Character deflations and
a generalization of the Murnaghan–Nakayama rule

Anton Evseev, Rowena Paget and Mark Wildon

Communicated by Radha Kessar

Abstract. Given natural numbers m and n, we define a deflation map from the characters of the symmetric group S_{mn} to the characters of S_n. This map is obtained by first restricting a character of S_{mn} to the wreath product $S_m \wr S_n$, and then taking the sum of the irreducible constituents of the restricted character on which the base group $S_m \times \cdots \times S_m$ acts trivially. We prove a combinatorial formula which gives the values of the images of the irreducible characters of S_{mn} under this map. We also prove an analogous result for more general deflation maps in which the base group is not required to act trivially. These results generalize the Murnaghan–Nakayama rule and special cases of the Littlewood–Richardson rule. As a corollary we obtain a new combinatorial formula for the character multiplicities that are the subject of the long-standing Foulkes’ Conjecture. Using this formula we verify Foulkes’ Conjecture in some new cases.

1 Introduction

Tableaux combinatorics is a pivotal theme in the representation theory of the symmetric groups. Fundamental results in this area include the Murnaghan–Nakayama rule for the values taken by irreducible characters of symmetric groups and the Littlewood–Richardson rule (as well as its special case, Young’s rule), which determines the restrictions of irreducible characters to Young subgroups of symmetric groups.

The two main results of this paper are Theorems 1.5 and 6.3, which give a combinatorial description of the restrictions of characters of symmetric groups to their maximal imprimitive subgroups. Theorem 1.5 is a simultaneous generalization of the Murnaghan–Nakayama rule and Young’s rule. Theorem 6.3 gives a further generalization, in which Young’s rule is replaced by a family of special cases of the Littlewood–Richardson rule.

As a corollary of Theorem 1.5, we obtain in Proposition 5.1 a new recursive formula for the character multiplicities that are the subject of Foulkes’ Conjecture, a long-standing problem which spans representation theory, invariant theory and algebraic combinatorics. We use this formula to verify Foulkes’ Conjecture in
some new cases, extending the results in [14]. Figures 3 and 4 in Section 5 show some of the data computed using this formula.

1.1 Character deflations

We now introduce the ideas needed to state Theorem 1.5. By a construction originally due to Frobenius, the irreducible characters of the symmetric group S_r are canonically labelled by the partitions of r. As is usual, we write χ^{λ} for the irreducible character labelled by the partition λ, and $\chi^{\lambda/\mu}$ for the character labelled by the skew-partition λ/μ. We refer the reader to [8, Chapter 2] or [19, Section 7.18] for a construction of these characters and to [19, p. 309] for background on skew-partitions.

For each $r \in \mathbb{N}$, it is well known (see, for example, [4, Exercise 5.2.8]) that the maximal imprimitive subgroups of S_r are precisely the imprimitive wreath products $S_m \wr S_n \leq S_r$ for $m, n \in \mathbb{N}$ such that $mn = r$. Let \mathcal{O} be a character of S_m, and let V be a representation of S_m affording \mathcal{O}. Then $V \otimes n$ is a representation of the base group $S_m \times \cdots \times S_m$. The complement S_n of this base group acts on $V \otimes n$ by permuting the factors:

$$g(v_1 \otimes \cdots \otimes v_n) = v_{g^{-1}(1)} \otimes \cdots \otimes v_{g^{-1}(n)}$$

for $g \in S_n$ and $v_1, \ldots, v_n \in V$. These two actions combine to give a representation of $S_m \wr S_n$ on $V \otimes n$ (see [8, 4.3.6]). We denote by $\mathcal{O} \otimes n$ the character of $S_m \wr S_n$ afforded by this representation. We also need the characters of $S_m \wr S_n$ whose kernel contains $S_m \times \cdots \times S_m$. These characters are precisely the inflations of the characters of S_n to $S_m \wr S_n$. These two actions combine to give a representation of $S_m \wr S_n$ on $V \otimes n$. The complement S_n of this base group acts on $V \otimes n$ by permuting the factors:

$$g(v_1 \otimes \cdots \otimes v_n) = v_{g^{-1}(1)} \otimes \cdots \otimes v_{g^{-1}(n)}$$

for $g \in S_n$ and $v_1, \ldots, v_n \in V$. These two actions combine to give a representation of $S_m \wr S_n$ on $V \otimes n$ (see [8, 4.3.6]). We denote by $\mathcal{O} \otimes n$ the character of $S_m \wr S_n$ afforded by this representation. We also need the characters of $S_m \wr S_n$ whose kernel contains $S_m \times \cdots \times S_m$. These characters are precisely the inflations of the characters of S_n to $S_m \wr S_n$ along the canonical surjection $S_m \wr S_n \twoheadrightarrow S_n$. If ν is a partition of n, we denote by $\text{Inf}^{S_m \wr S_n}_{S_n} \chi^{\nu}$ the irreducible character of $S_m \wr S_n$ constructed in this way. It is easily seen that the characters $\mathcal{O} \otimes n \text{Inf}^{S_m \wr S_n}_{S_n} \chi^{\nu}$ obtained by multiplying characters of these two types are irreducible. (By [8, Theorem 4.3.33], any irreducible character of $S_m \wr S_n$ is induced from a suitable product of characters of this form. We note that this result will not be used in this paper.)

Given a finite group G, we let $\mathcal{C}(G)$ denote the abelian group of virtual characters of G.

Definition 1.1. Let $m, n \in \mathbb{N}$ and let \mathcal{O} be an irreducible character of S_m. Let ξ be an irreducible character of $S_m \wr S_n$. We define

$$\text{Def}_{S_n}^{\nu} \xi = \begin{cases} \chi^{\nu} & \text{if } \xi = \mathcal{O} \otimes n \text{Inf}^{S_m \wr S_n}_{S_n} \chi^{\nu} \text{ where } \nu \text{ is a partition of } n, \\ 0 & \text{otherwise.} \end{cases}$$

Let $\text{Def}_{S_n}^{\nu} : \mathcal{C}(S_m \wr S_n) \rightarrow \mathcal{C}(S_n)$ be the group homomorphism defined by linear extension of this definition. Given $\psi \in \mathcal{C}(S_m \wr S_n)$, we say that $\text{Def}_{S_n}^{\nu} \psi$ is the
deflation of ψ with respect to ϑ. Let $\text{Def} S_n^\vartheta : \mathcal{C}(S_{mn}) \to \mathcal{C}(S_n)$ be the group homomorphism defined by

$$\text{Def} S_n^\vartheta \chi = \text{Def} S_n^\vartheta \text{Res}_{S_{m!}S_n}^{S_{mn}} \chi$$

for $\chi \in \mathcal{C}(S_{mn})$.

In the case when ϑ is the trivial character of S_m, we shall omit ϑ and simply write $\text{Def} S_n$ and $\text{Def} S_n^\vartheta$. If V is a complex representation of $S_m \wr S_n$ with character χ, then $\text{Def} S_n \chi$ is the character of the maximal subrepresentation of V on which the base group $S_m \times \cdots \times S_m$ acts trivially.

Theorem 1.5 gives a combinatorial rule for the values of $\text{Def} S_n^\vartheta \chi^{\lambda/\mu}$ where λ/μ is a skew-partition of mn. In order to state this rule, we review and extend the definition of a border-strip tableau (see [19, Section 7.17]).

Recall that a skew-partition σ/τ is said to be a border strip (or rim hook) if the Young diagram of σ/τ is connected and contains no 2×2 square. The length of the border strip σ/τ is $|\sigma/\tau|$ and its height is defined to be one less than its number of non-empty rows. If λ/μ is a skew-partition, then we define a border-strip tableau of shape λ/μ to be an assignment of the elements of a set $J \subseteq \mathbb{N}$ to the boxes of the Young diagram of λ/μ so that the rows and columns are non-decreasing, and for each $j \in J$, the boxes labelled j form a border strip; if $J = \{1, \ldots, k\}$, and for each $j \in J$ the border strip formed by the boxes labelled j has length α_j, then we say that the tableau has type $(\alpha_1, \ldots, \alpha_k)$. We need the following three further definitions, which are illustrated in Figure 1 and Example 1.6 below.

Definition 1.2. Let T be a border-strip tableau. The sign of T is defined by

$$\text{sgn}(T) = (-1)^h$$

where h is the sum of the heights of the border strips forming T.

Figure 1. A border-strip tableau of shape $(8, 5, 3, 2, 2, 2)/(2, 2, 1, 1, 1)$ and type $(6, 3, 3, 3)$. The heights of the border strips labelled 1, 2, 3, 4 are 3, 1, 1, 0 respectively, and the sign of this border-strip tableau is thus -1.

Brought to you by | University of Birmingham
Authenticated
Download Date | 1/17/17 10:47 AM
Definition 1.3. Let λ / τ be a border strip in a partition λ. If the lowest-numbered row of λ met by λ / τ is row k, then we define the row number of λ / τ to be k, and write $N(\lambda / \tau) = k$.

Note that if T is a border-strip tableau of shape λ / μ and type $(\alpha_1, \ldots, \alpha_k)$, then there are partitions

$$\mu = \lambda^0 \subset \lambda^1 \subset \cdots \subset \lambda^{k-1} \subset \lambda^k = \lambda$$

such that for each $j \in \{1, \ldots, k\}$, the border strip in T labelled j is $\lambda^j / \lambda^{j-1}$.

Definition 1.4. Let $m, n \in \mathbb{N}$ and let λ / μ be a skew-partition of mn. Given a composition $\gamma = (\gamma_1, \ldots, \gamma_d)$ of n, let $\gamma^m = (\gamma_1^m, \ldots, \gamma_d^m)$ denote the composition of mn obtained from γ by repeating each part m times. An m-border-strip tableau of shape λ / μ and type γ is a border-strip tableau of shape λ / μ and type γ^m such that for each $j \in \{1, 2, \ldots, d\}$, the row numbers of the border strips $\lambda^{(j-1)m+1} / \lambda^{(j-1)m}, \ldots, \lambda^{jm} / \lambda^{jm-1}$ corresponding to the m parts in γ^m of length γ_j satisfy

$$N(\lambda^{(j-1)m+1} / \lambda^{jm}) \geq \cdots \geq N(\lambda^{jm} / \lambda^{jm-1}). \quad (1.1)$$

Let

$$a_{\lambda / \mu, \gamma} = \sum_T \text{sgn}(T)$$

where the sum is over all m-border-strip tableaux T of shape λ / μ and type γ.

Theorem 1.5. Let $m, n \in \mathbb{N}$ and let λ / μ be a skew-partition of mn. If γ is a composition of n and $g \in S_n$ has cycle type γ, then

$$(\operatorname{Defr}S_n, \lambda^{\lambda / \mu})(g) = a_{\lambda / \mu, \gamma}.$$

Example 1.6. Let $\lambda = (6, 5, 3, 2)$ and let $\mu = (3, 1)$. The three different 2-border-strip tableaux of shape λ / μ and type $\gamma = (1, 2, 3)$ are shown below.

\[
\begin{array}{cccc}
2 & 6 & 6 & 6 \\
1 & 5 & 5 & 6 \\
3 & 4 & 5 & 6 \\
3 & 4 & & \\
\end{array}
\quad
\begin{array}{cccc}
4 & 6 & 6 & \\
1 & 2 & 4 & 6 \\
3 & 5 & 5 & \\
3 & 5 & & \\
\end{array}
\quad
\begin{array}{cccc}
2 & 6 & 6 & 6 \\
1 & 4 & 4 & 6 \\
3 & 5 & 5 & 6 \\
3 & 5 & 5 & \\
\end{array}
\]

As required by Definition 1.4, for each $j \in \{1, 2, 3\}$, the row number of the border strip labelled $2j - 1$ in each tableau is at least the row number of the border strip labelled $2j$. Thus the first border strip corresponding to each part of γ is added no higher up in each partition diagram than the second. The sums of the heights of the
Character deflations

border strips forming these tableaux are 4, 4 and 3 and so their signs are +1, +1 and −1, respectively. By Definition 1.4 we have \(a_{\lambda/\mu, \gamma} = 1 \). Hence Theorem 1.5 implies that \(\text{Defres}_{S_6} \chi^{(6,5,3,2)/(3,1)}(g) = 1 \) if \(g \in S_6 \) has cycle type \((1,2,3)\).

Deflation is closely related to plethysm of Schur functions (see for instance [12, Section I.8]). In fact, using the standard correspondence between characters of symmetric groups and symmetric functions, one can show that the special case \(\gamma = (n) \) of Theorem 1.5 is equivalent to a result proved in [3, Section 9]. Also, in the special case \(\mu = \emptyset \), the combinatorial description of Theorem 1.5 can be shown (using our Lemma 4.2 below) to be equivalent to the one given for plethysm by Macdonald [12, Section I.8, Example 8]. These connections are discussed in more detail in Section 7.

We prove Theorem 1.5 in Sections 2–4. The only prerequisites, apart from some basic character theory, are the Murnaghan–Nakayama rule and the combinatorics of the abacus. In addition to being self-contained, our proof is highly combinatorial in the sense that the key steps, given in Section 3, can all be stated in terms of explicit bijections between certain classes of tableaux.

