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Abstract 

Hot stamping and cold die quenching has been developed in forming complex shaped 

structural components of metals. The aim of this study is the first attempt to develop 

unified viscoplastic damage constitutive equations to describe the thermo-mechanical 

response of the metal and to predict the formability of the metal for hot stamping 

applications. Effects of parameters in the damage evolution equation on the predicted 

forming limit curves were investigated. Test facilities and methods need to be 

established to obtain experimental formability data of metals in order to determine 

and verify constitutive equations. However, conventional experimental approaches 

used to determine forming limit diagrams (FLDs) of sheet metals under different 

linear strain paths are not applicable to hot stamping conditions due to the 

requirements of rapid heating and cooling processes prior to forming. A novel planar 

biaxial testing system was proposed before and was improved and used in this work 

for formability tests of aluminium alloy 6082 at various temperatures, strain rates and 

strain paths after heating, soaking and rapid cooling processes. The key dimensions 

and features of cruciform specimens adopted for the determination of forming limit 

under various strain paths were developed, optimised and verified based on the 

previous designs and the determined heating and cooling method [1]. The digital 

image correlation (DIC) system was adopted to record strain fields of a specimen 

throughout the deformation history. Material constants in constitutive equations were 

determined from the formability test results of AA6082 for the prediction of forming 

limit of alloys under hot stamping conditions. This research, for the first time, enabled 

forming limit data of an alloy to be generated at various temperatures, strain rates and 

strain paths and forming limits to be predicted under hot stamping conditions.  

Keywords Sheet metal forming, Hot stamping, Forming limit diagram (FLD), Biaxial 

testing, Formability prediction 
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1. Introduction 

In automotive and aircraft industries, weight reduction can directly reduce energy 

consumption, which is beneficial to fuel economy improvement and environmental 

friendliness [2]. A 10% decrease in the mass of a conventional vehicle results in a 6% 

to 8% decrease in fuel consumption rate without compromising vehicle’s performance 

[3]. Two feasible ways for reducing the weight of automobile structures are the use of 

high strength steel and the use of sheet of low density. At room temperature, high 

strength steel and aluminium alloys have low formability, which leads to high 

springback and poor surface quality of formed components. To deal with this problem, 

warm and hot forming technologies have been developed, which are hot stamping and 

cold die quenching (also termed as press hardening) for quenchable steel [4] and 

solution heat treatment, forming and in-die quenching (HFQ
®

) of lightweight alloys 

[5]. The hot stamping and cold die quenching process, abbreviated to hot stamping, is 

used to obtain shapes with great complexity and relatively high strength in automotive 

applications. In hot stamping process, heat treatable metal blank is heated up in a 

furnace, transferred to a press and subsequently formed and quenched in a cold tool 

[6]. The technique can be applied to both boron steel and low density sheet metals, 

such as aluminium alloys [7] and magnesium alloys [8]. It has been formulated as the 

HFQ
®

 process, to form complex shaped parts for lightweight structure of vehicles. In 

the HFQ
®

 process, a metal sheet is heated up to a specific temperature at which it is a 

solid solution with a single phase and then transferred to the press and subsequently 

formed and quenched in the cold tool [9, 10]. The control of forming conditions, such 

as heating rate, soaking time, cooling rate, forming temperature and strain rate, are 

critical for the success of these processes [11].  

The forming limit diagram (FLD) is commonly used to evaluate the formability of 

sheet metals [12]. An FLD comprises a set of forming limit curve which identifies the 

boundary between uniform deformation and the beginning of plastic instability which 

leads to materials failure. According to the definition of an FLD, strain paths are 

described as proportional [13], from uniaxial through plane strain to equi-biaxial. The 

characteristic of path dependence causes an FLD to be invalid under non-proportional 

loading [14]. The FLD of a material at elevated temperatures vary greatly in terms of 

shape and position from one formed at room temperature. At an isothermal testing 
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condition, proportional strain paths and constant strain rates are required for the 

determination of FLD at elevated temperatures. Formability tests are used to obtain 

FLDs for sheet metals experimentally and two types of test method are conventionally 

used to determine forming limit strains, namely the out-of-plane test and the in-plane 

test. Nakazima test is a typical out-of-plane test [15], specimens with different widths 

are stretched by a hemispherical punch or hydraulic pressure [16]. Using multiaxial 

tube expansion test is an effective out-of-plane method to measure forming limits 

under various strain states and stress states [17]. The out-of-plane test at room 

temperature has been standardised. It has been used to obtain FLDs at elevated 

temperature as well [18]. Ayres et al. [19] investigated the effects of temperature and 

strain rate on the formability of AA5182 at a temperature of 130°C and 200°C. 

