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Highlights: 

 Filler characteristics greatly vary amongst the 17 resin composites analyzed 

 Mechanical properties varied by up to a factor 3 amongst materials 

 Materials differed in their sensibility to incubation medium (water or EtOH/water) 

 The filler content (Wfillers) was confirmed as major discriminatory characteristic 

 A simple classification and terminology can be suggested based solely on Wfillers 

 

 

Abstract: Objectives 

The mechanical properties of dental resin-based composites (RBCs) are highly dependent on 

filler characteristics (size, content, geometry, composition). Most current commercial 

materials are marketed as "nanohybrids" (i.e. filler size < 1μm). In the present study, filler 

characteristics of a selection of RBCs were described, aiming at identifying correlations with 

physico-mechanical properties and testing the relevance of the current classification. 

Methods 

Micron/sub-micron particles (> or <500nm) were isolated from 17 commercial RBCs and 

analyzed by laser diffractrometry and/or electron microscopy. Filler and silane content were 

evaluated by thermogravimetric analysis and a sedimentation technique. The flexural modulus 

(E_flex) and strength (σ_flex) and micro-hardness were determined by three-point bending or 

with a Vickers indenter, respectively. Sorption was also determined. All experiments were 

carried out after one week of incubation in water or 75/25 ethanol/water. 



Results 

Average size for micron-sized fillers was almost always higher than 1μm. Ranges for 

mechanical properties were: 3.7<E_flex^water<16.3GPa, 86<σ_flex^water<161MPa and 

23.7<〖hardness〗^water<108.3HV0.2/30. Values generally decreased after storage in 

ethanol/water (Δ_max = 86%). High inorganic filler contents (>75wt%) were associated with 

the highest mechanical properties (E_flex and σ_flex > 12GPa and 130MPa, 

respectively) and lowest solvent sorption (~ 0.3%). 

 

Significance 

Mechanical properties and filler characteristics significantly vary amongst modern RBCs and 

the current classification does not accurately illustrate either. Further, the chemical stability of 

RBCs differed, highlighting differences in resin and silane composition. Since E_flex and 

sorption were well correlated to the filler content, a simple and unambiguous classification 

based on such characteristic is suggested, with three levels (ultra-low fill, low-fill and 

compact resin composites). 

 

Keywords: resin-based composite; composite; nanohybrid; classification; filler 

characteristics; nano particles; fillers; size distribution; size; mechanical properties; flexural 

modulus; flexural strength; degradation; sorption 

 

I. Introduction 

The popularity of dental resin composites is driven by their versatility, aesthetic quality and 

reasonable clinical performance. The development of resin composite materials are relentlessly 

researched and tested by academia and industry in an attempt to enhance clinical longevity by 

reducing their perceived shortcomings such as polymerization stress [1, 2], residual monomer 

content [3, 4], inadequate depth of cure [5], handling [6] and aesthetic characteristics [7]. Most 

often, these issues are not entirely addressed and new concepts aggressively marketed as “low-

shrink” or “bulk-fill” and such. The resin composite market is highly competitive between 

manufacturers, and the incredibly rapid and iterative product cycle leaves the general 

practitioner with a vast choice from an array of similar materials types. As a consequence, and 

particularly for resin composites, the usefulness of classification systems as a means for 

practitioners to compare material properties is limited. 



An area of substantial development since the inception of resin composite materials relates 

to filler type, processing and morphology, and probably much more so than advancements in 

resin chemistry. Continuous material developments among researchers and manufacturers have 

led to the use of refined filler technologies and design choices. Following the evolution of 

processing techniques, the size of filler particles, typically ground glasses, have decreased from 

tens of micron to about 1 µm [8]. With advancements such as jet-milling, sub-micron 

dimensions can be achieved with narrow distributions and microparticles averaging 0.5-1.0 µm 

are now used in some commercial composites. Pre-polymerized fillers (PPF) are also common 

and processed using ground cured composite, containing a variety of sub-micron particles. Such 

particles were introduced in part as a solution to reduce the stress resulting from polymerization 

and provide improved polishability compared with earlier hybrid types [9, 10]. Nanoparticles, 

originally introduced in an effort to improve aesthetic quality are used today in some modern 

materials in the form of nano-sized aggregates, aimed at improving mechanical properties, in 

particular strength [11]. Discrete nano-sized fillers, smaller than the wavelength of visible light, 

represent an additional asset in light-curing materials, since refraction and scattering are 

reduced, which may offer significantly improved depth of cure [12]. 

