations is rife with systematic uncertainties
that are comparable in magnitude to statistical uncertainties
(Yagi and Yunes 2014; Wade et al. 2014). Though marginaliz-
ing over uncertainties in tidal parameters can affect estimates
of other parameters, the fact that tidal interactions only impact
the evolution of the binary at late times (only having a mea-
surable impact at frequencies above ∼ 450 Hz; Hinderer et al.
2010) limits both their measurability and the resulting biases
in other parameter estimates caused by ignoring them Damour
et al. (2012).

The simulated population of BNS systems contains slowly
spinning NSs, with masses between 1.2 M� and 1.6 M� and
spin magnitudes χ < 0.05. This choice was motivated by the
characteristics of NSs found thus far in Galactic BNS systems
expected to merge within a Hubble time through GW emission.
However, NSs outside of BNS systems have been observed
with spins as high as χ = 0.4 (Hessels et al. 2006; Brown et al.
2012), and depending on the NS equation of state (EOS) could
theoretically have spins as high as χ. 0.7 (Lo and Lin 2011)

11 The mean (median) ρnet of the set of 250 events is 16.7 (14.6).
12 The fifteen parameters are two masses (either component masses or

the chirp mass and mass ratio); six spin parameters describing the two spins
(magnitudes and orientations); two coordinates for sky position; distance; an
inclination angle; a polarization angle; a reference time, and the orbital phase
at this time (see Veitch et al. 2015, for more details). The masses and spins
are intrinsic parameters which control the evolution of the binary, the others
are extrinsic parameters which describe its orientation and position.
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without breaking up. For these reasons, the prior assumptions
used for Bayesian inference of source parameters are more
broad than the spin range of the simulated source population.

To simulate a real analysis scenario where the class of com-
pact binary and the NS EOS are not known, we use uniform
priors in component masses between 0.6 M� and 5.0 M� to
avoid any prior constraints on mass posteriors, and our standard
BH spin prior: uniform in spin magnitudes χ1,2 ∼U(0,1) and
isotropic in spin orientation. Prior distributions for the location
and orientation of the binary match that of the simulated popu-
lation, i.e. isotropically oriented and uniform in volume (out to
a maximum distance of 218.9 Mpc, safely outside the detection
horizon, which is ∼ 137 Mpc for a 1.6 M�–1.6 M� binary).13

Choosing any particular upper bound for spin magnitude would
require either assuming hard constraints on NS spin-up, which
are based upon observations with hard-to-quantify selection
effects, or making assumptions regarding the unknown EOS
of NSs. For these reasons we choose not to rule out compact
objects with high spin a priori by using an upper limit of χ< 1,
encompassing all allowed NS and BH spins. In section 3.3
we look at more constraining spin priors, and particularly how
such choices can affect mass estimates.

We describe parameter-estimation accuracy using several
different quantities, depending upon the parameter of interest.

• Simplest is the fractional uncertainty σx/〈x〉, where σx
and 〈x〉 are the standard deviation and mean of the distri-
butions for parameter x respectively. This is particularly
useful for showing how uncertainty scales with S/N: in
the limit of high S/N, the standard deviation can be ap-
proximated from the (inverse) Fisher matrix and scales
inversely with the S/N (Vallisneri 2008).

• The credible interval CIx
p in the range that contains

the central p of the integrated posterior, with (1 − p)/2
falling both above and below the limits (Aasi et al. 2013).
Specifying the credible interval for several values of p
gives information about the shape of the posterior.

• As an alternative to credible intervals, we use credible
upper or lower bounds. These are the one-sided equiv-
alents of credible intervals, and are useful for distribu-
tions that are peaked towards one end of the parameter
range or for parameters we are interested in putting a
limit upon (the spin magnitude satisfies both of these
criteria).

• For sky-localization, we use credible regions (the two-
dimensional generalization of the credible interval)
which are the smallest sky area that encompasses a given
total posterior probability. The credible region for a total
posterior probability p is defined as

CRp = argmax
A

∫
A

dΩPΩ(Ω), (1)

where PΩ(Ω) is the posterior PDF over sky position Ω,
and A is the sky area integrated over (Sidery et al. 2014).
We also consider the searched area A∗, the area of the
smallest credible region that includes the true location.