Bagheriasl [20] used cartridge heater for heating up the die in Nakazima test in order 

to obtain the FLDs of AA3003 at temperature of 100-350°C and strain rate of 0.003-

0.1 /s. The digital image correlation (DIC) technique [21] was adopted for strain 

measurement during the tests. Min et al. [22] performed the formability test at a 

temperature of 800°C for boron steel to determine the left hand side of an FLD for hot 

stamping applications, but deformation temperature cannot be controlled accurately 

due to the transfer stage of specimen from a furnace to the cold tool. Shao et al. [23] 

determined FLDs for AA5754 at various temperatures (200-300°C) and forming 

speeds (20-300 mm/s) by setting up the test tool in a hot furnace to create an 

isothermal environment. In order to simulate HFQ
®

 conditions, the requirement to 

simultaneously form and quench after heating makes testing in a furnace impractical. 

In the in-plane test, such as the Marciniak test [24], the test material is stretched over 

a flat-bottomed punch of cylindrical/elliptical cross section. A carrier blank with a 

central hole is usually used to avoid frictional contact between the sheet metal 

specimen and the punch, but optimising the dimension and geometries of carrier blank 

and punch is required in order to induce strain localisation and cracking in the 

unsupported region of the specimen, which complicates the test procedure and 

increases the cost of testing. Li and Ghosh [25] carried out a formability test of 

aluminium alloys 5754, 5182 and 6111 by using the Marciniak approach at a rapid 

forming rate of 1 /s and a range of temperature of 200–350°C, but data was not 

obtained at temperatures over 350°C. Naka et al. [26] investigated the effects of 

forming speed (0.2-200 mm/min corresponding to strain rate of 0.0001-0.1 /s) and 

temperature (20-300°C) on forming limits for AA5083 by using a heated punch in the 
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in-plane test. Planar tensile tests utilising a tensile machine with a cruciform specimen 

is an alternative method to determine forming limits of a material. Hannon and 

Tiernan [27] reviewed planar biaxial testing systems for sheet metals. Two types of 

test machines are generally used, i.e. stand-alone biaxial tensile test machines and link 

mechanism attachments in uniaxial test machines for biaxial testing. Leotoing et al. 

[28] improved a cruciform specimen for the use of formability tests and determined 

the FLD of AA5086 at room temperature [29]. A servo-hydraulic biaxial testing 

machine was used to control loading paths in two vertical directions [30]. A better 

linearity of strain path can be obtained by a planar biaxial testing machine compared 

to conventional Nakazima and Marciniak tests. Abu-Farha et al. [31] investigate 

biaxial deformation of AA5083 and AZ31 at 300°C by using a designed testing tool 

and a heat gun based on an INSTRON uniaxial tensile test machine.   

However, neither of the out-of-plane and the in-plane methods discussed above for 

determining forming limits are suitable for hot stamping applications because extra 

heating and cooling devices are needed and control of heating rate, cooling rate, 

deformation temperature and stretching strain rate is difficult to obtain precisely. 

Therefore, a formability testing system was proposed previously to determine FLDs 

of alloys experimentally under hot stamping conditions.    

Experimentally determining formability is time-consuming and costly, which restricts 

the number of tests that may be conducted. Because of that, various analytical and 

numerical models have been developing as an alternative to perform theoretical 

formability prediction and eliminate the need for much experimental work. Banabic et 

al. [32] and Stoughton et al. [33] reviewed primary models for forming limit 

prediction at room temperature from four aspects, namely new constitutive equations 

used for limit strain computation, polycrystalline models, ductile damage models, 

advanced numerical models for non-linear strain path or various process parameters. 

Theoretical models applied to FLD prediction at elevated temperature include Hora’s 

theory [34, 35], M-K theory [24, 36, 37] and Storen and Rice’s theory Rice [22, 38, 

39]. Although various analytical and numerical models have been developed for 

theoretical formability prediction, most of them are applicable to ambient conditions 

or warm/hot forming conditions. Viscoplasticity theory can also be used for analysis 

on forming processes at elevated temperatures and a dislocation-based viscoplastic-



5 

 

damage model had been proposed by Lin et al. [40] since microstructural evolution at 

elevated temperatures has a great effect on formability of an alloy. This theory can be 

developed to predict forming limits of metals for hot stamping applications [41]. 