1.2 Some special cases

It is clear that if \(m = 1 \), then \(\text{Defres}_{S_n} \chi = \chi \) for any character \(\chi \) of \(S_n \), and so the special case \(m = 1 \) of Theorem 1.5 asserts that \(\chi^{\lambda/\mu}(g) = a_{\lambda/\mu, \gamma} \) for any skew-partition \(\lambda/\mu \) of \(n \) and any element \(g \in S_n \) of cycle type \(\gamma \). Equivalently,

\[
\chi^{\lambda/\mu}(g) = \sum_T \text{sgn}(T)
\]

where the sum is over all border-strip tableaux of shape \(\lambda/\mu \) and type \(\gamma \). This is the Murnaghan–Nakayama rule, as stated in [19, equation (7.75)]. It should be noted that we require the Murnaghan–Nakayama rule in Section 3.3 below, and so our work does not provide a new proof of this result. In practice the Murnaghan–Nakayama rule is most frequently used as a recursive formula for the values of characters or skew characters. Equation (4.3) at the end of Section 4 formulates Theorem 1.5 in this way.

As Stanley observes in [19, p. 348], it is far from obvious that the character values given by the Murnaghan–Nakayama rule applied to a skew-partition \(\lambda/\mu \) and a composition \(\gamma \) are independent of the order of the parts of \(\gamma \). This remark applies even more strongly to Theorem 1.5. For example, the reader may check that if \(\lambda/\mu = (6,5,3,2)/(3,1) \), as in Example 1.6, and \(\gamma' = (2,1,3) \), then there is a unique 2-border-strip tableau of shape \((6,5,3,2)/(3,1)\) and type \(\gamma' \). Thus \(a_{\lambda/\mu, \gamma'} = 1 \), but the sums defining \(a_{\lambda/\mu, \gamma} \) and \(a_{\lambda/\mu, \gamma'} \) are different.
Another special case of Theorem 1.5 worth noting occurs when \(g \) is the identity element of \(S_n \). If \(\xi \) is an irreducible character of \(S_m \triangleright S_n \), then either the base group \(B = S_m \times \cdots \times S_m \) is contained in the kernel of \(\xi \) and \(\langle \text{Res}_B \xi, 1_B \rangle = \xi(1) \), or \(\langle \text{Res}_B \xi, 1_B \rangle = 0 \). Hence, by linearity, we have

\[
(\text{Defres}_{S_n} \chi)(1) = \langle \text{Res}_B \chi, 1_B \rangle
\]

for any character \(\chi \) of \(S_{mn} \). It now follows from Theorem 1.5 and Frobenius reciprocity that

\[
a_{\lambda/\mu,(1^n)} = \langle \chi^{\lambda/\mu}, \text{Ind}_{S_m \times \cdots \times S_m}^{S_{mn}} 1_{S_m \times \cdots \times 1_{S_m}} \rangle
\]

for any skew-partition \(\lambda/\mu \) of \(mn \). It is clear from Definition 1.4 that \(a_{\lambda/\mu,(1^n)} \) is the number of semi-standard tableaux of shape \(\lambda/\mu \) and type \((m^n) \). Therefore, by setting \(\mu = \emptyset \) in the previous equation, we obtain a special case of Young’s rule (see [8, Statement 2.8.5] or [19, Proposition 7.18.7]).

1.3 Outline of the paper

The remainder of the paper proceeds as follows. Throughout, we shall adopt the convention that if \(\alpha \) is a partition of \(r \in \mathbb{N} \), then \(g_\alpha \in S_r \) is an element of cycle type \(\alpha \), and \(z_\alpha \) is the size of the centralizer of \(g_\alpha \) in \(S_r \). (The choice of \(g_\alpha \) within the conjugacy class is irrelevant.) If \(\alpha = (\alpha_1, \ldots, \alpha_k) \), we write \(n\alpha = (n\alpha_1, \ldots, n\alpha_k) \).

In Section 2 we prove Proposition 2.2, which implies that if \(\chi \) is a character of \(S_{mn} \) and \(g \in S_n \), then \((\text{Defres}_{S_n} \chi)(g) \) is the average value of \(\chi \) on the coset of the base group \(S_m \times \cdots \times S_m \) in \(S_m \triangleright S_n \) corresponding to \(g \). Equation (1.2) above is a special case of this result. In the case when \(g \in S_n \) is an \(n \)-cycle, we obtain Proposition 2.6 (ii), which implies that if \(\lambda/\mu \) is a skew-partition of \(mn \), then

\[
\text{Defres}_{S_n} \chi^{\lambda/\mu}(g) = \sum_{\alpha} \frac{\chi^{\lambda/\mu}(g_\alpha)}{z_\alpha}
\]

where the sum is over all partitions \(\alpha \) of \(m \), and \(n\alpha \) denotes the partition obtained from \(\alpha \) by multiplying each of its parts by \(n \).

In Section 3 we state a theorem of Farahat (see [5, Section 4]), which gives a formula for the character values \(\chi^{\lambda/\mu}(g_\alpha) \) appearing on the right-hand side of (1.3). We then give a character-theoretic proof of this theorem.

In Section 4 we combine the results of Section 3 and Section 4 to show that Theorem 1.5 holds when \(g \in S_n \) is an \(n \)-cycle (Proposition 4.3) and then to deduce it in general.

In Section 5 we apply our results on deflations to Foulkes’ Conjecture on permutation characters of the symmetric group. In particular, we prove a new recursive
formula for the character multiplicities that appear in this conjecture. Using this formula we check Foulkes’ Conjecture in some new cases, extending the results in [14].

In Section 6, we shall consider the more general deflation maps $\text{Def}^\vartheta_{S_n}$. When $\vartheta = \chi^{(a,1^b)}$ is labelled by a hook partition, Theorem 6.3 gives a combinatorial description of the value of $\text{Def}^\vartheta_{S_n} \chi^\lambda/\mu$ on an n-cycle. This result generalizes the case $\gamma = (n)$ of Theorem 1.5 and may be viewed as a simultaneous generalization of the Murnaghan–Nakayama rule and a special case of the Littlewood–Richardson rule. We also give an illustrative example showing how our methods can be used to compute values of deflated characters in the non-hook case.

Finally, in Section 7, we discuss the aforementioned connections between Theorem 1.5 and results in [3, 12] stated in terms of symmetric functions.

2 Deflation by averaging

Let $m, n \in \mathbb{N}$. We shall think of the wreath product $S_m \wr S_n$ as the group of permutations of $\{1, \ldots, m\} \times \{1, \ldots, n\}$ that leaves invariant the set of blocks of the form

$$\Delta_j = \{(1, j), \ldots, (m, j)\}, \quad 1 \leq j \leq n.$$

Given $h_1, \ldots, h_n \in S_m$ and $g \in S_n$, we write $(h_1, \ldots, h_n; g)$ for the permutation which sends (i, j) to $(h_{gj}i, g j)$. This left action is equivalent to the action defined by [8, equation (4.1.18)]. Let $B = S_m \times \cdots \times S_m$ denote the base group in the wreath product. As shorthand, if $k = (h_1, \ldots, h_n) \in B$, then we shall write $(k; g)$ for $(h_1, \ldots, h_n; g)$.

Lemma 2.1. Let $m, n \in \mathbb{N}$, let ϑ be an irreducible character of S_m, and let ξ be an irreducible character of $S_m \wr S_n$. Let $g \in S_n$. If $\xi = \vartheta^\times \xi^n \text{Inf}_{S_n}^{S_m \wr S_n} \chi^\nu$ for some partition ν of n, then

$$\frac{1}{|B|} \sum_{k \in B} \xi(k; g) \vartheta^\times \xi^n(k; g) = \chi^\nu(g),$$

and if $\xi \in \text{Irr}(S_m \wr S_n)$ is not of this form, then the left-hand side is zero.

Proof. Suppose that the left-hand side is non-zero. The character $\vartheta^\times \xi^n$ of $S_m \wr S_n$ restricts to the irreducible character $\vartheta \times \cdots \times \vartheta$ of B. Hence we may draw upon [7, Lemma 8.14]: suppose $N \triangleleft G$, χ is an irreducible character of G whose restriction to N is also irreducible and $\xi \in \text{Irr}(G)$. Under these conditions [7, Lemma 8.14 (b)] states that if

$$\sum_{x \in Ng} \xi(x) \overline{\chi(x)} \neq 0 \quad \text{for some } g \in G,$$
then \(\text{Res}_N^G \chi \) is a constituent of \(\text{Res}_N^G \xi \), and part (c) of the same lemma establishes that
\[
\frac{1}{|N|} \sum_{x \in N g} |\chi(x)|^2 = 1.
\]

We apply the former with \(G = S_m \wr S_n, N = B \) and \(\chi = \vartheta^{\times n} \) to deduce that
\[
\langle \text{Res}_B \xi, \text{Res}_B \vartheta^{\times n} \rangle \neq 0.
\]

It follows by Frobenius reciprocity that \(\xi \) is a constituent of
\[
\text{Ind}_B^{S_m \wr S_n} (\vartheta \times \cdots \times \vartheta) = \sum_v \chi^v(1) \vartheta^{\times n} \text{Inf}_S^v S_n \chi^v,
\]
where the sum is over all partitions \(v \) of \(n \). Since \(\xi \) is irreducible we must have
\[
\xi = \vartheta^{\times n} \text{Inf}_S^v S_n \chi^v \text{ for some } v.
\]
Therefore the left-hand side in the lemma is
\[
\frac{\chi^v(g)}{|B|} \sum_{k \in B} (\vartheta^{\times n}(k; g))^2,
\]
which is equal to \(\chi^v(g) \) by [7, Lemma 8.14 (c)] as stated above. \(\square \)

By Definition 1.1, we have
\[
\text{Def}_{S_n} \vartheta (\vartheta^{\times n} \text{Inf}_S^v S_n \chi^v)(g) = \chi^v(g) \text{ for all } g \in S_n.
\]
The next proposition therefore follows immediately from Lemma 2.1.

Proposition 2.2. Let \(m, n \in \mathbb{N} \), let \(\vartheta \) be an irreducible character of \(S_m \), and let \(\psi \) be a character of \(S_m \wr S_n \). If \(g \in S_n \), then
\[
(\text{Def}_{S_n}^\vartheta \psi)(g) = \frac{1}{|B|} \sum_{k \in B} \psi(k; g) \vartheta^{\times n}(k; g).
\]

\(\square \)

Corollary 2.3. Let \(m, n \in \mathbb{N} \), let \(\vartheta \) be an irreducible character of \(S_m \), and let \(\psi \) be a character of \(S_m \wr S_n \). If \(g \in S_n \) is an \(n \)-cycle, then
\[
(\text{Def}_{S_n}^\vartheta \psi)(g) = \frac{1}{m!} \sum_{h \in S_m} \psi(h, 1, \ldots, 1; g) \vartheta(h).
\]

Proof. Suppose that \(g \) is the \(n \)-cycle \((x_1 \ x_2 \ \ldots \ x_n)\). By [8, Theorem 4.2.8], the permutations \((h_1, \ldots, h_n; g), (h'_1, \ldots, h'_n; g) \in S_m \wr S_n \) are conjugate in \(S_m \wr S_n \) if and only if the elements \(h_{x_n}h_{x_{n-1}} \ldots h_{x_1} \) and \(h'_{x_n}h'_{x_{n-1}} \ldots h'_{x_1} \) are conjugate
in S_m. In particular, each conjugacy class of $S_m \wr S_n$ which meets \{(k; g) : k \in B\} has a representative of the form $(h, 1, \ldots, 1; g)$. Moreover, the number of elements $(h_1, h_2, \ldots, h_n; g)$ conjugate to $(h, 1, \ldots, 1; g)$ is $m^{n-1}|h^{S_m}|$, as h_2, \ldots, h_n may be chosen arbitrarily, and then h_1 must be chosen so that $h_{x_n}h_{x_{n-1}} \cdots h_{x_1} \in h^{S_m}$. It follows that
\[
\sum_{k \in B} \psi(k; g) \hat{\vartheta}^\times(k; g) = m^{n-1} \sum_{h \in S_m} \psi(h, 1, \ldots, 1; g) \hat{\vartheta}^\times(h, 1, \ldots, 1; g).
\]
The explicit formula given in [8, Lemma 4.3.9] to compute the character value $\hat{\vartheta}^\times(h_1, h_2, \ldots, h_n; g)$ is particularly straightforward in the case when g is an n-cycle: if $g = (x_1 \ x_2 \ldots \ x_n)$, then
\[
\hat{\vartheta}^\times(h_1, h_2, \ldots, h_n; g) = \vartheta(h_{x_n}h_{x_{n-1}} \cdots h_{x_1}).
\]It then follows by applying this to the expression we previously obtained that
\[
\sum_{k \in B} \psi(k; g) \hat{\vartheta}^\times(k; g) = m^{n-1} \sum_{h \in S_m} \psi(h, 1, \ldots, 1; g) \vartheta(h).
\]Now apply Proposition 2.2 to the left-hand side. \hfill \Box

The following definition and lemma allow for a more convenient statement of Corollary 2.3.

Definition 2.4. Let $m, n \in \mathbb{N}$, let $g \in S_n$ be an n-cycle, and let ψ be a character of $S_m \wr S_n$. We define $\omega(\psi)$ to be the class function on S_m such that
\[
\omega(\psi)(h) = \psi(h, 1, \ldots, 1; g)
\]for all $h \in S_m$.

Lemma 2.5. Let $m, n \in \mathbb{N}$. If $g \in S_n$ is an n-cycle and $h \in S_m$ has cycle type α, then $(h, 1, \ldots, 1; g) \in S_m \wr S_n$ has cycle type $n\alpha$.

Proof. It suffices to show that if Θ is an orbit of the element h on $\{1, 2, \ldots, m\}$, then $\Theta \times \{1, \ldots, n\}$ is an orbit of the element $(h, 1, \ldots, 1; g)$ in its action on the set $\{1, \ldots, m\} \times \{1, \ldots, n\}$. We leave this to the reader as an easy exercise. \hfill \Box

The next proposition follows easily from Lemma 2.5 and Corollary 2.3.