To check that differences between our spinning and non-
spinning analyses were a consequence of the inclusion of spin

13 The mean (median) true distance for the set of 250 events is 52.1 Mpc
(47.8 Mpc), and the maximum is 124.8 Mpc.

and not because of a difference between waveform approxi-
mants, we also ran SpinTaylorT4 analyses with spins fixed to
χ1, 2 = 0. There were no significant differences in parameter
estimation between the non-spinning TaylorF2 and zero-spin
SpinTaylorT4 results for any of the quantities we examined.14

Therefore, we only use the TaylorF2 results to illustrate the
effects of neglecting spin.

3.1. Mass Estimates
To maximize sampling efficiency, model parameterizations

are chosen to minimize degeneracies between parameters. To
leading order, the post-Newtonian expansion of the wave-
form’s phase evolution depends on the chirp mass, Mc =
(m1m2)3/5(m1 + m2)−1/5, making it a very well constrained pa-
rameterization of binary mass. The second mass parameter
used is the mass ratio q = m2/m1, where 0< q≤ 1. Detectors
are much less sensitive to the mass ratio, and strong degen-
eracies with spin make constraints on q even worse (Cutler
and Flanagan 1994). It is primarily the uncertainty in q that
governs the uncertainty in component masses m1 and m2.

Figure 1 shows the superimposed, one-dimensional marginal
posterior PDFs and cumulative density functions (CDFs) for
the chirp mass (centered on each mean) and mass ratio for
all 250 events. As a representation of a typical event’s poste-
rior distribution, we show the average PDFs and CDFs, where
the average is taken over all 250 posterior PDFs and CDFs at
each point. Chirp-mass distributions are usually well approx-
imated by normal distributions about the mean, while mass
ratio estimates have broad support across most of the prior
range, whereas the simulated population had a narrower range
between 0.75 and 1.

To trace individual parameter uncertainties across the pop-
ulation we use the fractional uncertainties in chirp mass
σMc/〈Mc〉 and mass ratio σq/〈q〉. The chirp mass and mass
ratio conveniently cover mass space (which is why they are
used for sampling), but the total mass M = m1 +m2 is also of in-
terest for determining the end product of the merger, so we also
plot the fractional uncertainty σM/〈M〉. The mean (median)
fractional uncertainties in chirp mass, mass ratio and total mass
for the simulated population are 0.0676% (0.0642%), 28.7%
(28.4%) and 6.15% (5.81%) respectively. For comparison, the
mean (median) fractional uncertainties in chirp mass, mass ra-
tio and total mass from the non-spinning analysis are 0.0185%
(0.0165%), 8.90% (8.79%) and 0.542% (0.491%) respectively.
We further examine the impact of spin on mass measurements
in section 3.3.

The fractional uncertainties for the chirp mass, mass ratio
and total mass all decrease as S/N increases, as shown in Fig-
ure 2, which also shows results from the non-spinning analysis.
As expected from Fisher-matrix studies (e.g., Finn and Cher-
noff 1993), most appear to be inversely proportional to the
S/N: the exception is σq/〈q〉 from the spinning analysis, which

14 Using as an example the chirp mass, the most precisely inferred parame-
ter, we can compare the effects of switch from a non-spinning to a spinning
analysis to those from switching waveform approximants by comparing the
difference the posterior means 〈Mc〉. The difference between means from the
SpinTaylorT4 analyses with and without spin, is an order of magnitude greater
than the difference between the zero-spin SpinTaylorT4 and TaylorF2 anal-
yses: defining the log-ratio ξ = log10(|〈Mc〉S −Mc〉0|/|〈Mc〉NS −Mc〉0|),
where the superscripts S, 0 and NS indicates results of the fully spinning
SpinTaylorT4, the zero-spin SpinTaylorT4 and the non-spinning TaylorF2
analyses respectively, the mean (median) value of ξ is 0.90 (1.04), and 92.4%
of events have ξ > 0 (indicating that the shift in the mean from introducing
spin is larger than the shift from switching approximants).
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better fit as ∝ ρ−1/2
net . We do not suspect there is anything fun-

damental about the ∝ ρ−1/2
net , rather it is a useful rule-of-thumb.