The goal of this paper is to employ improved biaxial test system and optimised 

specimens to enable experimental data of FLDs of an alloy, for the first time, to be 

determined under hot stamping conditions, and to be used for calibration of materials 

model. A novel planar biaxial testing system for use on a Gleeble thermo-mechanical 

simulator is presented first in this paper to obtain FLDs of AA6082 under HFQ
®

 

conditions. Formability tests of AA6082 were conducted at various temperatures, 

strain rates and strain paths after heating and cooling processes. A 2D continuum 

damage mechanics (CDM)-based material model was developed for the prediction of 

forming limit of alloys under HFQ
®

 conditions and the constitutive equations were 

calibrated from the formability test results of AA6082.  

2. Experimental programme 

2.1 Temperature profile  

Hot stamping conditions contain the control of heating rate, soaking time, cooling 

rate, deformation temperature and strain rate. Aluminium alloy 6082, which is 

extensively used in the automotive industry [42], was used to machine the specimens 

to conduct the formability tests under HFQ
®

 conditions. Chemical composition of 

commercial AA6082 at T6 condition is shown in Table 1. The determination of FLDs 

requires the deformation of the specimen to be performed at constant temperature and 

constant strain rate under different linear strain paths. A schematic of the required 

temperature profile for formability tests of AA6082 under HFQ
®

 conditions is shown 

in Fig. 1. Heating rate and cooling rate are critical parameters for the HFQ
®

 process 

and should be controlled precisely to maintain a supersaturated solid solution without 

grain degradation in a specimen. The material of AA6082 was heated to the solution 

heat treatment temperature of 535°C [43] at a heating rate of 30 °C/s, soaked for 1 

minute, which was sufficient for full resolution of precipitates, and then quenched to a 

designated temperature in the range of 370-510°C at a cooling rate of 100 °C/s [44]. 

The tensile tests were conducted at constant strain rates in the range of 0.01-1 /s. The 

input displacement to the biaxial test was calculated before testing according to the 

designated strain rate and it can be controlled accurately by the Gleeble to enable a 



6 

 

constant true strain rate of the specimen to be obtained at the concerned central region 

during deformation until the onset of necking. Strain path condition contains uniaxial, 

plane strain and biaxial testing. At least three tests were completed for each test 

condition and each strain path to prove the repeatability. 

 

Fig. 1 A schematic showing the temperature profiles for obtaining forming limit data 

of AA6082 under HFQ
® 

conditions. 

 

Table 1 Chemical composition of AA6082  

Element Si Fe Cu Mn Mg Cr Zn Ti Al 

Weight 

proportion (%) 
0.90 0.38 0.08 0.42 0.70 0.02 0.05 0.03 Balance 

 

2.2 Design of a biaxial testing apparatus  

The core part of the novel biaxial testing system is the biaxial mechanism, which was 

designed to be used on a Gleeble 3800 [45]. The test apparatus was used to convert an 

input uniaxial force from a Gleeble into an output biaxial force of different loading 

ratios by coupling two rotatable plates to a central drive shaft, so that different strain 

paths were realised. A specimen can be clamped on top of the biaxial mechanism. 

Detailed descriptions of the biaxial mechanism can be found in the previous study [1].  

535

Solution heat treatment

Soaking 1 minute

Heating rate

30  C/s

Cooling rate 100  C/s

Isothermal tensile 

tests at constant 
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T
em

p
er
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u
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 (
 C

)

Time (s)
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Advantageously, this mechanism is relatively simple and is employable within limited 

space on tensile test machines. The heating and cooling rates can be controlled 

accurately by a Gleeble so that complex forming conditions can be applied. Friction 

effect on the FLD of a material is avoided. Based on the proposed planar biaxial 

apparatus, strain states can be controlled and different strain paths can be obtained so 

that an FLD can be obtained under hot stamping conditions. 

2.3 Set-up of biaxial tensile testing 

Fig. 2 is the set-up of the experimental system on the Gleeble 3800. The DIC system 

with a high-speed camera and a micro lens was used for strain measurement and this 

technique enables full-field strains to be measured at different stages by comparing 

the digital images of a pattern sprayed on a specimen. Different framing rates were 

used to correspond with different experimental stretching strain rates. In this work, for 

the tests at strain rates of 0.01 /s, 0.1 /s and 1 /s, the framing rates were used as 25 fps, 

50 fps and 500 fps for full resolution of 1280×1024 pixels, respectively. The high-

speed camera was triggered after heating and cooling processes to start to record 

images during the stretching of a specimen. ARAMIS, a non-contact optical 3D 

deformation measuring system, was used to record the deformation history during the 

deformation of a specimen and to post-process images for the determination of 

forming limit strain. Facet size of 10 pixels and facet step of 8 pixels were used for 

the post-processing analysis in order to obtain sufficient grids for the determination of 

forming limits according to the standard analysis procedure in ARAMIS.  
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Fig. 2 The set-up of the biaxial testing system for formability tests 