Proposition 2.6. Let $m, n \in \mathbb{N}$, and let χ be a character of S_{mn}.

(i) If α is a partition of m, then
\[
\omega(\text{Res}_{S_m \wr S_n} \chi)(g_{n\alpha}) = \chi(g_{n\alpha}).
\]
A. Evseev, R. Paget and M. Wildon

(ii) If \(\vartheta \) is an irreducible character of \(S_m \) and \(g \in S_n \) is an \(n \)-cycle, then

\[
(\text{Defres}^\vartheta_{S_n} \chi)(g) = \langle \omega(\text{Res}_{S_m} S_n \chi), \vartheta \rangle = \sum_{\alpha} \frac{\chi(g_{n\alpha})}{z_{\alpha}} \vartheta(g_{\alpha})
\]

where the sum is over all partitions \(\alpha \) of \(m \).

The character value \(\chi(g_{n\alpha}) \) in part (i) is the subject of Theorem 3.3; we shall see that combining this theorem with part (ii) gives equation (4.1) in Section 4 below. Note also that part (ii) of the proposition implies equation (1.3) in Section 2.

3 Skew characters

In this section we state and prove a result on the values of skew characters on elements of the form \(g_{n\alpha} \) (Theorem 3.3). First, we give the necessary combinatorial definitions. In several arguments we shall refer to James’ abacus notation for partitions, as described in [8, p. 78].

3.1 Quotients of skew-partitions

We shall define \(n \)-quotients and \(n \)-signs for the following class of skew-partitions.

Definition 3.1. Let \(m, n \in \mathbb{N} \). We say that a skew-partition \(\lambda/\mu \) of \(mn \) is \(n \)-decomposable if there exists a border-strip tableau of shape \(\lambda/\mu \).

Definition 3.2. Let \(m, n \in \mathbb{N} \) and let \(\lambda/\mu \) be an \(n \)-decomposable skew-partition of \(mn \). Let \(\Gamma(\lambda) \) be an abacus display for \(\lambda \) on an \(n \)-runner abacus using \(tn \) beads for some \(t \in \mathbb{N} \). Let \(\Gamma(\mu) \) be the abacus display for \(\mu \) obtained by performing an appropriate sequence of \(m \) upward bead moves on \(\Gamma(\lambda) \). (This is possible since \(\lambda/\mu \) is \(n \)-decomposable.) Let \((\lambda(0), \ldots, \lambda(n-1)) \) and \((\mu(0), \ldots, \mu(n-1)) \) be the \(n \)-quotients of \(\lambda \) and \(\mu \) corresponding to \(\Gamma(\lambda) \) and \(\Gamma(\mu) \), respectively. The \(n \)-quotient of \(\lambda/\mu \) is defined to be \((\lambda(0)/\mu(0), \ldots, \lambda(n-1)/\mu(n-1)) \). We define the \(n \)-sign of \(\lambda/\mu \), denoted \(\varepsilon_n(\lambda/\mu) \) to be the sign of any border-strip tableau of shape \(\lambda/\mu \) and type \((n^m) \).

To avoid cumbersome restatements, we adopt the convention that \(\lambda^{(i)}/\mu^{(i)} \) always has the meaning of Definition 3.2 above. It is clear from the abacus that \(\mu^{(i)} \) is a subpartition of \(\lambda^{(i)} \) for each \(i \in \{0, \ldots, n-1\} \), and so the \(n \)-quotient is well-defined. It follows from [15, Proposition 3.13], or our Proposition 3.6 below, that the \(n \)-sign of a skew-partition is well-defined. See Section 3.4 below for an example of these definitions and all the results in this section.

We remark that it appears to be impossible to define the \(n \)-core of an arbitrary skew-partition. The example \(\lambda/\mu = (2, 2)/(1) \) and \(n = 2 \) illustrates the obstacles...
that arise. Representing \(\lambda \) on a 2-runner abacus as

\[
\begin{array}{cc}
\circ & \circ \\
\bullet & \bullet \\
\end{array}
\]

we see that either bead may be moved up, giving two different skew-partitions from which no border strip of length 2 can be removed, namely \((2)/(1)\) and \((1,1)/(1)\). The 2-quotients corresponding to these bead moves, namely \(((1), \varnothing)\) and \((\varnothing, (1))\), are also different.

Theorem 3.3 (Farahat). Let \(m, n \in \mathbb{N} \) and let \(\lambda/\mu \) be a skew-partition of \(mn \). Let \(\alpha \) be a partition of \(m \). If \(\lambda/\mu \) is not \(n \)-decomposable, then \(\chi^{\lambda/\mu}(g_{n\alpha}) = 0 \). If \(\lambda/\mu \) is \(n \)-decomposable and \((\lambda^{(0)}/\mu^{(0)}), \ldots, \lambda^{(n-1)}/\mu^{(n-1)} \) is its \(n \)-quotient, then

\[
\chi^{\lambda/\mu}(g_{n\alpha}) = \varepsilon_n(\lambda/\mu) \text{Ind}_{S_{\ell_0} \times \cdots \times S_{\ell_{n-1}}}^{S_m} (\chi^{\lambda^{(0)}/\mu^{(0)}}(g_{\alpha})) \ldots \chi^{\lambda^{(n-1)}/\mu^{(n-1)}}(g_{\alpha}))
\]

where \(|\lambda^{(i)}/\mu^{(i)}| = \ell_i \).

This result, stated in the alternative language of star diagrams, was first proved in [5, Section 4]. The special case where \(\mu \) is the \(n \)-core of \(\lambda \) also follows from the correction by Thrall and Robinson [21] to Robinson [18, Section 7] or, alternatively, from Littlewood’s result in [11, Section 2]. Farahat’s proof depends on an algebraic argument using Schur functions. A character-theoretic proof is given by Kerber, Sänger, and Wagner: see [10, equation (3.6)]. In the remainder of this section, we give a shorter character-theoretic proof of Theorem 3.3, expressing each side of the theorem as a sum, and then constructing a bijection between the summands. An example to illustrate this bijection is given in Section 3.4. (Our bijection is similar to that defined using *Brettspiele* in [10].)

3.2 A model for induction from a Young subgroup

The following general result on the values of a character induced from a Young subgroup will be used in the proof of Theorem 3.3. (The notation is chosen to be consistent with this later use.)

Lemma 3.4. Let \((\ell_0, \ldots, \ell_{n-1}) \) be a composition of \(m \in \mathbb{N} \). For \(i \in \{0, \ldots, n-1\} \), let \(\vartheta_i \) be a character of \(S_{\ell_i} \). If \(g \in S_m \), then

\[
\text{Ind}_{S_{\ell_0} \times \cdots \times S_{\ell_{n-1}}}^{S_m} (\vartheta_0 \times \cdots \times \vartheta_{n-1})(g) = \sum_t \vartheta_0(g_{\alpha_0(t)}) \ldots \vartheta_{n-1}(g_{\alpha_{n-1}(t)})
\]

where the sum is over all \((\ell_0, \ldots, \ell_{n-1})\)-tabloids \(t \) such that \(gt = t \), and \(\alpha_i(t) \) is the cycle type of the permutation induced by \(g \) on the entries of row \(i + 1 \) of \(t \).
Proof. Let \(t_1, \ldots, t_N \) be the \((\ell_0, \ldots, \ell_{n-1})\)-tabloids. Furthermore, let \(s \) be an
\((\ell_0, \ldots, \ell_{n-1})\)-tabloid fixed by the Young subgroup \(S_{\ell_0} \times \cdots \times S_{\ell_{n-1}} \). For each \(j \)
such that \(1 \leq j \leq N \), choose \(x_j \in S_m \) such that \(t_j = x_j s \). Let \(\vartheta = \vartheta_0 \times \cdots \times \vartheta_{n-1} \).
For each \(g \in S_m \) we have
\[
(\text{Ind}_{S_{\ell_0} \times \cdots \times S_{\ell_{n-1}}}^{S_m}) (g) = \sum_j \vartheta (x_j^{-1} g x_j)
\]
where the sum is over all \(j \) such that
\[
x_j^{-1} g x_j \in S_{\ell_0} \times \cdots \times S_{\ell_{n-1}},
\]
or, equivalently, over all \(j \) such that \(g t_j = t_j \). If \(\Delta_1, \ldots, \Delta_q \) are the orbits of \(g \) on
row \(i + 1 \) of \(t_j \), then \(x_j^{-1} \Delta_1, \ldots, x_j^{-1} \Delta_q \) are the orbits of \(x_j^{-1} g x_j \) on row \(i + 1 \)
of \(s \). Hence \(x_j^{-1} g x_j \) acts with cycle type \(\alpha_i(t_j) \) on row \(i + 1 \) of \(s \) and so
\[
\vartheta (x_j^{-1} g x_j) = \vartheta_0(g \alpha_0(t_j)) \cdots \vartheta_{n-1}(g \alpha_{n-1}(t_j)).
\]
The lemma follows. \(\Box \)

3.3 Proof of Theorem 3.3

Let \(m, n \in \mathbb{N} \) and let \(\lambda/\mu \) be a skew-partition of \(mn \). Let \(\alpha \) be a partition of \(m \).
If there is a border-strip tableau of shape \(\lambda/\mu \) and type \(n\alpha \), then it is clear from the
abacus that \(\lambda/\mu \) is \(n \)-decomposable. Hence if \(\lambda/\mu \) is not \(n \)-decomposable, then,
by the Murnaghan–Nakayama rule, \(\chi^{\lambda/\mu}(g_{n\alpha}) = 0 \).

We may therefore assume that \(\lambda/\mu \) is \(n \)-decomposable. Let \(\ell_i = |\lambda^{(i)}/\mu^{(i)}| \) for
each \(i \in \{0, \ldots, n-1\} \) and let \(H = S_{\ell_0} \times \cdots \times S_{\ell_{n-1}} \). To show that
\[
\chi^{\lambda/\mu}(g_{n\alpha}) = \varepsilon_n(\lambda/\mu) \text{Ind}_H^{S_m} (\chi^{\lambda^{(0)}/\mu^{(0)}} \times \cdots \times \chi^{\lambda^{(n-1)}/\mu^{(n-1)}})(g_{n\alpha}),
\]we shall use the following generalization of border-strip tableaux.

Definition 3.5. Let \(m, n \in \mathbb{N} \). Let \(\lambda/\mu \) be an \(n \)-decomposable skew-partition and
let \(\alpha = (\alpha_1, \ldots, \alpha_k) \) be a composition of \(m \). An \(n \)-quotient border-strip tableau of
shape \(\lambda/\mu \) and type \(\alpha \) is an \(n \)-tuple \((T_0, \ldots, T_{n-1}) \) of border-strip tableaux such that
(a) for each \(i \in \{0, \ldots, n-1\} \), the shape of \(T_i \) is \(\lambda^{(i)}/\mu^{(i)} \),
(b) for each \(j \in \{1, \ldots, k\} \), the boxes in the \(T_i \) labelled \(j \) lie in a single tableau,
where they form a border strip of length \(\alpha_j \).

By the Murnaghan–Nakayama rule we have
\[
\chi^{\lambda/\mu}(g_{n\alpha}) = \sum \text{sgn}(T)
\]
where the sum is over all border-strip tableaux of shape λ/μ and type $n\alpha$. The bijection in the following proposition implies that

$$
\chi^{\lambda/\mu}(g_{n\alpha}) = \varepsilon_n(\lambda/\mu) \sum \text{sgn}(T_0) \ldots \text{sgn}(T_{n-1})
$$

(3.2)

where the sum is over all n-quotient border-strip tableaux (T_0, \ldots, T_{n-1}) of shape λ/μ and type α. An illustrative example of the bijection is given in Figure 2 in Section 3.4 below.

Proposition 3.6. Let λ/μ be an n-decomposable skew-partition of mn and let $\alpha = (\alpha_1, \ldots, \alpha_k)$ be a partition of m. There is a canonical bijection between border-strip tableaux of shape λ/μ and type $n\alpha$ and n-quotient border-strip tableaux of shape λ/μ and type α. Under this bijection, if T is mapped to the n-tuple (T_0, \ldots, T_{n-1}), then

$$
\text{sgn}(T) = \varepsilon_n(\lambda/\mu) \text{sgn}(T_0) \ldots \text{sgn}(T_{n-1}).
$$

Proof. Let T be a border-strip tableau of shape λ/μ and type $n\alpha$. The abacus gives a canonical bijection between border strips in λ/μ of length $n\ell$ and border strips of length ℓ in the skew-partitions $\lambda(i)/\mu(i)$ for $i \in \{0, \ldots, n-1\}$. If the border strip of length $n\alpha_k$ in T corresponds to a border strip of length α_k in $\lambda(i_k)/\mu(i_k)$, then we label the corresponding boxes in the Young diagram of $\lambda(i_k)/\mu(i_k)$ by k. Removing these border strips from the tableaux concerned and iterating the process with the border strip of length $n\alpha_{k-1}$, and so on, we obtain a canonical bijection between border-strip tableaux of shape λ/μ and type $n\alpha$ and n-quotient border-strip tableaux of shape λ/μ and type α.