The behaviour can still be understood from a Fisher-matrix
perspective, which predicts a Gaussian probability distribution
(with width ∝ ρ−1

net). Since the mass ratio is constrained to be
0≤ q≤ 1, if the width of a Gaussian is large, it is indistinguish-
able from a uniform distribution and the standard deviation
tends to a constant 1/

√
12 ' 0.289. When the width of the

Gaussian is small (. 0.1), the truncation of the distribution is
negligible and the standard deviation behaves as expected, as is
the case for the non-spinning results. The standard deviations
obtained for the spinning runs lie in the intermediate regime,
between being independent of S/N and scaling inversely with
it (cf. Littenberg et al. 2015); the mean (median) standard
deviation σq is 0.182 (0.183).15 The mass–spin degeneracy
broadens the posteriors for both the chirp mass, the mass ratio
and the total mass; a consequence of the broadening for the
mass ratio is that the uncertainty does not decrease as rapidly
with S/N (over the range considered here).

Projecting the tightly constrained chirp mass and poorly con-
strained mass ratio 90% credible region fromMc–q space into
component-mass space makes it obvious how important mass-
ratio uncertainties are for extracting astrophysical information.
The credible regions in component-mass space are narrow ba-
nanas that lie along lines of constant chirp mass, bounded by
the constraints on mass ratio (see Figure 5 for some examples
posteriors).

3.2. Spin Estimates
We now look at the constraints placed on the spin of the

slowly spinning simulated BNS sources. Even though the sim-
ulations occupy a small fraction of the spin-magnitude prior
volume, most posterior distributions span the majority of the
prior range. For non-precessing systems, where the orbital
plane is stationary with respect to the line-of-sight, varying the
spin of the compact objects has a similar effect on the phase
evolution of the GW as varying the mass ratio. This results in
a strong degeneracy between the two parameters. Modulation
of the GWs from precession of the orbital plane can break this
degeneracy (Vecchio 2004; Lang and Hughes 2006; Vitale et al.
2014; Chatziioannou et al. 2015); however, only systems with
large spins that are misaligned with the orbital angular momen-
tum significantly precess. Non-precessing systems, with either
low or aligned spins, suffer the most from this degeneracy as
the only information regarding the mass and spin is encoded
in the phase of the GW. The simulated sources in this study
fall in the latter category of low spins. Figure 3 shows the
distribution of Gaussian kernel density estimates of the PDFs
for the spin of the most and least massive components, χ1 and
χ2, respectively. The labeled regions of figure 3 bound the
specified percent of PDFs as a function of spin, where the 90%
region, for example, is bounded by the 5th and 95th percentiles
of the PDFs at each spin value.

The spin of the more massive component has a larger effect
on the GW, and is therefore systematically better constrained,
as seen in Figure 3. For both spins, however, the posterior
shows slow spins to be only slightly more probable than high
spins for most sources. The mean (median) 50% upper limits

15 The uncertainty for the symmetric mass ratio η = m1m2/(m1 + m2)2,
which is constrained to be 0≤ η ≤ 1/4, does scale approximately as ρ−1

net. The
mean (median) standard deviation ση for the spinning runs is 2.00× 10−2

(1.95×10−2).

on χ1 and χ2 are 0.319 (0.302) and 0.424 (0.419) respectively;
the 90% upper limits are 0.707 (0.699) and 0.855 (0.859).

3.3. Prior Constraints on Spin
Since spin is largely degenerate with mass ratio, and spin

is expected to be small for BNS sources, it is interesting to
ask how the mass constraints are affected by making stronger
prior assumptions about the spin of NSs. First, we make the
extreme assumption that NSs have negligible spin, as was
done in Singer et al. (2014) and Berry et al. (2015). Figure 4
compares the distribution of (fractional) uncertainties in chirp-
mass, mass-ratio and total-mass estimates for the spinning and
non-spinning analyses. The average fractional uncertainties
from the non-spinning analysis are a factor of ∼ 3–4 smaller
than the uncertainties from a spinning analysis in the case of
Mc and q, and about an order of magnitude smaller for the
total mass.