The top surface of a cruciform specimen faced and was close to the camera lens. The 

micro camera lens was adjusted to be parallel to the specimen surface by checking 

whether the quality of camera focus is consistent on each corner of the captured image 

on a computer screen. The pattern with black background and white dots was pre-

painted on the surface of the specimen and, by using the FlameProof spray, the pattern 

does not degrade at temperatures below 1093°C which is lower than the maximum 

required temperature of 535°C. Thermocouples are attached to the backside of the 

specimen and linked to the Gleeble temperature control system in order to monitor 

temperature history on a specimen.  

Each of four clamping regions on one arm of a cruciform specimen contacted tightly 

with a stainless steel plate which is electrode for resistance heating. Cables with crimp 

ring terminals were used to connect the plates to the power supply of the Gleeble for 

resistance heating. Two adjacent arms of a cruciform specimen are connected to 

positive electrodes and the other two arms are attached to negative electrodes and 
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electrical current goes through the entire specimen to heat it. The quench system with 

a maximum regulated air of 120 psi connected to four flared nozzles for air cooling. 

Cooling air can envelop the entire gauge region of the specimen and cooling rate of 

100°C/s can be obtained by applying half of the regulated air pressure in this study.  

3. Development of specimen design      

3.1 Dimensions of specimens  

Various cruciform specimens with different features were designed for biaxial testing 

[27, 46, 47] in order to characterise mechanical behaviour of metals subjected to 

biaxial loading, as shown in Fig. 3, but no standard of cruciform specimen geometry 

for biaxial testing has been developed and no existing specimens can be used directly 

in the new biaxial apparatus because of the usage of resistance heating. The objective 

of specimen design is to ensure that the beginning of localised necking starts within 

the central biaxial loading region of a specimen instead of in the arms. 

 

 

                      (a)                          (b)                            (c)                     (d) 

Fig. 3  Cruciform geometries with features of slots and central thickness reduction 

used in different biaxial testing studies [30] 

For a cruciform specimen, the arms experience uniaxial tension while the central 

region is tensioned biaxially. The load bearing capacity of sheets under uniaxial 

tension is smaller than that under biaxial tension so that failure usually occurs in the 

arms of a cruciform specimen in a biaxial testing. It has been found that thickness 

reduction in the central region and slots in the arms of a cruciform specimen are 

beneficial for both inducing localised necking to occur in the central gauge region and 

improving the uniformity of strain and stress distribution [48-50]. In this case, only 

the central zone is considered as the gauge section where biaxial loading condition is 

fulfilled. Therefore, the features of thickness reduction and slots in the arms were 
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adopted in this work for the specimen design. A series of specimen designs with 

different shapes and dimensions of gauge section, slots and fillets were evaluated 

based on extensive experimental trials and finite element simulations. The criteria for 

optimisation were the uniformity of temperature field and strain field at gauge section, 

linear strain path control and failure location control. The optimum designs of 

specimens, for different tensile conditions, are given in Fig. 4. 

Fig. 4(a) shows a flat dog-bone specimen with a 98 mm parallel length used for 

formability tests of AA6082 under uniaxial tension state for HFQ
®

 conditions. The 

thickness of the uniaxial testing specimen was 1.5 mm. Fig. 4(b) shows the 

dimensions of cruciform specimen used for equi-biaxial testing. Fillets of 10 mm exist 

between two opposing corners of the cruciform specimen to reduce stress 

concentration in the corners and the value was reduced to 2 mm for the other two 

opposing corners in order to balance the temperature asymmetry in the arms of the 

specimen. The thickness of central circular gauge zone was reduced to 0.7 mm from 

1.5 mm through recessing each surface by 0.4 mm. This was designed to undergo 

recorded deformation under biaxial stretching in the concerned central region. Since 

the deformation will take place after heat treatment process of the material during 

testing, any possible strain hardening caused during machining would be eliminated 

through dislocation recovery; therefore, the effect of thickness reduction on the results 

was not considered in this research. Slots with the width of 1.4 mm and the length of 

28 mm were machined into the arms by laser cutting for distributing the load 

uniformly to the central gauge region. The distance from the mid-length of the 

cruciform specimen to the ends of the slots in arms is 15.5 mm. Fig. 4(c) shows the 

cruciform specimen used for plane strain testing. Only one slot exists in two loaded 

arms for this geometry and the middle slot is 1.5 mm shorter than others in the other 

two arms. Fillets of 10 mm are at the intersection of two adjacent arms and other 

dimensions of the specimen are shown in Fig. 4(c).   
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Section A-A 