It only remains to prove the assertion about signs. Since $\varepsilon_n(\lambda/\mu)$ is the common sign of any λ/μ-tableau of shape λ/μ and type (n^m), it suffices to show that if T is a λ/μ-tableau of type $n\alpha$ and U is a λ/μ-tableau of type $n\beta$, then

$$
\text{sgn}(T) \text{sgn}(U) = \text{sgn}(T_0) \ldots \text{sgn}(T_{n-1}) \text{sgn}(U_0) \ldots \text{sgn}(U_{n-1}).
$$

Starting from $\Gamma(\lambda)$ with the beads numbered in order of their positions, perform the sequence of bead moves corresponding to T, then perform the inverse of the sequence of bead moves corresponding to U. Let σ be the resulting permutation of the beads. Each time a border strip of height ℓ is removed or added, the permutation required to restore the order of numbers is an $\ell + 1$-cycle. Therefore $\text{sgn} \sigma = \text{sgn}(T) \text{sgn}(U)$. On the other hand, σ permutes the beads on each runner amongst themselves, and a similar argument now shows that

$$
\text{sgn}(\sigma) = \text{sgn}(T_0) \ldots \text{sgn}(T_{n-1}) \text{sgn}(U_0) \ldots \text{sgn}(U_{n-1}).
$$

\square
Comparing equations (3.1) and (3.2) we see that to complete the proof of Theorem 3.3, it suffices to show that

$$\sum \text{sgn}(T_0) \ldots \text{sgn}(T_{n-1}) = \text{Ind}^S_H \left(\chi^{\lambda(0)/\mu(0)} \times \cdots \times \chi^{\lambda(n-1)/\mu(n-1)} \right)(g_\alpha) \quad (3.3)$$

where the sum is over all \(n\)-quotient border-strip tableaux \((T_0, \ldots, T_{n-1})\) of shape \(\lambda/\mu\) and type \(\alpha\). In fact equation (3.3) follows from Lemma 3.4 and the Murnaghan–Nakayama rule, by some manipulations that are essentially formal. By Lemma 3.4 we have

$$\text{Ind}^S_H \left(\chi^{\lambda(0)/\mu(0)} \times \cdots \times \chi^{\lambda(n-1)/\mu(n-1)} \right)(g_\alpha) = \sum_t \chi^{\lambda(0)/\mu(0)}(g_{\alpha_0(t)}) \cdots \chi^{\lambda(n-1)/\mu(n-1)}(g_{\alpha_{n-1}(t)}) \quad (3.4)$$

where the sum is over all \((\ell_0, \ldots, \ell_{n-1})\)-tabloids \(t\) such that \(g_\alpha t = t\) and \(\alpha_i(t)\) is the cycle type of the permutation of row \(i + 1\) of \(t\) induced by \(g_\alpha\).

For such a tabloid \(t\), let

$$f(t) = \sum \text{sgn}(T_0) \ldots \text{sgn}(T_{n-1})$$

where the sum is over all \(n\)-quotient border-strip tableaux \((T_0, \ldots, T_{n-1})\) of shape \(\lambda/\mu\) and type \(\alpha\), such that \(T_i\) has a border strip labelled \(j\) (of length \(\alpha_j\)) if and only if the elements of the orbit of \(g_\alpha\) corresponding to the part \(\alpha_j\) lie in row \(i + 1\) of \(t\). The Murnaghan–Nakayama rule implies that if \(g_\alpha t = t\), then

$$\chi^{\lambda(0)/\mu(0)}(g_{\alpha_0(t)}) \cdots \chi^{\lambda(n-1)/\mu(n-1)}(g_{\alpha_{n-1}(t)}) = f(t),$$

and so, by equation (3.4),

$$\text{Ind}^S_H \left(\chi^{\lambda(0)/\mu(0)} \times \cdots \times \chi^{\lambda(n-1)/\mu(n-1)} \right)(g_\alpha) = \sum f(t)$$

where the sum is over all \((\ell_0, \ldots, \ell_{n-1})\)-tabloids \(t\) such that \(g_\alpha t = t\). Every \(n\)-quotient border-strip tableau of shape \(\lambda/\mu\) and type \(\alpha\) corresponds to some tabloid \(t\) such that \(g_\alpha t = t\). Thus

$$\sum \text{sgn}(T_0) \ldots \text{sgn}(T_{n-1}) = \sum f(t)$$

where the left-hand sum is over all \(n\)-quotient border-strip tableaux of shape \(\lambda/\mu\) and type \(\alpha\), and the right-hand sum is over all \((\ell_0, \ldots, \ell_{n-1})\)-tabloids \(t\) such that \(g_\alpha t = t\). Equation (3.3) now follows on comparing the two preceding equations.
3.4 Example

We give an example of the correspondences used in the proof of Theorem 3.3. Take \(m = 5 \) and \(n = 3 \), and let

\[
\lambda / \mu = (8, 5, 3, 2, 2, 2)/(2, 2, 1, 1, 1).
\]

Any border-strip tableau of shape \(\lambda / \mu \) and type \((3^5) \) has either two or four 3-border-strips of height 1, with the rest of height 0, so one has \(e_3(\lambda / \mu) = 1 \). Let \(\alpha = (2, 1, 1, 1) \). By the Murnaghan–Nakayama rule, \(\chi^{\lambda/\mu}(g_{3\alpha}) \) is the sum of the signs of the four border-strip tableaux of type \(\lambda / \mu \) and type \(3\alpha = (6, 3, 3, 3) \) shown in Figure 2. Their signs are \(+1, -1, -1, -1\), respectively, so one has \(\chi^{\lambda/\mu}(g_{3\alpha}) = -2 \). These tableaux are in bijection with the four 3-quotient border-strip tableaux of shape \(\lambda / \mu \) and type \(\alpha = (2, 1, 1, 1) \) shown in Figure 2; since \(\text{sgn}_3(\lambda / \mu) = 1 \), the bijection is sign preserving.

![Figure 2. The bijection in Proposition 3.6 between border-strip tableaux of shape (8, 5, 3, 2, 2, 2)/(2, 2, 1, 1, 1) and type (6, 3, 3, 3) and 3-quotient border-strip tableaux of the same shape and type (2, 1, 1, 1). The shapes of the border-strip tableaux forming each 3-quotient border-strip tableau are given by the 3-quotient of (8, 5, 3, 2, 2, 2)/(2, 2, 1, 1, 1), namely ((1, 1, 1), (3, 1)/(1, 1), \varnothing). To make clear the skew shape, the tableaux of shape (3, 1)/(1, 1) are drawn as (3, 1)-tableaux with two empty boxes.](image)

The 3-quotient of \(\lambda / \mu \) is \(((1, 1, 1), (3, 1)/(1, 1), \varnothing)\), so the characters of \(S_3 \) and \(S_2 \) we must consider are the sign character and the trivial character, respectively. Taking \(g_{(2,1,1,1)} = (12) \in S_5 \), and following the end of the proof of Theorem 3.3, we see that there are four \((3, 2)\)-tabloids fixed by \((12)\), namely

\[
\begin{align*}
\begin{array}{ccc}
3 & 4 & 5 \\
1 & 2 & \\
\end{array}, &
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & \\
\end{array}, &
\begin{array}{ccc}
1 & 2 & 4 \\
3 & 5 & \\
\end{array}, &
\begin{array}{ccc}
1 & 2 & 5 \\
3 & 4 & \\
\end{array},
\end{align*}
\]

in the order corresponding to the tableaux shown in Figure 2. The corresponding values of the function \(f \) used in the proof of Theorem 3.3 are \(+1, -1, -1, -1\).
respectively. It should be noted that in general there will be several tableaux corresponding to each product of character values
\[\chi^{(0)}/\mu^{(0)}(g_{\alpha_0}(t)) \cdots \chi^{(n-1)}/\mu^{(n-1)}(g_{\alpha_{n-1}}(t)); \]

it is a special feature of this example that each \(f(t) \) has a single summand, and so the bijection extends all the way to tabloids.

4 Proof of Theorem 1.5

We shall prove Theorem 1.5 by induction on the number of parts of \(\gamma \). Most of the work occurs in proving the base case when \(\gamma \) has a single part. In the first step we combine the results of Section 3 and Section 4. For later use in Section 6, we state the following proposition for a general deflation map.

Proposition 4.1. Let \(m, n \in \mathbb{N} \), let \(\vartheta \) be an irreducible character of \(S_m \), and let \(\lambda/\mu \) be a skew-partition of \(mn \). Let \(g \in S_n \) be an \(n \)-cycle. If \(\lambda/\mu \) is not \(n \)-decomposable, then \(\text{Defres}_{S_m}^\vartheta (\lambda/\mu) \). If \(\lambda/\mu \) is \(n \)-decomposable, then

\[
(\text{Defres}_{S_m}^\vartheta \chi^{\lambda/\mu})(g) = \epsilon_n(\lambda/\mu) \langle \text{Ind}_H^S(\chi^{\lambda/\mu} \times \cdots \times \chi^{\lambda/(n-1)/\mu/(n-1)}), \vartheta \rangle
\]

where \(H = S_{|\lambda(0)/\mu(0)|} \times \cdots \times S_{|\lambda(n-1)/\mu(n-1)|} \).

Proof. If \(\lambda/\mu \) is not \(n \)-decomposable, then, by Theorem 3.3, \(\chi^{\lambda/\mu}(g_{\alpha}) = 0 \) for all partitions \(\alpha \) of \(m \). Hence, by Proposition 2.6 (ii), \((\text{Defres}_{S_m}^\vartheta \chi^{\lambda/\mu})(g) = 0 \).

If \(\lambda/\mu \) is \(n \)-decomposable, then, using Proposition 2.6 (i), we may restate Theorem 3.3 as

\[
\omega(\text{Res}_{S_m} \chi^{\lambda/\mu}) = \epsilon_n(\lambda/\mu) \text{Ind}_H^S(\chi^{\lambda(0)/\mu(0)} \times \cdots \times \chi^{\lambda(n-1)/\mu(n-1)}). \tag{4.1}
\]

The result now follows from Proposition 2.6 (ii).

It is clear from the condition on row numbers in equation (1.1) in Definition 1.4 that if \(\lambda/\mu \) is a skew-partition of \(mn \), then there is at most one \(m \)-border-strip tableau of shape \(\lambda/\mu \) and type \((n) \). The following lemma gives a more precise condition. Recall that a skew-partition \(\sigma/\tau \) is said to be a horizontal strip if the Young diagram of \(\sigma/\tau \) has no two boxes in the same column.

Lemma 4.2. Let \(m, n \in \mathbb{N} \) and let \(\lambda/\mu \) be a skew-partition of \(mn \). If \(\lambda/\mu \) is \(n \)-decomposable, and each \(\lambda^{(i)}/\mu^{(i)} \) is a horizontal strip, then there is a unique \(m \)-border-strip tableau of shape \(\lambda/\mu \) and type \((n) \); this tableau has sign \(\epsilon_n(\lambda/\mu) \). Otherwise there are no such tableaux.
Proof. Suppose that T is an m-border-strip tableau of type (n) and shape λ/μ. Then by Definition 3.1, λ/μ is n-decomposable. Let $\Gamma(\lambda)$ be an n-runner abacus display for λ using tn beads for some $t \in \mathbb{N}$. Let $\Gamma(\mu)$ be the abacus display for μ obtained from $\Gamma(\lambda)$ by an appropriate sequence of m single bead moves, so that in each move a bead is slid upwards into a gap immediately above it. We label the positions on the abacus from top to bottom so that the positions in row r of an abacus display are numbered $(r-1)n, \ldots, rn-1$ (as usual). Observe that the row number of a border strip of length n in T corresponding to a bead in position p of $\Gamma(\lambda)$ is the number of beads in positions $p+1, p+2, \ldots$ of $\Gamma(\lambda)$. Therefore if $p < p'$ and the beads in positions p and p' of $\Gamma(\lambda)$ both correspond to border strips in T, then in the sequence of bead moves corresponding to T, the bead in position p' is moved upwards before the bead in position p.

Let $i \in \{0, \ldots, n-1\}$. Suppose that $\Gamma(\lambda)$ has beads in positions $nq+i, nq'+i$ where $q < q'$, and that $\Gamma(\mu)$ has no beads in positions $n(q+1)+i, \ldots, nq'+i$. The bead in position $nq+i$ of $\Gamma(\lambda)$ prevents the bead initially in position $nq'+i$ from reaching its final position in $\Gamma(\mu)$. Therefore the bead in position $nq+i$ must be moved before the bead in position $nq'+i$ reaches its final position. This contradicts the previous paragraph. Hence there exist $x_j \in \mathbb{N}_0$ and $y_j \in \mathbb{N}_0$ such that the beads on runner i of $\Gamma(\lambda)$ are in positions $\{i+nx_j : 1 \leq j \leq s\}$, the beads on runner i of $\Gamma(\mu)$ are in positions $\{i+ny_j : 1 \leq j \leq s\}$ and

\[y_1 \leq x_1 < y_2 \leq x_2 < \cdots < y_s \leq x_s. \tag{4.2}\]

It easily follows that $\lambda^{(i)}/\mu^{(i)}$ is a horizontal strip. Then, by Proposition 3.6, $\text{sgn}(T) = \varepsilon_n(\lambda/\mu)$.

Conversely, suppose that λ/μ is n-decomposable and each $\lambda^{(i)}/\mu^{(i)}$ is a horizontal strip. Then inequality (4.2) on the bead positions in each runner holds. We now describe a sequence of m single upward bead moves that transforms $\Gamma(\lambda)$ into $\Gamma(\mu)$, and thus corresponds to a border-strip tableau T of shape λ/μ and type $(n)^*m$. At each step, locate the bead with maximal position p such that there is no bead in position p of $\Gamma(\mu)$. Slide that bead up into position $p-n$. This is possible by inequality (4.2). The row numbers of the border strips of length n corresponding to this sequence of moves are increasing, so T is an m-border-strip tableau of shape λ/μ and type (n). Uniqueness is clear since there is always at most one m-border strip tableau of shape λ/μ and type (n).

