An IncP plasmid carrying the colistin resistance gene mcr-1 in Klebsiella pneumoniae from hospital sewage
Zhao, Feifei; Feng, Yu; Lü, Xiaoju; McNally, Alan; Zong, Zhiyong

DOI:
10.1128/AAC.02229-16

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
An IncP plasmid carrying the colistin resistance gene mcr-1 in Klebsiella pneumoniae from hospital sewage

Feifei Zhao¹², Yu Feng¹², Xiaoju Lü¹², Alan McNally⁴, Zhiyong Zong¹²,³

¹Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.

²Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.

³Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.

⁴Pathogen Research Group, Nottingham Trent University, Nottingham, UK.

Running title: mcr-1 in sewage

Keywords: colistin resistance; mcr-1; sewage; Klebsiella pneumoniae

³Corresponding author. Mailing address: Center of Infectious Diseases, West China Hospital (Huaxi), Guoxuexiang 37, Chengdu 610041, China. Phone: 86-28-8542-2637. Fax: 86-28-8542-3212. E-mail: zongzhiy@scu.edu.cn
Abstract

A *Klebsiella pneumoniae* strain of ST313 recovered from hospital sewage was found to carry the plasmid-borne colistin resistance gene *mcr-1*, which was bracketed by two copies of the insertion sequence IS*Ap1* on a 57-kb self-transmissible IncP type plasmid of a new IncP-1 clade. The carriage of *mcr-1* on a self-transmissible broad-host-range plasmid highlights that *mcr-1* has the potential to be spread beyond the *Enterobacteriaceae*.
Colistin is the last resort antimicrobial agents to treat the infections caused by many Gram-negative bacteria. Recently, a plasmid-borne colistin resistance gene, \textit{mcr-1}, has been found in \textit{Escherichia coli} and \textit{Klebsiella pneumonia} from human and animals in China (1). A few follow-up studies have found \textit{mcr-1}-carrying \textit{E. coli} in many countries in Africa (2), Europe (3-8), Asia (1-3, 9, 10) and North America (9, 11). In addition, \textit{mcr-1} has also been found in \textit{Kluyvera ascorbata} (12) and several species of \textit{Salmonella} (13-15). All of above findings suggest that \textit{mcr-1} has been widely distributed and imposes an emerging threat for clinical management and public and animal health. During a screening study for the presence of colistin-resistant \textit{Enterobacteriaceae} in hospital sewage, we found a \textit{mcr-1}-carrying \textit{K. pneumonia}, which is reported here.

\textit{K. pneumoniae} strain WCHKP1511 was recovered from the influx mainstream of hospital sewage at West China Hospital, Chengdu, western China, in November 2015. Strain WCHKP1511 grew on CHROMAgar Orientation agar plates (CHROMAgar, Paris, France) containing 4 μg/ml colistin and 64 μg/ml linezolid. Species identification was established by partially sequencing the \textit{gyrB} gene (16). Strain WCHKP1511 was resistant to colistin (MIC, 8 μg/ml), polymyxin B (MIC, 8 μg/ml), chloramphenicol (MIC, 128 μg/ml) and tetracycline (MIC, 64 μg/ml) but was susceptible to amikacin (MIC, 0.5 μg/ml), ceftazidime (MIC, ≤0.5 μg/ml), cefotaxime (MIC, 0.03 μg/ml), ciprofloxacin (MIC, 0.03 μg/ml), imipenem (MIC, 0.125 μg/ml)
and tigecycline (MIC, 1 μg/ml) as determined using the microdilution broth method following recommendations of the Clinical Laboratory Standards Institute (CLSI) (17). WCHKP1511 was susceptible to fosfomycin (MIC, 32 μg/ml) as determined using the agar dilution method following recommendations of CLSI (17). In addition, strain WCHKP1511 was resistant to ampicillin and trimethoprim-sulphamethoxazole, intermediate to amoxicillin-clavuanate, gentamicin, tobramycin and nitrofurantoin, and susceptible to aztreonam, cefazolin, cefepime, cefotixin, ceftriaxone, ertapenem, levofloxacin and piperacillin-tazobactam as determined using the Vitek II automated system (bioMerieux, Lyon, France). Breakpoints defined by FDA and by EUCAST were used for tigecycline and colistin, respectively; otherwise, those defined by CLSI were applied. Strain WCHKP1511 was found to carry mcr-1 by PCR and sequencing (1, 12). Although mcr-1 has been widely found in E. coli, mcr-1-carrying K. pneumoniae remains uncommon and had only been found in eastern China (Jiangsu and Zhejiang provinces) before (1, 18).