Section A-A 

 

(a) Dimensions of the uniaxial specimen  

 

(b) Dimensions of the cruciform specimen for equi-biaxial testing 

 

(c)Dimensions of the cruciform specimen for plane strain testing 

Fig. 4 Dimensions (in mm) of specimens used for the formability test 
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3.2 Experimental verification  

Some dimensions of the specimen have been modified, which has observable effect 

on the temperature distribution of a specimen due to resistance heating; therefore, the 

updated designs have to be verified again. Experiments were conducted to measure 

the temperature distribution in an specimen subjected to solution heat treatment under 

HFQ
®

 conditions, by using selective heating and cooling method. A few pairs of 

thermocouples were welded on the surface of each specimen in order to identify 

temperature gradients. In Fig. 5, the locations of the thermocouples are marked and 6 

locations on the specimen are identified in Fig. 5(a) for the equi-biaxial testing and 4 

locations in Fig. 5(b) for the plane strain testing. The temperature at central location 1 

was controlled precisely by the Gleeble. The specimens were heated up to 535°C at 

the central point, soaked for 1 min, and then cooled to 440°C and soaked for 15 

seconds. The average values at soaking time at temperatures of 535°C and 440°C 

were calculated, as shown in Table 2. A similar temperature history at each location 

of thermocouples can be seen from previous study [1]. A higher temperature within 

the central gauge region of a cruciform specimen is beneficial for inducing failure to 

start in this area. For the specimen used for equi-biaxial testing, the temperature 

difference within the central concerned region was within ±10°C when the 

temperature at central location remained at 440°C. Since the gradient of electrical 

potential decreases from the positive electrodes to the negative electrodes in the 

specimen, temperature distribution out of the gauge region was not symmetric, which 

may have effects on the deformation of the central zone and the value of the ratio of 

minor strain to major strain. For the cruciform specimen used for plane strain testing, 

the maximum temperature difference within the central concerned region was within 

±5°C when the temperature at central point remained at 440°C. The specimen 

geometry determines the variation of temperature along the entire specimen due to 

resistance heating; however, acceptable uniformity of temperature distribution within 

the concerned central zone of both designs was successfully obtained.  
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(a) 6 locations of thermocouples welded on cruciform specimen for the equi-

biaxial testing condition 

 

(b) 4 locations of thermocouples welded on cruciform specimen for the plane 

strain testing condition 

Fig. 5  Locations of thermocouples welded on geometries 

Table 2 Experimental results of temperatures at different locations on geometries 

Temperature results (°C) T1 T2 T3 T4 T5 T6 

Specimen for equi-

biaxial testing  

535.03 503.13 493.28 522.22 540.51 549.61 

439.98 423.82 408.64 431.11 445.46 451.31 

Specimen for plane strain 

testing 

535.02 540.78 505.24 503.53   

439.42 444.12 422.64 423.70   
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(a) Fracture of cruciform specimen under the equi-biaxial state 

 

 

(b) Fracture of cruciform specimen under the plane strain state 

Fig. 6 Experimental validation of the cruciform specimen designs, through DIC 

measurement, at the deformation temperature of 440 °C and the strain rate of 0.1 /s 

The equi-biaxial testing was performed using the proposed cruciform specimens at the 

deformation temperature of 440°C and at the strain rate of 0.1 /s after solution heat 

treatment at 535°C and quenching. Fig. 6 shows the DIC results of biaxial tensile tests 

before failure by using specimen for equi-biaxial testing and plane strain testing, 

respectively. The international standard ISO 12004-2 [51] was used to identify the 

onset of necking and thus determine forming limit. This method was already 

embedded in the ARAMIS software. The principle of this standard method is to 

analyse the measured strain distribution along predefined cross sections which are 

perpendicular to the crack direction. An inverse parabola was fitted through two fit 

windows, which were determined using the second derivative of the strain values 

against their positions, on both sides of the crack. The values of peak points on the 

fitted curve were used as the limit major strain and limit minor strain. The ratio of 

strain path (minor strain to major strain) is 0.307 in Fig. 6(a) and that is 0.132 in Fig. 

6(b). Higher values of strain level can be observed in the central gauge region than in 

Major strain 

Major strain 
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surrounding regions, which indicate the location of failure. The failure locations were 

observed in the central zones experimentally for equi-biaxial and plan strain testing, 

which verified the design of both cruciform specimens for formability testing. 