We can now complete the proof of the base case.

Proposition 4.3. Let $m, n \in \mathbb{N}$ and let $g \in S_n$ be an n-cycle. If λ/μ is a skew-partition of mn, then

\[
(\text{Defres}_{S_n} \chi^{\lambda/\mu})(g) = a_{\lambda/\mu}(n).
\]
Proof. If \(\lambda/\mu\) is not \(n\)-decomposable, then \(a_{\lambda/\mu,(n)} = 0\) by Lemma 4.2. Proposition 4.1 implies that the result holds in this case.

Now let us suppose that \(\lambda/\mu\) is \(n\)-decomposable. Let \(\ell_i = |\lambda^{(i)}/\mu^{(i)}|\) for each \(i \in \{0, \ldots, n - 1\}\). By Proposition 4.1 and Frobenius reciprocity, we have

\[
(\text{Defres}_{\ell_n} \chi^{\lambda/\mu})(g) = \varepsilon_n(\lambda/\mu)(\chi^{\lambda/\mu})(\ell_n,\cdots,\ell_1,\ell_0,\ell_{n-1}) = \varepsilon_n(\lambda/\mu)(\ell_n,\cdots,\ell_1,\ell_0,\ell_{n-1}) = 0.
\]

Theorem 2.3.13 (ii) of [8] states that if \(\lambda/\mu\) is a skew-partition of \(\ell\), then

\[
\langle \chi^{\sigma/\tau}, 1_{S_\ell} \rangle = \begin{cases} 1 & \text{if } \sigma_1 \geq \tau_1 \geq \sigma_2 \geq \tau_2 \geq \cdots, \\ 0 & \text{otherwise,} \end{cases}
\]

and it is easily seen that this first condition precisely picks out the cases where \(\sigma/\tau\) is a horizontal strip. Therefore \((\text{Defres}_{\ell_n} \chi^{\lambda/\mu})(g) = \varepsilon_n(\lambda/\mu)\) if each \(\lambda^{(i)}/\mu^{(i)}\) is a horizontal strip, and otherwise \((\text{Defres}_{\ell_n} \chi^{\lambda/\mu})(g) = 0\). The proposition now follows from Lemma 4.2.

For the inductive step we need the following lemma and proposition. The former is well known and can be deduced from [8, 2.3.12]. We write \(\mu \subseteq \lambda\) if \(\mu\) is a subpartition of \(\lambda\) (i.e. the Young diagram of \(\mu\) is contained in that of \(\lambda\)).

Lemma 4.4. Let \(\lambda/\mu\) be a skew-partition of \(r\). If \(1 \leq c < r\), then

\[
\text{Res}_{S_c \times S_{r-c}} \chi^{\lambda/\mu} = \sum_{\tau} \chi^{\tau/\mu} \times \chi^{\lambda/\tau}
\]

where the sum is over all partitions \(\tau\) such that \(\mu \subseteq \tau \subseteq \lambda\) and \(|\tau/\mu| = c\).

For later use we state and prove the following proposition for a general deflation map.

Proposition 4.5. Let \(m, n \in \mathbb{N}\) and let \(\lambda/\mu\) be a skew-partition of \(mn\). Let \(\vartheta\) be an irreducible character of \(S_m\). Let \(g \in S_n\). If \(g = kh\) where \(k \in S_\ell\) and \(h \in S_{n-\ell}\), then

\[
(\text{Defres}_{S_n} \chi^{\lambda/\mu})(g) = \sum_{\tau} (\text{Defres}_{S_\ell} \chi^{\tau/\mu})(k) (\text{Defres}_{S_{n-\ell}} \chi^{\lambda/\tau})(h)
\]

where the sum is over all partitions \(\tau\) such that \(\mu \subseteq \tau \subseteq \lambda\) and \(|\tau/\mu| = m\ell\).

Proof. Let \(B\) be the base group of the wreath product \(S_m \ltimes S_n \leq S_{mn}\). Choose a subgroup \(S_m\ltimes S_{n(\ell-\ell)} \leq S_{mn}\) containing \(B\). If \(\psi\) is a character of \(S_m \ltimes S_n\), then it is easily checked that

\[
\text{Res}_{S_\ell \times S_{n-\ell}} (\text{Def}_{S_n}^{\vartheta}) \psi = (\text{Def}_{S_\ell}^{\vartheta} \times \text{Def}_{S_{n-\ell}}^{\vartheta}) (\text{Res}_{S_m \ltimes S_\ell \times S_m \ltimes S_{n-\ell}} \psi).
\]
Hence
\[
\text{Res}_{S_\ell \times S_{n-\ell}} (\text{Defres}_{S_n}^\theta \chi) = (\text{Defres}_{S_\ell}^\theta \times \text{Defres}_{S_{n-\ell}}^\theta) \left(\text{Res}_{S_{m \ell} \times S_{m(n-\ell)}}^{S_{mn}} \chi \right)
\]
for any character \(\chi \) of \(S_{mn} \). The proposition now follows from the expression for \(\text{Res}_{S_{m \ell} \times S_{m(n-\ell)}}^{S_{mn}} \chi^{\lambda/\mu} \) given in Lemma 4.4. \(\Box \)

We are now ready to prove Theorem 1.5. Let \(m, n \in \mathbb{N} \) and let \(\lambda/\mu \) be a skew-partition of \(mn \). Let \(\gamma = (\gamma_1, \ldots, \gamma_d) \) be a composition of \(n \). Let \(g \in S_n \) have cycle type \(\gamma \) and let \(h \in S_{n-\gamma_1} \) have cycle type \((\gamma_2, \ldots, \gamma_d) \). Note that, by Lemma 4.2, if \(\tau/\mu \) is a skew-partition of \(m\gamma_1 \), then there is at most one \(m \)-border-strip tableau of shape \(\tau/\mu \) and type \((\gamma_1) \). We shall denote this tableau by \(T_{\tau/\mu} \) when it exists. By Definition 1.4, \(a_{\tau/\mu,(\gamma_1)} = \text{sgn}(T_{\tau/\mu}) \) (or is zero if no such tableau exists). It follows that Proposition 4.3 may be restated as
\[
(\text{Defres}_{S_{\gamma_1}}^{} \chi^{\tau/\mu})(k) = \text{sgn}(T_{\tau/\mu})
\]
where \(k \in S_{\gamma_1} \) is a \(\gamma_1 \)-cycle and
\[
(\text{Defres}_{S_{\gamma_1}}^{} \chi^{\tau/\mu})(k) = 0
\]
if no tableau \(T_{\tau/\mu} \) exists. It therefore follows from Proposition 4.5 that
\[
(\text{Defres}_n^{} \chi^{\lambda/\mu})(g) = \sum_{\tau} \text{sgn}(T_{\tau/\mu})(\text{Defres}_{S_{n-\gamma_1}}^{S_{\gamma_1}} \chi^{\lambda/\tau})(h)
\]
(4.3)
where the sum is over all partitions \(\tau \) such that \(\mu \leq \tau \leq \lambda, |\tau/\mu| = m\gamma_1 \) and there is an \(m \)-border-strip tableau of shape \(\tau/\mu \). By induction on the number of parts of \(\gamma \) we have
\[
(\text{Defres}_n^{} \chi^{\lambda/\mu})(g) = \sum_{\tau} \text{sgn}(T_{\tau/\mu})a_{\lambda/\mu,(\gamma_2,\ldots,\gamma_d)}
\]
with the same conditions on the sum. It is clear that if \(T \) is an \(m \)-border-strip tableau of shape \(\lambda/\mu \) and type \(\gamma \), then the border strips in \(T \) corresponding to the \(m \) parts of length \(\gamma_1 \) in \(\gamma^{*m} \) form an \(m \)-border-strip tableau of shape \(\tau/\mu \) for some \(\tau \). Therefore the right-hand side of the previous equation is \(a_{\lambda/\mu,\gamma} \). This completes the proof of Theorem 1.5.

5 An application to Foulkes’ Conjecture

For \(m, n \in \mathbb{N} \), let \(\phi^{(mn)} \) be the permutation character of \(S_{mn} \) acting on all unordered set partitions of \(\{1, 2, \ldots, mn\} \) into \(n \) sets each of size \(m \). Equivalently,
\[
\phi^{(mn)} = \text{Ind}_{S_m \times S_n}^{S_{mn}} 1.
\]
Foulkes’ Conjecture asserts that if $m \leq n$, then
\[\langle \phi^{(m)}(\lambda), \chi^\lambda \rangle \geq \langle \phi^{(n)}(\lambda), \chi^\lambda \rangle \]
for all partitions λ of mn. Equivalent formulations of Foulkes’ Conjecture exist in the language of general linear groups, symmetric polynomials, and geometric invariant theory. Despite having been attacked from all these directions (and more), Foulkes’ Conjecture has only been proved when $m \leq 4$ (see [2, 13]), asymptotically when n is very large compared to m (see [1, p. 352]) and, in a computational result of Müller and Neunhöffer [14], when $m + n \leq 17$. For further background we refer the reader to [20, Problem 9]. For some recent results on the constituents of $\phi^{(m)}$ see [6, 16].

In this section we use character deflations to prove a new recursive formula for the character multiplicities in Foulkes’ Conjecture. Firstly, using Frobenius reciprocity, then the inflation-deflation reciprocity relation
\[\langle \text{Def}_{S_n} \psi, \chi \rangle = \langle \psi, \text{Inf}_{S_n^{S_m}}^{S_n} \chi \rangle \]
(5.1)
where ψ is a character of $S_m \wr S_n$ and χ is a character of S_n, we observe that
\[\langle \phi^{(m)}(\lambda), \chi^\lambda \rangle = \langle \text{Def}_{S_n} \chi^\lambda, 1_{S_n} \rangle. \]

Proposition 5.1. Let $m, n \in \mathbb{N}$. If λ is a partition of mn, then
\[\langle \phi^{(m)}(\lambda), \chi^\lambda \rangle = \frac{1}{n!} \sum_{\ell=1}^{n} \sum_{\mu} \varepsilon(\ell/\mu) \langle \phi^{(m-\ell)}(\mu), \chi^\mu \rangle \]
where the second sum is over all partitions μ of ℓm such that there exists an m-border strip tableau of shape λ/μ and type (ℓ).

Proof. We have seen that
\[\langle \phi^{(m)}(\lambda), \chi^\lambda \rangle = \langle \text{Def}_{S_n} \chi^\lambda, 1_{S_n} \rangle = \frac{1}{n!} \sum_{g \in S_n} (\text{Def}_{S_n} \chi^\lambda)(g). \]

We may write each $g \in S_n$ as a product of an ℓ-cycle containing the letter 1 and some $h \in S_{n-\ell}$ acting on the remaining letters. The number of possible such ℓ-cycles is $(n-1)!/(n-\ell)!$, hence
\[\langle \phi^{(m)}(\lambda), \chi^\lambda \rangle = \frac{1}{n!} \sum_{\ell=1}^{n} \frac{(n-1)!}{(n-\ell)!} \sum_{h \in S_{n-\ell}} (\text{Def}_{S_n} \chi^\lambda)(xh) \]
where x is the ℓ-cycle $(12 \ldots \ell)$. We now apply Proposition 4.5 to see that
\[\langle \phi^{(m)}(\lambda), \chi^\lambda \rangle = \frac{1}{n!} \sum_{\ell=1}^{n} \frac{1}{(n-\ell)!} \sum_{h \in S_{n-\ell}} \sum_{\mu} (\text{Def}_{S_%ell} \chi^\lambda/\mu)(x)(\text{Def}_{S_{n-\ell}} \chi^\mu)(h) \]
where the sum is over partitions $\mu \subseteq \lambda$ with $|\lambda/\mu| = m\ell$. Since x is an ℓ-cycle, Proposition 4.3 shows that $(\text{Defres}_\ell \chi^{\lambda/\mu})(x)$ is $\varepsilon_\ell(\lambda/\mu)$ if there exists an m-border-strip tableau of shape λ/μ and type (ℓ) and is zero otherwise. Thus

$$
\langle \phi(m^n), \chi^{\lambda} \rangle = \frac{1}{n} \sum_{\ell=1}^{n} \sum_{\mu} \varepsilon_\ell(\lambda/\mu) \frac{1}{(n-\ell)!} \sum_{h \in S_{n-\ell}} (\text{Defres}_{S_{n-\ell}} \chi^{\mu})(h)
$$

$$
= \frac{1}{n} \sum_{\ell=1}^{n} \sum_{\mu} \varepsilon_\ell(\lambda/\mu) (\text{Defres}_{S_{n-\ell}} \chi^{\mu}, 1_{S_{n-\ell}})
$$

$$
= \frac{1}{n} \sum_{\ell=1}^{n} \sum_{\mu} \varepsilon_\ell(\lambda/\mu) \langle \phi(m^{n-\ell}), \chi^{\mu} \rangle
$$

where, in each case, the second sum is over all partitions $\mu \subseteq \lambda$ for which there exists an m-border-strip tableau of shape λ/μ and type (ℓ). □

Proposition 5.1 gives an algorithm for testing Foulkes’ Conjecture for a single character χ^{λ} of S_{mn} that is far faster than more direct methods, such as those requiring the character values of $\phi(m^n)$ and $\phi(n^m)$ to be calculated on all partitions of mn. Timings suggest that it can be significantly faster than the algorithm used by SYMMETRICA [9], although some of this gain comes at the expense of increased use of memory. For example, to calculate all the multiplicities $\langle \phi(6^{11}), \chi^{\lambda} \rangle$ for λ a partition of 66 takes 34 minutes using the Haskell [17] implementation of Proposition 5.1 available from the third author’s website\(^1\), compared to 350 minutes for SYMMETRICA using the function COMPLETE_COMPLETE_PLET, both running on the same machine.