The classification of dental composite has evolved over the years, but in general has mostly 

focused on filler-size distribution, filler content or composition. From “microfills” or 

“nanofills”, containing only micro or nanoparticles, respectively, most modern resin 

composites belong to a so-called “hydrid” category, and presently are commonly marketed as 

“nanohybrids”. This terminology refers to materials containing a fraction of nanoparticles (< 

100 nm) and of sub-micron particles (≤ 1 µm, typically averaging 0.5-1.0 µm) [8] (Figure 1). 

Compared to “microhybrids”, nanohybrids can be expected to contain a greater fraction of 

nanoparticles. However, a classification based on filler-size distribution does not reflect filler 

composition, morphology or filler specificities (eg the use of PPF). It is therefore doubtful for 



example that all nanohybrids would display the same properties and many commercial resin-

based composites (RBCs) claiming to be “nanohybrids” will have a significant proportion of 

larger size (> 1 µm) fillers [13, 14].  

There is in fact a vast bank of data documenting various mechanical and physical property 

comparisons. These properties vary greatly from one material, or test-center, to another. For 

example, the flexural modulus measured in-vitro ranging from 3 to 15 GPa [15-17] or flexural 

strength, hardness or fracture toughness also varying, between 50 to 150 MPa [13, 15, 17, 18], 

19 to 80 HV0.5/20 [17] and 1 to 2.5 MPa.√𝑚 [17, 18] respectively. These properties are 

interrelated and dependent on filler characteristics (geometry, composition, surface coating, 

size distribution) and filler content (filler mass and volume content). Excellent studies have 

covered the topic and general rules are that both the modulus and surface hardness increase 

with increasing filler content with a concomitant decrease in volumetric shrinkage [17, 19]. At 

a given filler content, size and geometry, strength is influenced by the chemistry of the resin 

phase [20-22]. A biomimetic approach would advocate similar properties of resin composites 

such as rigidity and strength compared with the tissue they replace, i.e. mostly dentin, for which 

the modulus and strength were placed in the range of 20-25 GPa (Young’s modulus) and 52-

105 MPa (ultimate tensile strength) [23]. Most difficult to achieve and embodying the major 

challenge of composites, such high moduli RBCs would also need to display similar toughness 

than dentin (1.5-2.7 MPa.√𝑚 [24]) at the risk of otherwise being too brittle. Also of some 

importance, the mechanical properties of composites should not degrade with time and should 

be chemically stable. In-vitro studies have repeatedly demonstrated that depending on materials 

characteristics, the response of RBCs to mechanical and chemical challenges vary. Recent work 

has highlighted the degradation of strength of commercial materials following fatigue tests to 

well below the 80 MPa limit set by ISO 4049 [18]. In addition, great variations in the strength 

measured were observed between materials. Regarding chemical stability, solvent sorption has 



been extensively investigated as a tool to determine a material’s hydrophobicity. It has been 

suggested that solvent sorption is directly correlated to the extent of hydrolytic effects, altering 

mechanical properties [25]. Characterizing a composite’s solvent uptake could therefore 

provide a tool to infer mechanical performance. 

Some studies have investigated the mechanical properties of a panel of commercial resin 

composites in relation to filler content and morphology [13, 15, 26, 27], however none have 

recently characterized filler distribution or related mechanical properties correlations. 

Consequently, the aim of the present study was to characterize the physical and mechanical 

properties of a wide selection of modern, “nanohybrid” dental composites in relation to filler 

content, filler morphology and distribution. A subsequent aim was to propose a new 

classification based on the correlations between these various characteristics. 

 

II. Materials and Methods 

This work intended to include a list of “nanohybrids” composite materials as diverse in 

composition as possible. 17 different resin composites were selected for the present study 

(Table 1). 