4. Experimental results of uniaxial/biaxial formability testing 

The linearity of strain path for each experimental test condition was investigated since 

FLD is highly strain path dependent. Representative results of strain paths are shown 

in Fig. 7. The data was collected from the fracture region instead of the central point 

of the specimen through the DIC results and at least 5 points were chosen to calculate 

the average values of major strain and minor strain. The actual strain rate was 

measured through data processing (by calculating the slope of true strain with 

deformation time) and was correlated with the designed strain rate. The linear fits are 

also shown in this figure. It can be seen that the strain paths are approximately 

proportional throughout deformation for each test condition, so that strain path 

linearity was achieved. 

 

 

Fig. 7 Evolution of strain paths for various testing conditions  
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(a) FLD for different deformation temperatures at 0.1 /s 

 

(b) FLD for different strain rates at 440°C 

Fig.8  FLDs of AA6082 at various deformation temperatures and strain rates under 

hot stamping conditions (Dashed lines were obtained through the polynomial fitting 

algorithm) 
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By processing data for different geometries of specimens stretched under different 

strain states, forming limit data of AA6082 for different strain paths, under different 

temperatures and strain rates, was determined and shown as symbols in Fig. 8. Dashed 

lines in Fig. 8 were obtained through the polynomial fitting algorithm. The FLDs of 

AA6082 for HFQ
®

 conditions could be obtained through curve fitting by a material 

model, shown as solid curves in the figure (details on the materials model are given in 

Section 5). In Fig. 8 (a), a monotonic increase is observed in forming limit from the 

temperature of 370°C to 510°C. It indicates that high formability of AA6082 can be 

obtained at a higher temperature under HFQ
®

 conditions. The three forming limit 

curves are quite close to each other on the left hand side of the FLD, which means that 

the sensitivity of temperature dependence is larger for tension-tension biaxial strain 

paths than for tension-compression strain paths. It is found that when the strain rate 

increases from the designated strain rate of 0.01 /s to 1 /s, the forming limit of 

AA6082 increases, as shown in Fig. 8(b). The forming limit has a larger increase from 

0.1 /s to 1 /s than that from 0.01 /s to 0.1 /s. In summary, higher forming speeds and 

higher temperatures within the designated ranges are beneficial for enhancing the 

forming limits of AA6082 under HFQ
®

 conditions. This founding is consistent with 

that of the uniaxial tensile test of AA6082 [52] under hot stamping conditions. It was 

found that strain hardening increases with increasing strain rate (0.1-4 /s) and 

decreasing temperature (400-500°C). Ductility decreases with decreasing temperature 

and decreasing strain rates in the range of 0.01-1/s. 

5. 2D Continuum damage mechanics (CDM)-based materials model 

5.1 Constitutive equations  

In order to predict an FLD of sheet metals under hot stamping conditions, a 2D CDM-

based materials model was developed, which comprises a set of equations describing 

the viscoplastic behaviour of the material. These viscoplastic equations are expected 

to capture the features of forming limit curves of sheet metals under various thermo-

mechanical conditions. By considering von-Mises behaviour for rigid perfect 

viscoplasticity, a power-law viscoplastic potential function   can be defined in the 

form of [53]: 
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where   ̇ is effective strain rate. 

Based the previous studies [41, 54], a set of unified viscoplastic constitutive equations 

are formulated as below:  
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where the temperature dependent parameters in Eqns. (1)-(8) are defined by: 
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where    is the universal gas constant, T is the absolute temperature.  ,   ,   ,   , 

   
,   ,   ,    

,    
,    

,   ,   ,   ,    ,   ,   ,    ,    ,    ,   ,    ,    ,   ,  , 

   ,    ,    
 ,    

 ,    
  and    

  are material constants to be determined from 

experimental data. 

Eqn. (3) is the flow rule, in which effective strain rate   ̇ is formulated by using the 

traditional power law with damage   taken into account. k is the initial yield point 

and   represents the isotropic hardening.   in Eqn. (5) is a function of the normalized 

dislocation density  ̅ ( ̅       ⁄ , where    is the initial dislocation density and   

is the instantaneous dislocation density during deformation), where  ̅ is given by Eqn. 