Figure 5 compares cartoon 90% credible regions in
component-mass space of 5 chosen simulated signals (Hannam
et al. 2013; Chatziioannou et al. 2015, cf.). As a consequence
of the difficulty of estimating the narrow and nonlinearly cor-
related credible regions in m1–m2 space, we illustrate the cred-
ible regions in m1–m2 space as the projection of a rectangular
region inMc–q space. To define the rectangular region we
use 90% credible intervals of the one-dimensional posterior
PDFs of Mc and q; for Mc we use the central 90% credi-
ble interval (5th to 95th percentile), and for q the upper 90%
credible interval (10th to 100th percentile). These differing
credible intervals were chosen to better summarize the one-
dimensional posterior PDFs, which are typically normal for
Mc and skewed toward high values for q (see figure 1).

We can investigate the impact of stronger prior assumptions
regarding the maximum spin of NSs on mass estimates by dis-
carding posterior samples above a given spin. Figure 6 shows
the cumulative distribution of lower 90% bounds on the esti-
mates of m2 among the 250 simulated sources for spin priors
of χ1, 2 ≤ {1,0.7,0.4,0}. χ1, 2 < 1 and χ1, 2 = 0 correspond
to the spinning and non-spinning analyses described above.
χ < 0.7 is consistent with the NSs remaining intact for most
proposed non-exotic EOSs. χ < 0.4 is consistent with the spin
of observed, isolated NSs to date.

From these PDFs, it is clear that fairly strong prior assump-
tions on NS spin are required to significantly impact mass
constraints. Assuming NSs to be spinning with χ1, 2 ≤ 0.4 a
priori only constrains masses by an extra few percent compared
to allowing them to have χ1, 2 ≤ 1.

4. SOURCE LOCATION
Having discussed how GW observations can measure the

intrinsic properties of their source systems, we now consider
the measurement of extrinsic parameters, specifically the sky
position (section 4.1) and the distance (section 4.2). These
are central to the success of multimessenger astronomy. The
sky position is required in order to direct telescopes for elec-
tromagnetic (EM) follow-up and to verify that any observed
transients do coincide with the source of the gravitational
waves. The distance also aids electromagnetic follow-up as it
allows cross-reference with galaxy catalogs to find the most
probable source locations (Nissanke et al. 2013; Hanna et al.
2014; Fan et al. 2014; Blackburn et al. 2015). Even without an
observed counterpart, the posterior for the (three-dimensional)
position allows us to assign a probability that the source re-
sides in given galaxies; combining the redshift of these galaxies
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Figure 1. Superimposed posterior probability density (top) and cumulative density (bottom) functions for the chirp mass and mass ratio of all spinning analyses.
The solid lines show the average distribution for the simulated population. The chirp-mass distributions have been centered on the distributions’ means to highlight
their consistent morphology.

(measured electromagnetically) with the gravitational-wave
luminosity distance gives a measure of the Hubble constant
free of the usual systematics (Schutz 1986; Del Pozzo 2012).
For our population of slowly spinning NSs, we do not expect
the measurement of the extrinsic parameters to be affected by
the inclusion of spin in the analysis.

4.1. Sky Localization
In order for EM observatories to follow-up a GW detection,

they need an accurate sky location. This must be provided
promptly, while there is still a visible transient. Parameter esti-
mation while accounting for spin is computationally expensive
and slow to complete (see appendix A). There are alternative
methods that can provide sky localization more quickly. The
most expedient is BAYESTAR, which uses output from the de-
tection pipeline to rapidly compute sky position (Singer and
Price 2016). BAYESTAR can compute sky positions with a
latency of a few seconds. Between the low-latency BAYESTAR
and the high-latency full parameter estimation, there is the
medium-latency option of performing non-spinning parameter
estimation with computationally cheap TaylorF2 waveforms.
This requires hours of wall time to complete analyses, with
the exact time depending upon the degree of parallelization.
Despite only using information from the detection triggers,
rather than full waveforms, it has been shown that BAYESTAR
produces sky areas for BNS signals fully consistent with non-
spinning parameter estimation results, provided that there was
a trigger from all detectors in the network (Singer et al. 2014;
Berry et al. 2015; Singer and Price 2016). Having now per-
formed a full spinning analysis, we can compare the results
of high-latency parameter estimation with the more expedient
methods of inferring sky position.

In Figure 7 we show the cumulative distributions of re-
covered 50% credible regions, 90% credible regions, and
searched areas. All three quantities show good agreement

across all parameter-estimation techniques. For the for the
slowly-spinning BNSs considered here, including spin in the
analysis does not change the average ability to localize sources
on the sky.