1) Determination of filler content 

The determination of inorganic content was carried out using two complementary methods, 

firstly, thermogravimetric analysis [15]. Small amounts of material (typically 50-100 mg) were 

placed in a temperature-controlled chamber. The weight of material was monitored as 

temperature increased to 900 °C. Inorganic content (Wi, in wt%) was determined as the 

remaining weight of matter relative to the initial amount (n = 3). A transition located around 

400 °C (typically between 380-480 °C) was also quantified and tentatively associated with the 



degradation of silanes (transition verified with Aerosil R 7200, Figure 2, also in line with other 

results [28, 29]). 

Given the limitations in filler processing techniques, it was assumed there would be a sharp 

step in filler distribution at about 500 nm, it being the lower bound in the range of sub-micron 

ground particles. Particles were separated around that threshold: fillers were extracted and their 

respective amounts determined by dissolving the resin composites in acetone and separating 

each filler type by gravimetry (>500 or <500 for particles with a size greater or smaller than 

500 nm, respectively). Briefly, for one measurement, 0.3 g of resin composite was placed in 10 

mL acetone (precision 0.0001 g). The tube was vortexed until all the material was fully 

dispersed. Two centrifugation cycles were employed, first to obtain the >500 fillers (3000 g for 

1 min) followed by another (5000 g for 30 min) to collect <500 fillers. One should note that 

due to the limitation in centrifugation speed, some of the smallest non-aggregated nanoparticles 

may not have been collected.  To completely remove any soluble content, once separated, the 

fillers were washed twice with acetone and re-centrifuged at high speed. Powders were 

recovered by allowing the suspensions to dry under a fume hood at room temperature for 24 h. 

Total weight filler content (𝑊𝑡𝑜𝑡𝑎𝑙) was then determined, corresponding to the sum of >500 and 

<500 fillers (𝑊>500 or 𝑊<500 respectively). 

2) Filler size distribution and morphology 

The separated fillers were characterized by laser diffraction and scanning electron 

microscopy (SEM). The first method informed on the size distribution of the >500 fillers and 

the second on the geometry of both filler types. For laser diffraction, >500 fillers were re-

dispersed in ethanol, sonicated to maximize particle de-aggregation and analyzed using a 

particle size analyzer (0.25-85 µm range, HELOS, Sympatec GmbH). The installed software 

(Windox 5, Sympatec GmbH) provided cumulative volume distributions (𝑄(𝑥)), with x the 



particle size). To obtain distribution densities (𝑞(𝑥)), which graphically are easier to interpret. 

Equation 1 was used: 

(1) 𝑞(𝑥) =  
𝑑𝑄(𝑥)

𝑑𝑥
 

To transform the abscissa in a logarithmic scale. Equation 2 was applied: 

(2) 𝑞(ln(𝑥𝑖−1) , ln (𝑥𝑖)) =  
𝑄(𝑥𝑖)−𝑄(𝑥𝑖−1)

ln(
𝑥𝑖

𝑥𝑖−1
)

 

The distribution densities where normalized, dividing values by the maxima. If one peak was 

observed for a distribution, it was described as “monomodal”. If two peaks could be 

distinguished from a distribution density, then it was considred that two different size regimes 

existed and the distribution was described as “bimodal”. Additional distribution characteristics 

were also provided by the software. Three are presently reported, denoted as dα (in µm), which 

describe the diameter where α vol% of the distribution has a smaller particle size. 

SEM analysis on the separated particles was carried out by dropping small amounts of 

powders on carbon tape, which were then carbon coated. The accelerating voltage varied 

between 5 to 15 kV (JEOL 7600F, JEOL, Japan), depending on the contrast needed. 

3) Mechanical properties 

All resin composites were photo-polymerized using a LED light-curing unit (Bluephase G2, 

Ivoclar Vivadent, Liechtenstein). Irradiance and exposure time were 1000 ± 50 mW/cm2 and 

20 seconds, respectively. The irradiance was controlled using a thermal power sensor (S310 C, 

Thorlabs) and the evolution of irradiance as a function of time can be observed in Figure S1. 

The flexural modulus and flexural strength were determined using a universal testing 

machine (LRX Plus, Lloyd Instrument) equipped with a three-point bending jig. Twenty 

specimens per material of dimensions 25 mm length, 2 mm width, 2 mm thickness were 



prepared in white Teflon split-moulds by photo-polymerizing using three non-overlapping 

irradiation cycles (tip diameter = 10 mm). Cured specimens were polished using SiC paper grit 

1000. Prior to testing, half of the specimens were incubated in distilled water and the other half 

in 75/25 vol% ethanol/distilled water, both for 1 week at 37°C (n = 10). The specimens were 

loaded on a 20 mm support-span (knife edge geometry) at a 0.75 mm/min cross-head speed. 