The graphs in Figures 3 and 4 show a number of intriguing features of the character multiplicities appearing in Foulkes’ Conjecture. In particular, it seems plausible that if Foulkes’ Conjecture is false, then a counterexample occurs when the relevant partition is either very large or very small in the lexicographic order on partitions of mn with at most n parts.

Using SYMMETRICA, Foulkes’ Conjecture has been checked for all m and n with $m + n \leq 17$ in [14]. Using Proposition 5.1 and the software already mentioned, we have extended this range. The relevant data is available from the third author’s website.

Corollary 5.2. If $m \leq n$ and $m + n \leq 19$, then

$$
\langle \phi(m^n), \chi^{\lambda} \rangle \geq \langle \phi(n^m), \chi^{\lambda} \rangle
$$

for all partitions λ of mn. □

\(^1\) See www.ma.rhul.ac.uk/~uvah099/.
Figure 3. The left-hand graph shows $\log_2(\phi(7^r), \chi^k)$ for all partitions of 56 with at most eight parts. Partitions are ordered lexicographically, with the smallest partition (7^8) at the far right. If the multiplicity is zero then the point is placed below the x axis. Vertical lines separate partitions with equal largest parts. The right-hand graph shows an enlarged view of the multiplicities for partitions with first part 19; the range of these partitions is indicated by the arrow in the left-hand graph.
Figure 4. The top graph shows $\log_2 (\phi(7^8), \chi^2) - \log_2 (\phi(8^7), \chi^2)$ for the partitions of 56 with at most seven parts for which the smaller multiplicity is non-zero. To increase their visibility a small number of points have been enlarged. Partitions are ordered lexicographically, with the smallest partition 8^7 at the far right. The lower graph shows $\log_2 (\phi(7^8), \chi^2)$ for those partitions for which $\langle \phi(8^7), \chi^2 \rangle = 0$; if one has $\langle \phi(7^8), \chi^2 \rangle = 0$, then the point is drawn below the axis.
6 Generalized deflations

In this section we discuss deflation with respect to an arbitrary irreducible character \(\vartheta \) of \(S_m \). In the case where \(\vartheta \) is labelled by a hook partition, \(\vartheta = \chi^{(a,1^b)} \) where \(a + b = m \), we give a combinatorial description, generalizing Theorem 1.5. We also prove some other general results, and show how these, together with the results of Section 4, may be used to calculate the values of an irreducible character of \(S_{mn} \) deflated with respect to an arbitrary character of \(S_m \).

Firstly we deduce from Theorem 1.5 an analogous result for deflations with respect to the sign character. As is usual, if \(\lambda \) is a partition, then we denote by \(\lambda' \) the conjugate partition to \(\lambda \).

Proposition 6.1. Let \(m,n \in \mathbb{N} \) and let \(\lambda/\mu \) be a skew-partition of \(mn \). If \(\gamma \) is a composition of \(n \) and \(g \in S_n \) has cycle type \(\gamma \), then

\[
(\text{Defres}_{S_n}^{\text{sgn} S_m})(g) = \begin{cases}
\alpha_{\lambda'/\mu',\gamma} \quad &\text{if } m \text{ is even,} \\
\text{sgn}_{S_n}(g) \alpha_{\lambda'/\mu',\gamma} \quad &\text{if } m \text{ is odd.}
\end{cases}
\]

Proof. It is easily seen that

\[
\text{Res}_{S_m \triangleleft S_n} \text{sgn}_{S_m} = \begin{cases}
\text{sgn}_{S_m} \quad &\text{if } m \text{ is even,} \\
\text{sgn}_{S_m} \text{sgn}_{S_n} \quad &\text{if } m \text{ is odd.}
\end{cases}
\]

Hence if \(\chi \) is any character of \(S_m \), then

\[
\text{Defres}_{S_n}^{\text{sgn} S_m} \chi = \eta \text{Defres}_{S_n}(\chi \text{sgn}_{S_m})
\]

where \(\eta = 1_{S_n} \) if \(m \) is even and \(\eta = \text{sgn}_{S_n} \) if \(m \) is odd. Theorem 7.15.6 of [19] (which is written in the language of skew Schur functions) can be restated in character theoretic terms as follows: if \(\lambda/\mu \) is a skew-partition of \(mn \), then

\[
\chi^{\lambda/\mu} \text{sgn}_{S_m} = \chi^{\lambda'/\mu'}.
\]

Therefore, by Theorem 1.5, we have

\[
\text{Defres}_{S_n}^{\text{sgn} S_m} (\chi^{\lambda'/\mu'}) = \eta(g)\alpha_{\lambda'/\mu',\gamma},
\]

as required. \(\square \)

It would also have been possible to prove Proposition 6.1 directly from Proposition 4.1, by reasoning along the same lines as the proof of Theorem 1.5 in Section 5.
Figure 5. A $(4, 1^4)$-like border-strip 3-diagram of shape $(9, 8, 7, 6, 2, 1)/(5, 5, 3, 3)$. Border strips in the horizontal border-strip 3-diagram are shown in light grey and white, with their initial boxes labelled I; border strips in the vertical border-strip 3-diagram are shown in light grey and dark grey with their terminal boxes labelled T.

We now turn our attention to the case where $\vartheta = \chi^{(a, 1^b)}$ for a hook partition $(a, 1^b)$. For convenience, we use the language of skew shapes (see, for example, [22]). A skew shape is a finite subset of $\mathbb{N} \times \mathbb{N}$ that is convex with respect to the partial order \preceq defined by $(i, j) \preceq (i', j')$ if and only if $i \leq i'$ and $j \leq j'$. We identify the skew-partition λ/μ in which λ has t parts with the skew shape $\{(i, j) : 1 \leq j \leq t, \mu_i + 1 \leq j \leq \lambda_i\}$. We define $\chi^\kappa = \chi^{\lambda/\mu}$ and $\varepsilon_n(\kappa) = \varepsilon_n(\lambda/\mu)$.

Suppose κ is a non-empty skew shape. Then we define the initial box of κ to be (i_κ, j_κ) where $(i_\kappa, j_\kappa) \in \kappa$ and, for any $i \leq i_\kappa$ and $j \geq j_\kappa$, if $(i, j) \in \kappa$, then $i = i_\kappa$ and $j = j_\kappa$. Similarly, we define the terminal box of κ to be (k_κ, ℓ_κ) where $(k_\kappa, \ell_\kappa) \in \kappa$ and, for any $k \geq k_\kappa$ and $\ell \leq \ell_\kappa$, if $(k, \ell) \in \kappa$, then $k = k_\kappa$ and $\ell = \ell_\kappa$. The initial and terminal boxes exist due to the convexity of κ. For all $(i, j) \in \kappa$, $i_\kappa \leq i \leq k_\kappa$ and $\ell_\kappa \leq j \leq j_\kappa$.

We use the term border strip in this context to mean a connected skew shape which contains no 2×2 square. We say that D is a border-strip n-diagram if D is a finite set of disjoint border strips, each of length n, such that $\bigcup D$ is a skew shape. We say that D is a horizontal border-strip n-diagram if whenever (i_ρ, j_ρ) is the initial box of some border strip $\rho \in D$, we have $(i, j_\rho) \notin \bigcup D$ for all $i < i_\rho$. Similarly, D is a vertical border-strip n-diagram if whenever (k_ρ, ℓ_ρ) is the terminal box of some border strip $\rho \in D$, we have $(k_\rho, \ell) \notin \bigcup D$ for all $\ell < \ell_\rho$.

We define a relation \mathcal{R} on the set of border strips of length n by $(\rho_1, \rho_2) \in \mathcal{R}$ if ρ_1 and ρ_2 are disjoint border strips of length n and there exist $z \in \rho_1$ and $w \in \rho_2$ such that $z <_p w$. Observe that when $n \geq 2$, the relation \mathcal{R} is not transitive. We can now state the following combinatorial definition, which is illustrated in Figure 5.
Definition 6.2. Let κ be a skew shape of size mn, let a, b be positive integers such that $a + b = m$, and let D and E be two border-strip n-diagrams such that $\kappa = \bigcup (D \cup E)$. We say that (D, E) is an $(a, 1^b)$-like border-strip n-diagram of shape κ if the following conditions are satisfied:

1. $|D| = a$ and $|E| = b + 1$,
2. $D \cap E = \{\sigma\}$ where σ is a border strip of length n which contains the initial box of κ,
3. D is a horizontal border-strip n-diagram, and E is a vertical border-strip n-diagram,
4. there do not exist $\rho_D \in D$ and $\rho_E \in E$ such that $(\rho_E, \rho_D) \in \mathcal{R}$.

We denote the set of $(a, 1^b)$-like border-strip n-diagrams of shape κ by $\mathcal{B}_{a,b}^\kappa$.

We note that, by a simple counting argument, whenever $(D, E) \in \mathcal{B}_{a,b}^\kappa$, the elements of D are pairwise disjoint, as well as those of E, and we have $$\left(\bigcup D\right) \cap \left(\bigcup E\right) = \sigma.$$

Definition 6.2 is inspired by the Littlewood–Richardson rule (see for instance [8, Theorem 2.8.13] or [19, Theorem A1.3.3]) in the case of a hook partition $(a, 1^b)$. In this case the rule states that the multiplicity of $\chi^{(a,1^b)}$ in χ^κ is the number of ways to represent κ as a union of two skew shapes α and β satisfying the following:

1. the size of α is a and the size of β is $b + 1$,
2. $\alpha \cap \beta = \{x\}$ where x is the initial box of κ,
3. α is a horizontal strip and β is a vertical strip,
4. there do not exist $y \in \alpha$ and $z \in \beta$ such that $z <_p y$.

Thus $$\text{Defres}_{S_1}^{\chi^{(a,1^b)}}(\chi^\kappa)(1\cdot S_1) = |\mathcal{B}_{a,b}^\kappa|.$$

This is the case $n = 1$ of the following theorem.

Theorem 6.3. Let κ be a skew shape of size mn. Let a, b be positive integers such that $a + b = m$. Let $g \in S_n$ be an n-cycle. Then $$\text{Defres}_{S_n}^{\chi^{(a,1^b)}}(\chi^\kappa)(g) = \varepsilon_n(\kappa)|\mathcal{B}_{a,b}^\kappa|.$$

We observe that an (m)-like border-strip n-diagram of shape κ may be viewed as an m-border-strip tableau of shape κ and type (n) by labelling the border strips in the unique way so that the condition on row numbers in Definition 1.4 holds. Thus Theorem 6.3 is a generalization of Theorem 1.5 in the case of an n-cycle.
Example 6.4. We shall compute $\Defres_{S_3}^{\chi^{(3,1)}}(g)$ where g is a 3-cycle. There are two $(3,1)$-like border-strip 3-diagrams of shape $(4,4,4)$, namely $(\{\rho_1, \rho_2, \rho_3\}, \{\rho_3, \rho_4\})$ and $(\{\rho_5, \rho_6, \rho_7\}, \{\rho_7, \rho_8\})$, where ρ_i denotes the border strip consisting of the boxes labelled by i in the tableaux below:

$$
\begin{array}{ccc}
1 & 2 & 2 \\
1 & 2 & 3 \\
1 & 4 & 4 \\
\end{array},
\begin{array}{ccc}
5 & 6 & 7 \\
5 & 6 & 7 \\
5 & 6 & 8 \\
\end{array}.
$$

Since $\varepsilon_3(4,4,4) = 1$, Theorem 6.3 implies that $\Defres_{S_3}^{\chi^{(3,1)}}(g) = 2$.

The proof of Theorem 6.3 requires the following definition, in which we assume that $a + b = m$.

Definition 6.5. Let κ be a skew shape of size mn. Define $\mathcal{D}_{a,b}^\kappa$ to be the set of pairs (D, E) where D and E are border-strip n-diagrams such that $\kappa = \bigcup (D \cup E)$ and the following conditions are satisfied:

(1') $|D| = a$ and $|E| = b$,

(3) D is a horizontal border-strip n-diagram, and E is a vertical border-strip n-diagram,

(4) there do not exist $D \in D_{a,b}$ and $E \in E$ such that $(\rho E, \rho D) \in \mathcal{R}$.

Note that since $|\kappa| = mn$, the border-strips in D and E are necessarily disjoint. We need the following two lemmas on $\mathcal{D}_{a,b}^\kappa$; their proofs are given after the proof of Theorem 6.3.