(6). Eqn. (6) represents the accumulation of dislocations due to plastic flow, and 

dynamic and static recovery. The effect of damage   was introduced in flow stress 

Eqn. (7), where       is the elastic matrix of a material. In Eqn. (8), the damage 

evolution  ̇ was based on the nucleation and the growth of voids around particles. It 

is a modified version of the expression set out by Khaleel et al. [55] for damage due to 

superplastic void growth, which is appropriate for this case where the fine grained 

alloy is deformed by a significant amount at high temperature [7]. Since a typical 

forming limit curve is the plot of minor strain and major strain under different strain 

paths, the first two terms in Eqn. (8) are proposed to describe the effects of strain 

states on the damage evolution in the material. The parameters    and    are used to 

calibrate the effects of major strain and minor strain on the damage evolution. The 

values of   and    are suggested to be in the range of 0-1.0.   is introduced in Eqn. 

(8) to control the intensity of the effects of principal strains on the damage evolution, 

thus to control the predicted FLD of a material.    and   are defined as temperature 

dependent and    is defined as both temperature dependent and strain rate dependent, 

given in Eqns. (18)-(20).  

5.2 Effects of parameters on predicted curves 

Fig.9 shows the effect of the correction factor    on the position of a forming limit 

curve at the deformation temperature of 440°C and the strain rate of 0.1 /s. When the 

value of    varies from 0.5 to 2.0 with fixed other parameters ( ,    and   ), the 

location of a forming limit curve becomes lower but no significant changes of shape 

are observed. The coverage range of the values of forming limit under each strain path 

becomes larger and the lowest point of the curve moves towards the left hand side of 
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the FLD when a lower value of    is adopted in the damage evolution equation. The 

values of forming limit may vary depending on the particular experimental test 

method used. Therefore,    is also considered as a correction factor for adjusting 

predicted results and fitting to experimental data. 

 

Fig. 9 The effect of the correction factor    on the predicted curve at the deformation 

temperature of 440°C and the strain rate of 0.1 /s ( =5.60,   =0.45,   =0.15) 

Fig.10 and Fig. 11 show the effects of the significance of major strain and minor 

strain on the shape of a forming limit curve, respectively, under the same condition of 

the deformation temperature of 440°C and the strain rate of 0.1 /s. A small range of 

   value causes a dramatic change of the curve shape, which means that    is a more 

sensitive parameter than   . The effects of the two parameters    and    on the shape 

of a forming limit curve are quite similar. The strain level on the right hand side of the 

FLD and the location of the lowest point of a curve can be adjusted by varying the 

values of    and    to model the effects of principal strains on the damage evolution. 

A low value of    and a high value of    contribute to increasing the damage 

evolution rapidly. 
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Fig. 10 The effect of the major strain parameter    on the predicted curve at the 

deformation temperature of 440°C and the strain rate of 0.1 /s (  =1.60,  =5.6, 

  =0.15) 

 

Fig. 11 The effect of the minor strain parameter    on the predicted curve at the 

deformation temperature of 440°C and the strain rate of 0.1 /s (  =1.60,  =5.6, 

  =0.45) 
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Fig. 12 The effect of the damage rate exponent   on the predicted curve at the 

deformation temperature of 440°C and the strain rate of 0.1 /s (  =1.60, 

  =0.45,   =0.15) 

Fig. 12 shows the effect of the damage rate exponent   on the predicted forming limit 

curve. The shape of a forming limit curve changes dramatically when the value of   

varies from 2.0 to 10.0. A parabolic shape of a forming limit curve can be modelled 

with a high value of  . Two intersection points can be observed on the left and right 

hand sides of the FLD at  =-0.5 and  =0.2 with fixed parameters of   ,    and    at 

specified values. 

5.3 Determination of the constitutive equations  

This set of non-linear ordinary differential equations can be solved with the numerical 

Euler integration method by giving initial values for the variables. The trial and error 

method was adopted. Material constants of the unified constitutive equations within 

the Eqns. (3-20) can be determined by fitting the computed true stress-true strain 

curves to corresponding experimental data obtained from uniaxial tension testing and 

by fitting computed FLD to corresponding FLD testing results at different 

deformation temperatures and strain rates after heating and cooling. The first step of 

the fitting procedure was to determine Eqns. (3)-(8) by taking the temperature 

dependent parameters as constants for fitting to computed true stress-true strain 
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curves obtained for different strain rates in uniaxial tensile tests [52]. All the values 

obtained from the first step were retained in the second step and only the temperature 

dependent parameters were adjusted. This step was to determine the pre-exponent and 

activation energy associated constants in Eqns. (9)-(17) by fitting the true stress-true 

strain curves for different deformation temperatures. Since a forming limit curve 

represents the onset of localised necking, instead of strain to failure, the value of 

damage is assumed to be 0.3 when the onset of necking occurs during the calculation 

process, at which the values of major strain    and minor strain    were output. The 

values of constants in Eqns. (18)-(20) were adjusted until fitting experimental and 

computed FLD data for different temperatures and strain rates. 