Flexural modulus (E) and flexural strength using Equation 3 and 4: 

(3) 𝐸𝑓𝑙𝑒𝑥
𝑖  (𝐺𝑃𝑎) =

𝐿3∗δ

4∗𝑤∗𝑡3∗1000
  

with L, w and h the distance between supports, w and t the width and thickness of the bars (all 

in mm). δ was the slope of a force/deformation curve in the elastic region (N/mm). 𝑖 denotes 

the incubation medium used. The flexural strength was calculated using Equation 4: 

(4) 𝜎𝑓𝑙𝑒𝑥
𝑖  (MPa) =  

3∗𝐹𝑚𝑎𝑥∗𝐿

2∗𝑤∗𝑡2  

with Fmax (N) the maximum force sustained before failure was observed. 

Surface hardness was determined using a Vickers indenter (Durimet, Leitz, Wetzlar, 

Germany). Cylindrical specimens (2 mm thick, 5 mm in diameter) were photo-polymerized in 

one cycle. Cured and unpolished specimens were incubated identically to the bars (n = 3). 

Following incubation in the different mediums, the disks were indented for 30 s using a 200 g 

load. For each specimen a hardness value was determined using Equation 5:  

(5) 𝐻𝑉 (0.2/30) =
0.1854∗0.2

𝑑2  

where d is the averaged diagonal of three indentations in mm. 

4) Solvent uptake 

Water and ethanol/water sorption was evaluated in order to indirectly determine the 

hydrophobicity of materials associated with the amount and nature of the organic fraction 



(matrix and silanes). Similarly to Sideridou et al. [28], samples (identical to the disks prepared 

for the hardness measurements) were light-cured, weighed (m1, precision 0.0001 mg) and 

immediately placed in distilled water or a 75/25 vol% ethanol/distilled water solution in the 

wells of a 48-wells plate (1 mL/disk/well, n = 3). After one week at 37 ± 1 °C, materials were 

removed from the solvents, blotted dry and re-weighed (to determine m2) and then left to dry 

over silica gel in a vacuum chamber. Disks were regularly weighed and when values stabilized, 

final weights were determined (m3). The determination of solvent sorption (S) and released 

matter (R) was carried out using Equation 6 and 7: 

(6) 𝑆 (%) =
m2−m3

m1
      

(7) 𝑅 (%) =
m1−m3

m1
    

Due to adsorbed solvent that could not be removed even after several weeks under vacuum, 

m3values could remain higher than related m1. This flawed the calculation of S and R and 

associated data were therefore not reported. 

5) Statistical analysis 

The datasets were checked for normality using the Shapiro-Wilk test. Means were compared 

using Tukey’s test and selecting 0.05 as significance level. The JMP 11 software (SAS Inc.) 

was used for all statistical analyses. 

 

III. Results 

1) Filler content 

The determination of inorganic content by TGA showed large differences, with values 

varying between 52.2 wt% and 88.1 wt%, with an average 𝑊𝑡𝑜𝑡𝑎𝑙
̅̅ ̅̅ ̅̅ ̅̅  = 73.5 wt% (Table 2). While 

two of the “flowable” materials (ELS Flow and Diamond Flow) were found among those 



containing the smallest inorganic content, consistent with their apparent low viscosity, two 

others were highly filled (≥ 75 wt%, Grandio Flow and Exp. Flow LC). Inversely, materials 

found as rather viscous pastes were associated with low inorganic contents (for example 

Gaenial with 57.8 wt %). Three materials presented major discrepancies between their 𝑊𝑖 and 

𝑊𝑡𝑜𝑡𝑎𝑙, between 16 wt% for Gaenial, and ~ 10 wt% for Kalore and Tetric Evo Ceram (Table 

2). The determination of 𝑊>500 and 𝑊<500 by sedimentation also showed large variations in 

composition. Generally, 𝑊>500 accounted for most of 𝑊𝑡𝑜𝑡𝑎𝑙, in particular for the Venus 

Diamond Flow, for which 𝑊<500 was close to zero (Table 2). On the contrary, the Clearfil 

Majesty Flow was found to contain a majority of sub-micron particles (𝑊<500 = 41.4 wt% and 

𝑊𝑡𝑜𝑡𝑎𝑙 ~ 𝑊𝑖 ~ 67 wt%). In comparison, for the remainder of the materials, the fraction of <500 

particles was lower than 20 wt%.  