Lemma 6.6. Let κ be a skew shape of size mn, and let a, b be positive integers such that $a + b = m$. Then

$$
\langle \omega(\Res_{S_m \times S_n} \chi^\kappa), \Ind_{S_a \times S_b}^{S_m}(\chi^{(a)} \times \chi^{(b)}) \rangle = \varepsilon_n(\kappa)|\mathcal{D}_{a,b}^\kappa|.
$$

Lemma 6.7. Let κ be a skew shape of size mn. Let $0 \leq a < m$ and $b = m - a$. Then

$$
|\mathcal{D}_{a,b}^\kappa| = |\mathcal{B}_{a,b}^\kappa| + |\mathcal{B}_{a+1,b-1}^\kappa|.
$$

Proof of Theorem 6.3. The proof is by induction on b. Recall that g denotes an n-cycle. In the case $b = 0$ we have

$$
(\Defres_{S_n}^{\chi^{(m)}}(g) = a_{\kappa,(n)} = \varepsilon_n(\kappa)|\mathcal{D}_{m,0}^\kappa| = \varepsilon_n(\kappa)|\mathcal{B}_{m,0}^\kappa|
$$

where the first equality follows from Theorem 1.5 and the second by Lemma 4.2.
For $b > 0$, we combine Proposition 2.6 with Lemmas 6.6 and 6.7, Young’s rule and the inductive hypothesis to get

$$\langle \text{Defres}_{S_n}^{\chi^{(a,b)}} \chi^{\kappa} \rangle(g) = \langle \omega(\text{Res}_{S_m \wr S_n} \chi^{\kappa}), \chi^{(a,b)} \rangle$$

$$= \langle \omega(\text{Res}_{S_m \wr S_n} \chi^{\kappa}), \text{Ind}_{S_a \times S_b}^{S_m \times S_n} (\chi^{(a)} \times \chi^{(1)}) - \chi^{(a+1,b-1)} \rangle$$

$$= \varepsilon_n(\kappa) |D^a_{a,b}| - (\text{Defres}_{S_n}^{\chi^{(a+1,b-1)}} \chi) \hat{g} \rangle$$

$$= \varepsilon_n(\kappa) |D^a_{a,b}| - \varepsilon_n(\kappa) |B^a_{a+1,b-1}|$$

$$= \varepsilon_n(\kappa) |B^a_{a,b}|,$$

as required.

It remains to demonstrate the truth of the two lemmas.

Proof of Lemma 6.6. Let g denote an n-cycle. In the case $b = 0$,

$$\langle \omega(\text{Res}_{S_m \wr S_n} \chi^{\kappa}), \chi^{(m)} \rangle = (\text{Defres}_{S_n}^{\chi^{\kappa}})(g) = a_{\kappa,(n)} = \varepsilon_n(\kappa) |D^0_{m,0}|$$

by Proposition 2.6, Theorem 1.5 and Lemma 4.2. Similarly, the case $a = 0$ follows using Proposition 6.1:

$$\langle \omega(\text{Res}_{S_m \wr S_n} \chi^{\kappa}), \chi^{(1m)} \rangle = (\text{Defres}_{S_n}^{\chi^{\kappa}})(g) = \varepsilon_n(\kappa) |D^0_{n,m}|.$$

In the general case, let $\kappa = \lambda/\mu$. By Frobenius reciprocity and Lemma 4.4,

$$\langle \omega(\text{Res}_{S_m \wr S_n} \chi^{\kappa}), \text{Ind}_{S_a \times S_b}^{S_m \times S_n} (\chi^{(a)} \times \chi^{(1)}) \rangle$$

$$= \left\langle \sum_{\tau} \omega(\text{Res}_{S_a \wr S_n} \chi^{\tau/\mu}) \times \omega(\text{Res}_{S_b \wr S_n} \chi^{\lambda/\tau}), \chi^{(a)} \times \chi^{(1)} \right\rangle$$

where the sum is over all partitions τ such that $\mu \subseteq \tau \subseteq \lambda$ and $|\tau/\mu| = an$. Using the two extreme cases, it follows that

$$\langle \omega(\text{Res}_{S_m \wr S_n} \chi^{\kappa}), \text{Ind}_{S_a \times S_b}^{S_m \times S_n} (\chi^{(a)} \times \chi^{(1)}) \rangle = \sum_{\tau} \varepsilon_n(\tau/\mu) |D^{\tau/\mu}_{a,0} | \varepsilon_n(\lambda/\tau) |D^{\lambda/\tau}_{0,b} |$$

$$= \varepsilon_n(\lambda/\mu) \sum_{\tau} |D^{\tau/\mu}_{a,0} | \varepsilon_n(\lambda/\tau) |D^{\lambda/\tau}_{0,b} |$$

$$= \varepsilon_n(\lambda/\mu) |D^{\lambda/\mu}_{a,b}|,$$

as required.

The proof of Lemma 6.7 relies upon the following simple result.
Lemma 6.8. Let ρ_1 and ρ_2 be disjoint border strips, each of length n, such that $(\rho_1, \rho_2) \in \mathcal{R}$. For $t \in \{1, 2\}$, let (i_t, j_t) and (k_t, ℓ_t) be the initial and terminal boxes respectively of ρ_t. Then:

(i) There exists a box $(r, s) \in \rho_2$ such that either $r \geq i_1$ and $s > j_1$, or $r > k_1$ and $s \geq \ell_1$.

(ii) There exists a box $(t, q) \in \rho_1$ such that either $t < i_2$ and $q \leq j_2$, or $t \leq k_2$ and $q < \ell_2$.

Proof. We prove the first statement only; the second is entirely analogous. Suppose that $(\rho_1, \rho_2) \in \mathcal{R}$ but there exists no $(r, s) \in \rho_2$ satisfying the stated conditions. Since $(\rho_1, \rho_2) \in \mathcal{R}$, there exist $(a, b) \in \rho_1$ and $(e, f) \in \rho_2$ such that $(a, b) <_p (e, f)$. In particular, $i_1 \leq e$ and $\ell_1 \leq f$, and our assumption implies that $f \leq j_1$ and $e \leq k_1$. Thus (e, f) belongs to the rectangle $[i_1, k_1] \times [\ell_1, j_1]$. The border strip ρ_1 divides its complement in $[i_1, k_1] \times [\ell_1, j_1]$ into two connected components, with (e, f) lying to the south east of ρ_1 (as $(a, b) \in \rho_1$ satisfies $(a, b) <_p (e, f)$).

Let $\tau = \{(c, j_1 + 1) : i_1 \leq c \leq k_1 + 1\} \cup \{(k_1 + 1, d) : \ell_1 \leq d \leq j_1 + 1\}$, and observe that our assumption ensures that $\tau \cap \rho_2 = \emptyset$. The set $\rho_1 \cup \tau$ is the boundary of a certain region Δ. Since $(e, f) \in \Delta$ and ρ_2 does not intersect the boundary, the whole border strip ρ_2 must be contained in Δ and, in particular, $\rho_2 \subset [i_1, k_1] \times [\ell_1, j_1]$. However, as ρ_1 is a border strip of the same length with initial and terminal boxes (i_1, k_1) and (ℓ_1, j_1) respectively, ρ_2 must contain the corners (i_1, k_1) and (ℓ_1, j_1) and hence intersect ρ_1, contrary to our hypotheses. \(\square\)

This lemma can be used to verify that if D is a horizontal border-strip n-diagram with initial box $(i_\sigma, j_\sigma) \in \sigma \in D$, then $(\sigma, \rho) \notin \mathcal{R}$ for all $\rho \in D$. Indeed, if $(\sigma, \rho) \in \mathcal{R}$, then by Lemma 6.8(i) there exists $(r, s) \in \rho$ such that either $r \geq i_\sigma$ and $s > j_\sigma$, or $r > k_\sigma$ and $s \geq \ell_\sigma$. The ‘either’ case is impossible because (i_ρ, j_ρ) is the initial box of D. Hence (i_ρ, j_ρ) must lie in $[i_\sigma, r] \times [s, j_\sigma]$, to the south of σ, and so a box of σ lies above (i_ρ, j_ρ), contradicting the horizontality of D. Similarly, if E is a vertical border-strip n-diagram with initial box $(i_\sigma, j_\sigma) \in \sigma \in E$, then $(\rho, \sigma) \notin \mathcal{R}$ for all $\rho \in E$: indeed if $(\rho, \sigma) \in \mathcal{R}$, then by Lemma 6.8(ii) there exists $(t, q) \in \rho$ such that either $t < i_\sigma$ and $q \leq j_\sigma$, or $t \leq k_\sigma$ and $q < \ell_\sigma$. The ‘either’ case is again ruled out because (i_σ, j_σ) is the initial box of E. Hence

$$(t, q) <_p (k_\sigma, q) \leq_p (k_\sigma, \ell_\sigma).$$

and so (k_σ, q) is a box of E because $\bigcup E$ is convex. But this box lies to the left of the terminal box of σ, a contradiction. We shall use these observations in the proof of Lemma 6.7.
Proof of Lemma 6.7. We construct a bijection
\[f : \mathcal{B}_a^\kappa \sqcup \mathcal{B}_a^{\kappa+1,b-1} \to \mathcal{D}_a^\kappa. \]
Given \((D, E) \in \mathcal{B}_a^\kappa \sqcup \mathcal{B}_a^{\kappa+1,b-1}\), let \(\sigma\) denote the unique element of \(D \cap E\). We set
\[f(D, E) = \begin{cases}
(D, E \setminus \{\sigma\}) & \text{if } (D, E) \in \mathcal{B}_a^\kappa, \\
(D \setminus \{\sigma\}, E) & \text{if } (D, E) \in \mathcal{B}_a^{\kappa+1,b-1}.
\end{cases} \]
Firstly, we verify that \(f(D, E) \in \mathcal{D}_a^\kappa\). Suppose that \((D, E) \in \mathcal{B}_a^\kappa\) (as the second case is exactly analogous). Conditions (1'), (3), (4) on \((D, E \setminus \{\sigma\})\) follow immediately provided that \(\bigcup(E \setminus \{\sigma\})\) is a skew shape. Take \(x <_p y <_p z\) with the property that \(x, z \in \bigcup(E \setminus \{\sigma\})\). We know \(y\) lies in the skew shape \(\bigcup E\), so suppose that \(y \in \sigma\). Then if \(z \in \rho_E \in E \setminus \{\sigma\}\), we have \((\sigma, \rho_E) \in \mathcal{R}\), contrary to condition (4) of Definition 6.2.

To see that \(f\) is the bijection we require, we define its inverse map
\[h : \mathcal{D}_a^\kappa \to \mathcal{B}_a^\kappa \sqcup \mathcal{B}_a^{\kappa+1,b-1}. \]
For \((D, E) \in \mathcal{D}_a^\kappa\), let \(\sigma\) denote the border strip of \(D \cup E\) containing the initial box of \(\kappa\). Then we set
\[h(D, E) = \begin{cases}
(D, E \cup \{\sigma\}) & \text{if } \sigma \in D, \\
(D \cup \{\sigma\}, E) & \text{if } \sigma \in E.
\end{cases} \]
We verify that \(h(D, E) \in \mathcal{B}_a^\kappa \sqcup \mathcal{B}_a^{\kappa+1,b-1}\). Suppose \(\sigma \in D\). To see that the union \(\bigcup(E \cup \{\sigma\})\) is a skew shape, take \(x <_p y <_p z\) with \(x, z \in \bigcup(E \cup \{\sigma\})\). If \(x, z\) lie in the skew shape \(\bigcup E\), then so does \(y\), and similarly if \(x, z \in \sigma\), then \(y \in \sigma\). Two cases remain. Firstly, if \(x \in \rho \in E\) and \(z \in \sigma \in D\), then \((\rho, \sigma) \in \mathcal{R}\), contrary to the definition of \(\mathcal{D}_a^\kappa\). Secondly, suppose that \(x \in \sigma \in D\) and \(z \in \bigcup E\), and, for a contradiction, that \(y \in \rho \in D \setminus \{\sigma\}\). Then \((\sigma, \rho) \in \mathcal{R}\), which is impossible by the first observation following Lemma 6.8. (The proof that \(D \cup \{\sigma\}\) is a skew shape in the case \(\sigma \in E\) is entirely analogous.)

Next we verify that if \(\sigma \in D\), then \(E \cup \{\sigma\}\) is a vertical border-strip \(n\)-diagram. Let \((i_\sigma, j_\sigma)\) be the initial box of \(\sigma\) and let \((k_\sigma, \ell_\sigma) \in \sigma\) be the terminal box of \(\sigma\). Since \(E\) is a vertical border-strip \(n\)-diagram, it suffices to check firstly that there is no box \((k_\sigma, \ell) \in \rho_E \in E\) for \(\ell < \ell_\sigma\), and secondly that, if \(\rho \in E\) has terminal box \((k_\rho, \ell_\rho)\), then \((k_\rho, j) \notin \sigma\) for any \(j < \ell_\rho\). The first statement is a consequence of the definition of \(\mathcal{D}_a^\kappa\) since the existence of such a box implies \((\rho_E, \sigma) \in \mathcal{R}\). If the second statement fails with \((k_\rho, j) \in \sigma\), then \((\sigma, \rho) \in \mathcal{R}\) and Lemma 6.8(i) implies that there is a box \((r, s) \in \rho\) with either \(r \geq i_\sigma\) and \(s > j_\sigma\), or \(r > k_\sigma\) and \(s \geq \ell_\sigma\). The ‘either’ case is ruled out because \((i_\sigma, j_\sigma)\) is the initial box of \(\sigma\).
In the ‘or’ case, since \((k, j) \in \sigma\), we have \(k_\sigma \geq k_\rho\), and therefore \(r > k_\sigma > k_\rho\), contradicting that \((r, s) \in \rho\). (The proof that if \(\sigma \in E\) then \(D \cup \{\sigma\}\) is a horizontal border-strip \(n\)-diagram is simpler, using the definition of \(D^E_{a,b}\) and the fact that \((i_\sigma, j_\sigma)\) is the initial box of \(\vartheta\).)

Finally, we must check that if \(\sigma \in D\), then there do not exist elements \(\rho \in D\) and \(\rho' \in E \cup \{\sigma\}\) with \((\rho', \rho) \in \mathcal{R}\). This is true because \((D, E) \in D^E_{a,b}\), and, by the observation following Lemma 6.8, for all \(\rho \in D\), \((\sigma, \rho) \notin \mathcal{R}\). (Again, the case \(\sigma \in E\) is similar.)