We can consider sky localization in greater detail by com-
paring areas on an event-by-event basis and not just the cu-
mulative distribution across the population. Doing this, we
confirm that sky localization is consistent between approaches
for any given event. We use the medium-latency, non-spinning
TaylorF2 analysis as a reference point, and compare the ratio of
sky areas. To summarize the variation in sky areas computed
in different analyses, we use the log ratio

RX
A = log10

(
AX

ANS

)
, (2)

where AX is a credible region or the searched area as deter-
mined by method X and ANS is the same quantity from the
non-spinning analysis. The log ratioRX

A is zero when analysis
X agrees with the non-spinning results. Considering all 250
events, the mean and standard deviation of the log ratio is given
in Table 1. For the purposes of EM follow-up, there is no sig-
nificant difference between analyses.16 The computationally
expensive fully spinning analysis does not improve sky local-
ization: there is no disadvantage in using the lower-latency
results for EM follow-up of slowly spinning BNSs.

4.2. Luminosity distance
The distance is degenerate with the inclination (Cutler and

Flanagan 1994; Aasi et al. 2013), and the inclination can be
better constrained for precessing systems (van der Sluys et al.

16 The non-spinning analysis was performed with LALINFERENCE_NEST
while the spinning analysis was performed with LALINFERENCE_MCMC
(Veitch et al. 2015); therefore the consistency between analyses additionally
shows the consistency of results from different sampling algorithms.
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Figure 2. Fractional uncertainties in chirp massMc, mass ratio q and total
mass M estimates as a function of network S/N for both the fully spinning
SpinTaylorT4 analysis and the medium-latency non-spinning TaylorF2 analy-
sis. We only show statistical uncertainties, not systematic errors (which are
present when spin in not included). The lines indicate approximate power-law
trends (∝ ρ

−1/2
net for spinning σq/〈q〉 and ∝ ρ−1

net for the rest) to guide the eye.

2008; Vitale et al. 2014). Since we are considering a population
with low spins, precession is minimal, and there should be little
effect from including spin in the analysis.

The absolute size of the distance credible interval CID
p ap-

proximately scales with the distance, hence we divide the
credible interval by the true (injected) distance D?; this gives
an approximate analogue of twice the fractional uncertainty
(Berry et al. 2015). The cumulative distribution of the scaled
credible intervals is plotted in Figure 8. The mean (median)
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Figure 3. The distribution of one-dimensional marginalized posterior prob-
ability density functions (PDFs) of spin magnitudes of the more and less
massive components (χ1 and χ2, respectively) for all 250 simulated sources.
Shaded regions show the 90% credible boundaries for the spin distributions
of the population, and the solid lines show the average of each PDF. The pos-
teriors have consistent morphology and span the majority of the prior range.
The spin of the most massive component is typically slightly more constrained
toward low values, but even a maximal spin of χ1 = 1 is never ruled out with
100% certainty.

Table 1
Comparison of sky localization areas produced by the

low-latency BAYESTAR analysis and the high-latency fully
spinning SpinTaylorT4 analysis to those produced by the

medium-latency non-spinning TaylorF2 analysis. The
mean and standard deviation of the log ratio for the 50%
credible region CR0.5, the 90% credible region CR0.9 and

the searched area A∗ are listed for each analysis.

BAYESTAR Spinning
Logarithmic Standard Standard

ratio Mean deviation Mean deviation

RX
CR0.5

0.095 0.117 0.022 0.067

RX
CR0.9

0.075 0.094 0.028 0.063

RX
A∗ 0.106 0.447 0.002 0.397

values of CID
0.5/D? for the spinning and non-spinning analy-

ses are 0.436 (0.376) and 0.426 (0.363) respectively; the val-
ues of CID

0.9/D? are 0.981 (0.845) and 0.951 (0.819), and the
fractional uncertainties σD/〈D〉 are 0.302 (0.262) and 0.245
(0.239). There is negligible difference between the spinning
and non-spinning analyses as expected.

5. CONCLUSIONS
In this study we investigated the effects of accounting for

spin when estimating the parameters of BNS sources with
aLIGO. We expect NSs to be only slowly spinning, and hence
that their spins only have a small effect of the GW signature
of a BNS merger. However, allowing for spins does have a
significant effect on parameter constraints. Strong degenera-
cies are present in the model; not only are the spins themselves
poorly constrained, but these degeneracies result in weaker
constraints on other parameters, particularly masses. Exclud-
ing spin from parameter estimation results in artificially narrow
and potentially inaccurate posterior distributions.