2) Filler morphology and size distribution 

SEM analysis revealed different morphologies for the micro and nano fillers (Figure 3), 

which varied between spherical to rough and irregular particles. Except for the material with 

spherical micro fillers (Clearfil Majesty Flow), the irregular particles displayed a range of 

sharpness in their geometry (Figure 3a). Regarding particle dimensions, the largest particles 

observed were in the range of the tens of microns in several materials. In the others, the largest 

did not exceed 1 µm (ELS Flow for example).  

SEM analysis also revealed pre-polymerized fillers within the materials for which 𝑊𝑖 << 𝑊𝑡𝑜𝑡𝑎𝑙 

and the Venus Pearl (Figure 3b). Sub-micron particles were identified within the PPFs of 

Kalore and Tetric Evo Ceram. In the Gaenial and Venus Pearl, the PPF surface appeared 

smoother than in the two other composites and very fine particles could be observed (~100 nm). 

Three “types” of nano fillers could be clearly identified (Figure 3c): true nanoparticles (< 100 

nm), aggregates or “nanoclusters” and what appeared as ultra-fine ground particles (100-400 



nm). For the “true” nanoparticles, aggregation was observed. The diffuse boundaries were 

attributed to the preparation method (solvent evaporation and metallic coating). 

Significant differences in term of particle size and size distribution for the micro particles 

(> 500 nm) could be observed from the analysis of the separated fillers by laser diffractometry 

(Figure 4). The distribution density plotted as a function of particle size showed that all 

materials presented at least one peak centered at about 1-2 µm. In some cases minor peaks were 

observed around 10 µm and were associated with aggregates remaining after sonication (Figure 

6a). Further, a second peak located at higher dimensions was observed in several materials 

(Figure 6b), corresponding to larger micro fillers. Their mean average size varied between 5 

µm and 30 µm. The distribution characteristic d90 (in µm) indicated similar groups: the Admira 

Fusion, ELS, ELS Flow, Exp. Flow LC, Exp. LC and Venus Diamond Flow had 90 vol% of their 

fillers smaller than 5.0 µm (Table 3). Due to particle aggregation, the Filtek Silorane and Venus 

Pearl had a d90 of 6.0 and 8.7 µm, respectively. The Clearfil Majesty Posterior and Filtek 

Supreme XTE both presented a d90 value of 7.2 µm. Finally, the Clearfil Majesty ES Flow, 

Gaenial, Grandio, Grandio Flow, Kalore, Tetric Evo Ceram and Venus Diamond had d90 values 

greater than 10 µm. 

3) Mechanical properties 

The mechanical properties varied greatly from one material to another. Determined under 

flexure after an aqueous incubation, 𝐸𝑓𝑙𝑒𝑥 varied between 3.7 GPa (ELS Flow) and 16.3 GPa 

(Grandio, Clearfil Majesty). 𝜎𝜃 varied between 87 MPa (Grandio Flow) and 168 MPa (Venus 

Diamond) (Table 4). The Vickers hardness varied between 23.7 HV 0.2/30 (Venus Diamond 

Flow) to 108.3 HV 0.2/30 (Clearfil Majesty). When using a 75/25 ethanol/water incubation 

medium, the mechanical properties generally decreased. Ranges for 𝐸𝑓𝑙𝑒𝑥  and 𝜎𝜃 became 0.7-

15.0 GPa and 13-139 MPa, respectively. The highest drop between incubation medium for 𝐸𝑓𝑙𝑒𝑥  



and 𝜎𝜃 were 82 and 88 % (Table 5). For hardness, values fell between 8.0-106.7 HV 0.2/30 

with a highest drop of 65 %. 