Strain WCHKP1511 was subjected to the 150-bp paired-end whole genome sequencing with a ca. 200× coverage using the HiSeq 2500 Sequencer (Illumina, San Diego, CA, USA). A total of 3,784,972 reads and 567,745,800 clean bases were generated, which were assembled into 275 contigs (230 contigs ≥ 1,000 bp) in length (N50, 67,217 bp) with a 57.46% GC content using the Spades program (19).
WCHKP1511 belonged to ST313, which was determined by using the genomic sequence to query the multi-locus sequence typing database of *K. pneumoniae* (http://bigsdb.web.pasteur.fr/klebsiella/klebsiella.html). In the *K. pneumoniae* MLST database, only one ST313 strain, KML 2185, which was recovered from human blood in the Netherlands in 2007, has been deposited. *K. pneumoniae* strains carrying *mcr-1* in Jiangsu province belonged to ST25 (20), while the STs of those in Zhejiang province were unknown. ST313 was not closely related to ST25, as only 2 out of 7 alleles were identical between the two STs.

Antimicrobial resistance genes were predicted using ResFinder from the Center for Genomic Epidemiology (http://genomicepidemiology.org/). In addition to *mcr-1*, WCHKP1511 had multiple genes mediating resistance to aminoglycosides (*aac(3)-Iva, aadA2, aph(3′)-Ia and aph(4)-I*), β-lactams (*bla*$_{TEM-135}$ and a new *bla*$_{SHV}$ variant), chloramphenicol (*floR*), fosfomycin (*fosA*), quinolones (*oqxA* and *oqxB*), sulphonamides (*sul2*), trimethoprim (*dfrA12*) and tetracycline (*tet(A)*) as predicted by ResFinder. *bla*$_{TEM-135}$ encodes a broad-spectrum β-lactamase (21). Of note, although strain WCHKP1511 carried *fosA*, it was susceptible to fosfomycin, which warrants further investigation. *bla*$_{SHV}$ in strain WCHKP1511 is a new variant, which encodes a SHV enzyme with an amino acid difference (Thr14Asn, the position is based on the ATG start codon) from SHV-111, the closest match. The new SHV has been assigned SHV-195 by the NCBI β-lactamase classification system.
As strain WCHKP1511 was susceptible to third generation cephalosporins, $bla_{SHV-195}$ is unlikely to encode an extended-spectrum β-lactamase (ESBL). The complete coding sequence of $bla_{SHV-195}$ was cloned onto the pBC SK vector (Agilent, Santa Clara, CA, USA), which was electroporated into $E. coli$ DH5α. $E. coli$ transformants containing $bla_{SHV-195}$ were resistant to ampicillin (MIC, $>256 \, \mu g/mL$) and cephalothin (32 $\mu g/mL$) but were susceptible to aztreonam, ceftazidime, cefotaxime, cefoxitin and imipenem determined using the broth microdilution method (17). This confirmed that $bla_{SHV-195}$ encodes a broad-spectrum rather than an ESBL.

In addition, there was a predicted bleomycin-resistance gene, designated ORFble here, which was not identified by Resfinder but was identified by the Prokka annotation tool (22) and was confirmed by Protein-BLAST in strain WCHKP1511. The complete coding sequence of ORFble was amplified with primers 1511_ble_BamHI_F (CGCGGATCCTTGGTTCACCATGAAGATG)/1511_ble_EcoRI_R (CCGGAAATTCCGCGATTGCTGAACAGATTA), was cloned onto pBC SK and was electroporated into $E. coli$ DH5α. ORFble-containing transformants were selected on LB agar plates containing 25 $\mu g/mL$ chloramphenicol and the presence of ORFble in transformants was confirmed by PCR and sequencing. However, MIC (0.25 $\mu g/mL$) of zeocin (Thermo Fisher Scientific, Waltham, MA, USA), a bleomycin, against $E. coli$ DH5α transformant containing ORFble was the same as that against DH5α as
determined using the broth microdilution method (17). This suggests that ORFble did not mediate resistance to bleomycin and its function remains undetermined.