Weaker constraints are the result of accounting for broad
prior assumptions on NS spins. We tested various choices
for conservative prior assumptions about NS spins and found
them to have little effect on mass estimates. Only strong
prior assumptions, such as say χ1, 2 . 0.05 (consistent with
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Figure 4. Fractional uncertainty in chirp massMc, mass ratio q and total
mass M estimates from the non-spinning and spinning analyses. The mean
fractional uncertainties from the non-spinning analysis are 0.0185%, 8.93%
and 0.542% for chirp mass, mass ratio and total mass respectively. These are a
factor of a few smaller than found from a spinning analysis (0.0676%, 28.7%
and 6.15% for chirp mass, mass ratio and total mass respectively).

the simulated population, and NSs observed in short-period
BNS binaries to date) are likely to significantly affect mass
constraints. However, such strict prior assumptions are hard
to justify given the small number of observed systems and
possible selection effects.

We performed parameter estimation on a astrophysically
motivated population of BNS signals, assuming an aLIGO
sensitivity comparable to that expected throughout its first
observing run. Using a prior on spin magnitudes that is uni-
form from 0 to 1, spanning the range permitted for BHs and
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Figure 5. Approximate 90% credible regions for the component-mass esti-
mates of 5 selected simulations from the spinning analysis; each region is the
projection of a rectangular region of chirp-mass–mass-ratio space, bounded
by the central 90% credible interval in chirp-mass and upper 90% credible
interval in mass-ratio. Circles indicate the true masses of each simulation, and
bars indicate the lower bounds of the upper 90% credible intervals (i.e. the
10th percentiles) on mass ratio for increasingly strict prior assumptions on the
maximum spin of NSs.
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Figure 6. Cumulative distributions of the lower bounds of the upper 90%
credible interval (i.e. 10th percentiles) on the estimated mass of the least
massive binary components under increasingly strict prior assumptions about
maximum NS spin. Restricting spins to be below break-up (χ . 0.7) for
non-exotic equations of state has little effect, as does restricting spin to the
maximum observed NS spin (χ . 0.4). Only strict prior assumptions on NS
spin will significantly impact mass constraints.

extending beyond the expected (but uncertain) upper limit for
NSs, the median 90% upper limit on the spin of the more
massive component is 0.70 and the limit for the less massive
component is 0.86. The median fractional uncertainty for the
mass ratio σq/〈q〉 is ∼ 30%, the median fractional uncertainty
for the total mass σM/〈M〉 is ∼ 6% and the median fractional
uncertainty for the chirp mass σMc/〈Mc〉 is∼ 0.06%. Despite
the mass–spin degeneracy and only weak constraints on the
spin magnitudes, we find that we can place precise constraints
on the chirp mass for these BNS signals.

The sky-location accuracy, which is central to performing
EM follow-up, is not affected by including spin in the analysis
of low-spin systems; this may not be the case when spin is
higher, i.e. in binaries containing a BH. For our population
of BNSs, sky localization is unchanged by the inclusion (or
exclusion) of spin in parameter estimation. The median CR0.9
(CR0.5) is∼ 500 deg2 (∼ 130 deg2). The luminosity distance is
similarly unaffected for this population of slowly spinning NSs;
the median fractional uncertainty σD/〈D〉 is ∼ 25%. However,
an analysis that includes spins requires the use of more com-
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Figure 7. Cumulative fractions of events with sky-localization areas smaller
than the abscissa value. Top: Sky area of 50% credible region CR0.5 Middle:
Sky area of CR0.9. Bottom: Searched area A∗. The high-latency results
including spin are indicated by the solid (blue) line. The lower latency non-
spinning and BAYESTAR from Singer et al. (2014) are denoted by thicker
(green) and thinner (orange) lines respectively. The 68% confidence intervals
for the cumulative distribution are denoted by the shaded areas.

putationally expensive waveforms (that include more physics),
increasing latency by an order of magnitude. Therefore, if the
population matches our current expectation of being slowly
spinning, the low-latency results that could be supplied in time
for EM observatories to search for a counter-part are as good as
the high-latency results in this respect, and there is no benefit
in waiting.