The uniaxial tensile test data [52] was used to determine the viscoplastic flow of the 

material and the calibrated material constants from that for AA6082 under HFQ
®

 

conditions are listed in Table 3. The material constants in Eqns. (18)-(20) are 

determined by fitting the computed FLD to experimental results obtained using the 

novel biaxial tensile testing system, as listed in Table 4. Fig. 13 shows a comparison 

between experimental (symbols) and computed (solid curves) FLD using material 

constants in Table 3 and Table 4 for AA6082 under HFQ
®

 conditions. Good 

agreement can be seen for each forming limit curve in the diagrams, which indicates 

that the thermal-activated mechanisms described by Arrhenius-type Eqns. (9)-(20) are 

applicable for the principal strain-based damage evolution equation and this set of 

constitutive equations can be used for formability prediction of AA6082 under hot 

stamping conditions. 
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Table 3 Material constants for Eqns. (3)-(17) for AA6082 under HFQ
®
 conditions 

    

(MPa) 

   

(MPa) 

   
 

  

   

(MPa) 

    

 

   
    

  

0.3624 0.5897 0.1018 4.8251 7.3057 2.4577 0.8357 

   
    

(MPa) 

   

 

   

 

   

(J/mol) 

    

 (J/mol) 

     

(J/mol) 

0.2423 249.69 0.19 1.83 25409.54 21692.97 17637.07 

   

(J/mol) 

   

(J/mol) 

     

(J/mol) 

     

(J/mol) 

     

(J/mol) 

   

(J/mol) 

   

(J/(molK)) 

15698.86 2112.59 16273.24 837.80 22107.92 27987.42 8.314 

 

Table 4 Material constants for Eqns. (18)-(20) for AA6082 under HFQ
®
 conditions 

                   

0.848 451.863 0.150 19.094 874.552 

   
     

 
    

 
    

 
   

79.785 26.063 -81.107 3.517E-03 0.0035 
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(a) FLD for different deformation temperatures at 0.1 /s 

 

(b) FLD for different strain rates at 440°C 

Fig.13  Comparison of experimental (symbols) and numerically predicted (solid 

curves) FLDs computed using the 2D CDM-based materials model for AA6082 with 

various deformation temperatures and strain rates 
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To validate the determined material model, further tests were carried out at the 

deformation temperature of 510°C at different strain rates under HFQ
®

 conditions and 

the results are shown in Fig. 14. Computations were carried out at the test conditions. 

The good agreement between the experimental and computational results shows the 

capability and the validation of the material model for hot stamping applications.  

 

Fig.14 Validation of the determined CDM-based materials model for AA6082 by 

comparing experimental (symbols) and numerically predicted (solid curves) FLDs at 

the deformation temperatures of 510°C 

6. Conclusions     

A set of unified viscoplastic-damage constitutive equations was adopted to model the 

thermo-mechanical response and formability of sheet metals under a range of forming 

temperatures and strain rates. This 2D CDM based material model was developed to 

predict the formability of AA6082 sheet under HFQ
®

 conditions. The predicted shape 

and position of forming limit curves in an FLD can be controlled by parameters in the 

damage evolution equation.       

In order to determine FLDs at elevated temperatures for application to hot sheet 

stamping conditions, a novel planar biaxial testing system was designed, using 

resistance heating and air cooling on a Gleeble materials simulator machine. Designed 

uniaxial and cruciform specimens were used to conduct formability tests at designated 
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deformation temperatures (370-510°C) and strain rates (0.01-1 /s) after heating and 

rapid cooling processes. The FLDs of AA6082 under HFQ
®

 conditions were 

determined at the first time and it is found that forming limit increases with increasing 

strain rate (0.01-1 /s) and increasing temperature (370-510°C).  

Material constants have been calibrated and validated from experimental FLD results 

of AA6082. Good agreement between each set of experimental and predicted FLD 

data has been obtained, which means that this set of viscoplastic damage constitutive 

equations is able to predict the damage evolution process and the failure of an alloy 

under hot stamping conditions. The formability of the sheet metal under hot stamping 

conditions was evaluated, for the first time, by the proposed material modelling 

technique. The experimental and modelling techniques could be applied to other sheet 

metals for hot stamping applications. 
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Highlights: 

1. A novel biaxial testing system was developed for hot stamping applications. 

2. FLDs of AA6082 were obtained at various temperatures and strain rates. 

3. Unified viscoplastic constitutive equations were proposed to predict 

formability. 

4. Constitutive equations were determined and verified through experimental 

results. 

 