Conjugation experiments were carried out in broth using azide-resistant *E. coli* strain J53 as the recipient and 2 μg/ml colistin plus 150 μg/ml sodium azide was used for selecting transconjugants. The presence of *mcr-1* in transconjugants was confirmed using PCR. In strain WCHKP1511, *mcr-1* could be transferred to *E. coli* J53 at a frequency of 10^{-2} cells per donor cell by mating, suggesting that *mcr-1* was carried by a self-transmissible plasmid, which was assigned pMCR_1511. The sequence of pMCR_1511 was completely circularised with gaps between contigs closed by Sanger sequencing of amplicons from PCRs using primers designed based on available contig sequences. pMCR_KP1511 was 57,278 bp in size and had no known antimicrobial resistance genes other than *mcr-1*. Unlike the previously-described *mcr-1*-carrying IncI2 plasmid pHNSHP45 (GenBank accession number KP347127) (1), pMCR_KP1511 belonged to the IncP type, a broad-host-range incompatibility group. Plasmid pKH-457-3-BE carrying *mcr-1* in *E. coli* from Belgium was found to have an IncP backbone (3). However, the sequence of pKH-457-3-BE was not available for further analysis. Nonetheless, it has been suggested that pKH-457-3-BE was 99% similarity and 73% coverage with the IncHI2 plasmid pHXY0908 (GenBank accession number KM877269) in *Salmonella enterica* serotype Typhimurium (8). pMCR_KP1511 had only a 6% coverage with pHXY0908, indicating that
pMCR_1511 was very different from pKH-457-3-BE and pKH-457-3-BE may not be a true IncP plasmid but is likely of IncHI2.

pMCR_1511 has the typical IncP-1 plasmid backbone (23) containing the trfA encoding the replication initiation protein, two par modules for plasmid partitioning, two conjugative regions tra (17.6 kb) and trb (12.7 kb), the host-lethal protein-encoding kil genes and their regulator kor (stands for kil-override) genes, and a toxin-antitoxin higA-B system (Figure 1). The backbone of pMCR_1511 was highly similar (99% identity) with that on plasmid pHNFP671 (GenBank accession number KP324830), which was an IncP plasmid in E. coli isolate FP671 from Guangzhou, China but did not carry mcr-1. IncP-1 plasmid has six assigned clades, i.e., α, β, γ, δ, ε and ζ, among which β clade has β1 and β2 two subclades (24). To determine of which clade pMCR_1511 was, the sequence of 30 genes belonging to the IncP-1 backbone was retrieved from pMCR_1511, concatenated and then aligned to the counterparts of one representative plasmid of each clade including β1 and β2 subclades as described previously (25). Phylogenetic analysis of the IncP-1 plasmid backbone revealed that pMCR_1511 and pHNFP671 belonged to a new IncP-1 clade (Figure S1 in the supplementary file).

When compared the sequence of pHNFP671, pMCR_1511 has two unique regions (Figure 1). One of the unique region harbored mcr-1 and the other contained ORFble.
The sequence comparison of pMCR_1511 and pHNFP671 allowed us to analyze the genetic context of \textit{mcr-1} in detail. Like most genetic contexts available in the GenBank, \textit{mcr-1} was located downstream of the insertion sequence ISA\textit{p}l1 on pMCR_1511. However, there was another ISA\textit{p}l1, which was interrupted (see below), downstream and therefore \textit{mcr-1} was bracketed by two copies of ISA\textit{p}l1 on pMCR_1511. It has been known that ISA\textit{p}l1 is able to generate 2-bp direct target repeats (DR) upon insertion (26) (https://www.is.biotoul.fr/index.html?is_special_name=ISApl1). The 2-bp flanking sequences of the region bracketed by the two copies of ISA\textit{p}l1 were identical (AC, Figure 2). When the region formed by two copies of ISA\textit{p}l1 and one of the 2-bp flanking sequences were subtracted artificially, the joined sequence perfectly matched that of an open reading frame (orf) with unknown function on plasmid pHNFP671. It therefore proved that the 2-bp sequence was truly DR generated by ISA\textit{p}l1 rather than coincidence and the two ISA\textit{p}l1 formed a composite transposon to mobilize \textit{mcr-1} gene. A very recent analysis revealed that the ISA\textit{p}l1-formed composite transposon carrying \textit{mcr-1} has also been seen on either the chromosome or a plasmid (IncH or unknown Inc groups) of seven \textit{E. coli} strains (27). The ISA\textit{p}l1-formed composite transposon carrying \textit{mcr-1} is all located at different locations, which are also different from the location on pMCR_1511, in the seven \textit{E. coli} strains and is flanked by 2-bp DR in five strains (27). The previous analysis (27) and the findings in the present
study suggest that the ISApll-formed composite transposon is a common vehicle for mediating the spread of \textit{mcr-1}.