We have demonstrated that \(f\) and \(h\) are well-defined, and by their construction the maps are mutually inverse. \(\square\)

This completes the proof of Theorem 6.3 on deflation with respect to hook characters. We now give some results on \(\text{Defres}^\vartheta_{S_n} \chi^\lambda\) for an arbitrary irreducible character \(\vartheta\).

Proposition 4.1 combined with the Littlewood–Richardson rule yields the following corollary, which gives a useful sufficient condition for the deflation of an irreducible character of \(S_{mn}\) to vanish on an \(n\)-cycle.

Corollary 6.9. Let \(m, n \in \mathbb{N}\), let \(\lambda\) be a partition of \(mn\). Let \(\beta\) be a partition of \(m\) and let \(\vartheta = \chi^\beta\). Let \(g \in S_n\) be an \(n\)-cycle. If \((\text{Defres}^\vartheta_{S_n} \chi^\lambda)(g) \neq 0\), then the partition \(\lambda\) has empty \(n\)-core and moreover, \(\lambda(i) \subseteq \beta\) for each \(i \in \{0, \ldots, n-1\}\), where \((\lambda^{(0)}, \ldots, \lambda^{(n-1)})\) is the \(n\)-quotient of \(\lambda\). In this case

\[
(\text{Defres}^\vartheta_{S_n} \chi^\lambda)(g) = \epsilon_n(\lambda/\varnothing)c^\beta_{\lambda^{(0)} \cdots \lambda^{(n-1)}}
\]

where \(c^\beta_{\lambda^{(0)} \cdots \lambda^{(n-1)}}\) denotes a generalized Littlewood–Richardson coefficient.

A related result is Proposition 6.10 below, which gives the degrees of the deflations of the irreducible characters of \(S_{mn}\) to \(S_n\). It may be proved in the same way as equation (1.2) in Section 1. Note that the right-hand side equals the generalized Littlewood–Richardson coefficient \(c^\lambda_{\beta \cdots \beta}\).

Proposition 6.10. Let \(m, n \in \mathbb{N}\). Let \(\beta\) be a partition of \(m\) and let \(\vartheta = \chi^\beta\). Then

\[
\text{Defres}^\vartheta_{S_n} (\chi^\lambda)(1_{S_n}) = \langle \text{Ind}_{S_m \times \cdots \times S_m}^{S_{mn}} \chi^\beta \times \cdots \times \chi^\beta, \chi^\lambda \rangle
\]

for any partition \(\lambda\) of \(mn\). \(\square\)

We end with an example showing how Propositions 4.1, 4.5, and 6.10 and Corollary 6.9 may be used to calculate the values of an irreducible character of \(S_{mn}\) deflated with respect to an arbitrary character of \(S_m\).
Example 6.11. Let $\vartheta = \chi^{(2,2)}$. We shall find $(\text{Defres}_{S_4}^{\vartheta} \chi^{(6,4,4,2)})(g)$ in the cases where $g \in S_4$ is a transposition or a double transposition.

Firstly take g to be a transposition. By Proposition 4.5 we have

$$(\text{Defres}_{S_4}^{\vartheta} \chi^{(6,4,4,2)})(g) = \sum_{\tau} (\text{Defres}_{S_2}^{\vartheta} \chi^{\tau})(1_{S_2})(\text{Defres}_{S_2}^{\vartheta} \chi^{(6,4,4,2)/\tau})(k)$$

where $k = (12) \in S_2$ and the sum is over all partitions τ of 8. Using Proposition 6.10 on the first term we obtain

$$(\text{Defres}_{S_4}^{\vartheta} \chi^{(6,4,4,2)})(g) = \sum_{\tau} c_{(2,2)(2,2)}^{\tau} (\text{Defres}_{S_2}^{\vartheta} \chi^{(6,4,4,2)/\tau})(k)$$

with the same conditions on the sum. By Proposition 4.1, we need only consider those partitions τ such that $(6, 4, 4, 2)/\tau$ is 2-decomposable. The 2-quotient of $(6, 4, 4, 2)$ is $[(2, 1), (3, 2)]$, so the τ we must consider are the partitions $(6, 1^2)$, $(4, 3, 1)$, $(6, 2)$, $(4, 2^2)$, (4^2), $(3^2, 2)$, $(4, 2, 1^2)$, (2^4), $(3^2, 1^2)$. Calculation shows that $c_{(2,2)(2,2)}^{\tau} = 1$ when $\tau \in P$ where

$$P = \{(4, 3, 1), (4, 2^2), (4^2), (2^4), (3^2, 1^2)\}$$

and that $c_{(2,2)(2,2)}^{\tau}$ is zero in the other four cases. Hence by Proposition 4.1 we have

$$(\text{Defres}_{S_4}^{\vartheta} \chi^{(6,4,4,2)})(g) = \sum_{\tau \in P} \varepsilon_2((6, 4, 4, 2)/\tau) \langle \text{Ind}_{H}^{S_4} \chi^{(2,1)/(\tau^{(0)})} \times \chi^{(3,2)/(\tau^{(1)})}, \chi^{(2,2)} \rangle$$

where $H = S_{\lfloor (2,1)/\tau^{(0)} \rfloor} \times S_{\lfloor (3,2)/\tau^{(1)} \rfloor}$. The contributions to the sum from the elements of P, in the order given above, are -1, $+2$, $+1$, $+1$ and $+1$ respectively. For example, the 2-quotient of $(6, 4, 4, 2)/(4, 2, 2)$ is $[(2, 1)/(1), (3, 2)/(2, 1)]$ and $\varepsilon_2((6, 4, 4, 2)/(4, 2, 2)) = 1$, so the contribution from $(4, 2, 2)$ is

$$\langle \text{Ind}_{S_2 \times S_2}^{S_4} \chi^{(2,1)/(1)} \times \chi^{(3,2)/(2,1)}, \chi^{(2,2)} \rangle = \langle \text{Ind}_{I}^{S_4} 1, \chi^{(2,2)} \rangle = 2.$$

Therefore $(\text{Defres}_{S_4}^{\vartheta} \chi^{(6,4,4,2)})(g) = 4$.

Similar arguments can be used in the case where g is a double transposition. By Proposition 4.5 we have

$$(\text{Defres}_{S_4}^{\vartheta} \chi^{(6,4,4,2)})(g) = \sum_{\tau} (\text{Defres}_{S_2}^{\vartheta} \chi^{\tau})(k)(\text{Defres}_{S_2}^{\vartheta} \chi^{(6,4,4,2)/\tau})(h)$$

where k and h are transpositions, and the sum is over all partitions τ of 8. Proposition 4.1 and Corollary 6.9 restrict the possible partitions τ to be considered and
show that \(\text{Defres}_{S_4}^{g} \chi^{(6,4,4,2)}(g) \) equals
\[
\sum_{\tau \in P} \varepsilon_2(\tau / \varnothing) c_{(2,2)}^{(2,2)}((6, 4, 4, 2) / \tau) (\text{Ind}_{H}^{S_4} \chi^{(2,1)} / \tau^{(0)}) \times \chi^{(3,2)} / \tau^{(1)}, \chi^{(2,2)})
\]
where
\[
P = \{(4, 3, 1), (4, 2^2), (4^2), (2^4), (3^2, 1^2)\}
\]
and \(H = S_{(2,1)} / \tau^{(0)} \times S_{(3,2)} / \tau^{(1)} \). The contributions to the sum from the elements of \(P \), in the order given above, are +1, +2, +1, +1 and +1 respectively. Hence \(\text{Defres}_{S_4}^{g} \chi^{(6,4,4,2)}(g) = 6 \).

7 Symmetric functions

Finally, we discuss the translation of our results into the language of symmetric functions. The following well-known facts can be found in [12, Chapter I]. Let \(\Lambda \) be the ring of symmetric functions with integer coefficients in variables \(x_1, x_2, \ldots \), and let \(R = \bigoplus_{n \geq 0} \mathcal{C}(S_n) \). There is a well-known canonical ring isomorphism \(\text{ch}: R \rightarrow \Lambda \), where the ring structure on \(R \) is given, for \(f \in \mathcal{C}(S_m) \) and \(g \in \mathcal{C}(S_n) \), by \(fg = \text{Ind}_{S_m \times S_n}^{S_{mn}} (f \times g) \). Moreover, the map \(\text{ch} \) is an isometry with respect to the standard inner products \(\langle \cdot, \cdot \rangle \) on \(R \) and \(\Lambda \). If \(\lambda / \mu \) is any skew-partition, then \(\text{ch}(\chi^{\lambda / \mu}) = s_{\lambda / \mu} \), the skew Schur function corresponding to \(\lambda / \mu \). Furthermore, suppose that \(\beta \) and \(\nu \) are partitions, with \(|\beta| = m \) and \(|\nu| = n \). Denote by \(s_{\nu} \circ s_{\beta} \) the plethysm of \(s_{\nu} \) and \(s_{\beta} \) (see [12, Section I.8]). Then
\[
\text{ch} \left(\text{Ind}_{S_m \times S_n}^{S_{mn}} \left((\chi^{\beta})^{x_n} \text{Ind}_{S_n}^{S_m} \chi^{\nu} \right) \right) = s_{\nu} \circ s_{\beta} \tag{7.1}
\]
(see [12, Section I.8 and Section I.A.6]). By first using Frobenius reciprocity, then the inflation-deflation reciprocity relation of equation (5.1), we have
\[
\langle \text{Ind}_{S_m \times S_n}^{S_{mn}} \left((\chi^{\beta})^{x_n} \text{Ind}_{S_n}^{S_m} \chi^{\nu} \right) , \chi^{\lambda / \mu} \rangle = \langle \chi^{\nu} , \text{Defres}_{S_n}^{\chi^{\beta}} \chi^{\lambda / \mu} \rangle
\]
for any skew-partition \(\lambda / \mu \) with \(|\lambda / \mu| = mn \). Comparing with equation (7.1) shows that if \(\lambda / \mu \) is such a skew-partition, then
\[
\text{Defres}_{S_n}^{\chi^{\beta}} \chi^{\lambda / \mu} = \sum_{\nu} \langle s_{\lambda / \mu}, s_{\nu} \circ s_{\beta} \rangle \chi^{\nu} \tag{7.2}
\]
where the sum is over all partitions \(\nu \) of \(n \).

Let \(p_I = \sum_i x_i^I \) be the power-sum symmetric function, and write
\[
p_\gamma = p_{\gamma_1} \cdots p_{\gamma_d}
\]
for any composition \(\gamma = (\gamma_1, \ldots, \gamma_d) \). If \(\gamma \) is a composition of \(n \), then we
have \(\chi^\nu(g_Y) = \langle p_Y, s_\nu \rangle \) (see [12, equation (I.7.8)]). Using equation (7.2), we obtain
\[
(\text{Defres}_n^\beta \chi^{\lambda/\mu})(g_Y) = \sum_\nu \langle s_{\lambda/\mu}, s_\nu \circ s_\beta \rangle \chi^\nu(g_Y) \\
= \sum_\nu \langle s_{\lambda/\mu}, s_\nu \circ s_\beta \rangle \langle s_\nu, p_Y \rangle = \langle s_{\lambda/\mu}, p_Y \circ s_\beta \rangle
\] (7.3)
where the sums are over all partitions of \(n \).

In the case when \(\beta = (m) \), we have \(s_\beta = h_m \) where \(h_m \) is the complete symmetric function of degree \(m \) (see [12, Section I.2]). Thus equation (7.3) shows that Theorem 1.5 is equivalent to the identity
\[
\langle s_{\lambda/\mu}, p_Y \circ h_m \rangle = a_{\lambda/\mu,Y}.
\] (7.4)

In [3, Section 9], Désarménien, Leclerc, and Thibon obtain a formula which implies that
\[
s_\mu(p_n \circ h_m) = \sum_{\lambda} \epsilon_{n}(\lambda/\mu)a_{\lambda/\mu,(n)}
\] (7.5)
where the sum is over the partitions \(\lambda \) of \(|\mu| + mn\) such that \(\lambda \supseteq \mu \). (Our definition of an \(m \)-border-strip tableau of type \((n)\) is equivalent to the definition of a horizontal \(n \)-ribbon tableau of weight \(m \) in [3].) In fact, the formula in [3] is more general, giving a combinatorial description of \(s_\mu(p_n \circ s_\kappa) \) for any partition \(\kappa \) of \(n \). Clearly, equation (7.5) is equivalent to equation (7.4) in the case \(\gamma = (n) \); this leads, after some work, to an alternative proof of Theorem 1.5.

Furthermore, in the special case when \(\mu = \emptyset \), a combinatorial description of the left-hand side of equation (7.4) is given by Macdonald in [12, Section I.8, Example 8]. Using Lemma 4.2, one can see that this description is equivalent to the definition of \(a_{\lambda,Y} \).

Acknowledgments. The authors would like to thank Professor Christine Bessenrodt for supplying the reference to Farahat’s paper [5] and an anonymous referee for his or her helpful comments.

Bibliography

Character deflations

Received November 5, 2013.

Author information

Anton Evseev, School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
E-mail: a.evseev@bham.ac.uk

Rowena Paget, School of Mathematics, Statistics & Actuarial Science, University of Kent, Canterbury, Kent CT2 7NF, United Kingdom.
E-mail: r.e.paget@kent.ac.uk

Mark Wildon, Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom.
E-mail: mark.wildon@rhul.ac.uk