Following the submission of this article, aLIGO made its
first detection (Abbott et al. 2016b). This was of a binary BH

system (Abbott et al. 2016c) rather than a BNS, but much of
our understanding of the abilities of the parameter-estimation
analysis, such as the effects of mass–spin degeneracy, trans-
lates between sources. The era of GW astronomy has begun,
and parameter estimation will play a central role in the science
to come.
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APPENDIX

A. COMPUTATIONAL COST

Performing a fully spinning analysis is computationally ex-
pensive. The main computational cost is generating the Spin-
TaylorT4 waveform, which must be done each time the like-
lihood is evaluated at a different point in parameter space.
Progress is being made in reducing the cost of generating
waveforms and evaluating the likelihood (e.g., Canizares et al.
2013; Pürrer 2014). Employing reduced order modelling can
speed up the non-spinning TaylorF2 analysis by a factor of
∼ 30 (Canizares et al. 2015). This is still to be done for a wave-
form that includes the effects of two unaligned spins; however,
progress has also been made in constructing frequency domain
approximants using shifted uniform asymptotics, which can
speed up generation of a waveform like SpinTaylorT4 by an
order of magnitude (Klein et al. 2014).

In figure 9, we present the approximate wall time taken for
analyses comparable to those presented here. The low-latency
BAYESTAR and the high-latency fully spinning SpinTaylorT4
results are for the 250 events considered here. The medium-
latency non-spinning TaylorF2 results are from Berry et al.
(2015); these are not for a different set of signals, but represent
a similar population (in more realistic non-Gaussian noise),

http://github.com/farr/plotutils
http://github.com/farr/plotutils
https://github.com/farr/skyarea
https://github.com/farr/skyarea
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Figure 8. Cumulative fractions of events with luminosity-distance credible intervals (divided by the true distance) smaller than the abscissa value. Left: Scaled
50% credible interval CID

0.5/D?. Right: Scaled 90% interval CID
0.9/D?. Results using the spinning analysis are indicated by the solid (blue) line and the results

using the non-spinning analysis (Berry et al. 2015) are indicated by the dashed (green) line. The 68% confidence intervals for the cumulative distribution are
denoted by the shaded areas.

representing what we hope to achieve in reality.17 The wall
times for BAYESTAR are significantly reduced compared to
those in Berry et al. (2015) because of recent changes to how
BAYESTAR integrates over distance (Singer and Price 2016):
the mean (median) time is 4.6 s (4.5 s) and the maximum is
6.6 s. We assume that 2000 (independent) posterior samples
are collected for both of the LALINFERENCE analyses. The
number of samples determines how well we can characterize
the posterior: ∼ 2000 is typically needed to calculate CR0.9
to 10% accuracy (Del Pozzo et al. 2016). In practice, we
may want to collect additional samples to ensure our results
are accurate, but preliminary results could also be released
when the medium-latency analysis has collected 1000 samples,
which would after half the time shown here with a maximum
wall time of 5.87×104 s' 16 hr. We see that the fully spinning
analysis is significantly (here a factor of ∼ 20) more expensive
than the non-spinning analysis, taking a mean (median) time
of 1.48× 106 s ' 17 days (9.19× 105 s ' 11 days) and a
maximum of 1.48×107 s' 172 days.

The times shown in figure 9 illustrate the hierarchy of times
associated with different analyses. However, they should not
be used as exact benchmarks for times expected during the
first observing run of aLIGO because the version of LAL-
INFERENCE used here are not the most up-to-date versions.
Following the detection pipeline identifying a candidate BNS
signal, we expect BAYESTAR results with latency of a few sec-
onds, non-spinning LALINFERENCE results with a latency of
a few hours, and fully spinning LALINFERENCE results only
after weeks of computation.

While work is underway to improve the latency of and to
optimize parameter estimation with LALINFERENCE, there is
also the possibility of developing new algorithms that provide
parameter estimates with lower latency (Haster et al. 2015;
Pankow et al. 2015). Improving computational efficiency is
important for later observing runs with the advanced-detector
network: as sensitivities improve and lower frequencies can
be measured, we need to calculate longer waveforms (at even
greater expense).
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