The ISApll downstream of \textit{mcr-1} on pMCR_1511 was interrupted by the insertion of Tn3 with the characteristic 5-bp DR (Figure 2). The Tn3 was also disrupted by IS26 and most of the Tn3 was absent, which may be due to the action of IS26. It is well known that the insertion of IS26 can lead to the deletion of the adjacent sequence of the insertion site (28). Alternative explanation for the absence of most part of Tn3 is that the insertion of the second IS26 and the recombination between the two IS26 could lead to the loss of the intervening region. Although ISApll downstream of \textit{mcr-1} was interrupted by Tn3, the right-end inverted repeat (IRR) of the ISApll remained intact (Figure 2). The transposase encoded by the ISApll upstream of \textit{mcr-1} had the potential to recognize the IRR of the ISApll downstream of \textit{mcr-1} and then could realize the mobilization of the region bracketed by the two copies of the ISApll.

In conclusion, the plasmid-borne colistin resistance gene \textit{mcr-1} was found in a \textit{K. pneumoniae} of an infrequently encountered ST from hospital sewage. \textit{mcr-1} was carried by a self-transmissible IncP plasmid, which is a broad-host-range type of plasmids and has the potential to mediate the dissemination of \textit{mcr-1} from the \textit{Enterobacteriaceae} to other Gram-negative bacteria such as \textit{Pseudomonas aeruginosa}. \textit{mcr-1} was bracketed by two copies of ISApll, which were able to form a composite
transposon and represented a common mechanism for mediating the mobilization of
\textit{mcr-1}.

\textbf{Nucleotide sequence accession number.} Reads and the Whole Genome Shotgun
Sequencing project of \textit{K. pneumoniae} strain WCHKP1511 have been deposited into
DDBJ/EMBL/GenBank under accession number SRR3170679 and LSMF00000000,
respectively. The sequence of \textit{pMCR_1511} has been deposited into
DDBJ/EMBL/GenBank under accession number KX377410.

\textbf{Acknowledgements}

The work was supported by a grant from the National Natural Science Foundation of
China (project no. 81572030) and a joint grant from the National Natural Science
Foundation of China (project no. 8151101182) and the Newton Advanced Fellowship,
Royal Society, UK.

\textbf{References}

resistance mechanism \textit{MCR-1} in animals and human beings in China: a

\textit{H.} 2016. Colistin resistance gene \textit{mcr-1} harboured on a multidrug resistant

of **gyrB** genes with universal primers and their application to the detection and taxonomic analysis of *Pseudomonas putida* strains. Appl Environ Microbiol **61**:1104-1109.

the prokaryotic mobile genetic element IS26. Mol Gen Genet **201**:198-203.
Figure legends

Figure 1. Genetic structure of IncP plasmid pMCR_1511 carrying mcr-1 and the comparison with IncP plasmid pHNFP671. Regions and genes that are indicated are ORFble (a predicted [but actually not] bleomycin resistance gene), higA-B (encoding a toxin/antitoxin system), mcr-1, kor-par-kli (for plasmid maintenance), tra and trb (the two conjugation-encoding regions), and trfA (encoding the plasmid replication initiation protein). Backbones of the two IncP plasmids are almost identical. Compared to pHNFP671, pMCR_1511 carried two additional regions that contained either mcr-1 or ORFble.

Figure 2. Genetic context of mcr-1 on pMCR_1511. Genetic context of mcr-1 on the IncI2 plasmid pHNSHP45 (GenBank accession number KP347127) and the corresponding region on the IncP plasmid pHNFP671 (GenBank accession number KP324830) are shown for comparison. orfs that encode hypothetical proteins with unknown function are indicated in white except that the one disrupted by the ISApII-formed composite transposon on pMCR_1511 is shown in black (Δ1 and Δ2). Other genes shown are nikB (encoding relaxase of the plasmid), ydgA (DNA topoisomerase III), ydfA (transcriptional regulator), parA (resolvase), blaTEM (shown as a white arrow in Tn3) and traB (conjugative protein). The 2-bp direct repeat (GA) abutting the ISApII-mcr-1-pho region on pHNSHP45 and the 2-bp direct repeat (AC) abutting the ISApII-formed composite transposon on pMCR_1511 are shown. On
pMCR_1511, the ISApl1 downstream of mcr-1 was interrupted by Tn3, which was interrupted by IS26.