4) Solvent uptake 

Water sorption varied between 0.25 % (Clearfil Majesty) and 0.99 % (Gaenial), while 

ethanol/water sorption varied between 0.35 % (Clearfil Majesty) and 2.31 % (ELS Flow) (Table 

6). For the Grandio and Filtek Supreme XTE, water or ethanol/water sorption was similar. The 

release of soluble matter in water varied between 0.02 % (Clearfil Majesty) and 0.28 % 

(Grandio Flow), while higher values were measured overall in ethanol/water, varying between 

0.14 % (Grandio) and 0.89 % (ELS). 

IV. Discussion 

The analysis of fillers isolated from the resin composites was carried out with two 

objectives, first to investigate potential correlations between filler characteristics and physico-

mechanical properties, also in relation to the incubation medium. The second objective was to 

check the suitability of filler characteristics as basis for material classification. 

1) Filler characteristics & mechanical properties 

In the present study, the characterization of 17 materials marketed as “nanohybrids” showed 

that the fillers used were vastly different with regards to their shape (Figure 3), content, 

distribution and ratio of micro and nano-sized particles (Tables 2 and 3). Still, in order to 

investigate potential correlations, it would be most helpful to identify groups of materials based 

on one or more filler characteristics. The current classification for resin composites currently 

relies on filler size to generate classes of material. As described earlier, the micro- and 

nanohybrid discrimination refers to the size of the largest micron-sized particles, limited to 1 

µm for the nanohybrids. Presently, two categories of materials were observed, relating to this 

classification: one group with a size limited to 1-2 µm (Figure 4a) and another with much larger 



particles, up to 30 µm (Figure 4b). These materials will be referred to as displaying 

“monomodal” and “bimodal” distributions, strictly in reference to the micro particles. Other 

characteristics such as filler content or filler morphology varied without any obvious trend. For 

example, while manufacturers made efforts to maximize filler content, it nevertheless overall 

varied between 52.2 wt% and 88.1 wt%. Hence, it would instead be very convenient for 

translational purposes (for practitioners) if the physico-mechanical properties of the resin 

composites could be predicted based on filler size distribution. However, as will be discussed 

below, this may not be a relevant approach based on the present results. 

The modulus of resin composites designed for load bearing restorations should be as close 

to that of the tooth (20-25 GPa [23]), to encourage a homogeneous stress-distribution at the 

tooth-restoration interface [30]. In composites, mechanical properties are determined based on 

the intrinsic properties of the different phases and their volume fractions. This “Rule of 

mixtures” applied to composites for example stipulates that the modulus increases with filler 

content, according to: 

(8) 𝐸𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =  𝑉𝑓𝑖𝑙𝑙𝑒𝑟𝑠𝐸𝑓𝑖𝑙𝑙𝑒𝑟𝑠 + (1 − 𝑉𝑓𝑖𝑙𝑙𝑒𝑟𝑠)𝐸𝑟𝑒𝑠𝑖𝑛 

with 𝑉𝑓𝑖𝑙𝑙𝑒𝑟𝑠 the volume fraction of fillers and considering ideal stress distribution between the 

resin and filler phases. However, once the largest particles are in contact and the packing 

fraction has reached the theoretical 0.74 vol% limit, the modulus of the composite would 

increase non-linearly, rapidly getting closer to that of the fillers [31]. This trend can be clearly 

observed in Figure 5a, whilst noting the abscissa displays mass contents. Values for the 

“unimodal” and “bimodal” distributions appeared scattered, without a definite separation 

between the two groups, contradicting the classification. Interestingly, the materials containing 

PPF displayed relatively low flexural moduli given their high filler contents (𝑊𝑡𝑜𝑡𝑎𝑙) and 

densities (Table 2). This is of course associated to the lower modulus of the PPF compared to 



glass particles. Whether PPF particles should be considered as fillers remains debatable and 

will be discussed in Section 2 of the discussion. 

When considering 𝜎𝑓𝑙𝑒𝑥
𝑤𝑎𝑡𝑒𝑟, no general trend could be observed between the strength and 

filler content (Figure 5b) or size distribution. The lack of general trend could be attributed to 

the differences in 𝑊𝑖 at similar size distribution, difference in matrix composition but also the 

sensitivity of strength measurement in relation to specimen surface preparation. In three 

materials however, a relatively high modulus and strength could be observed (𝐸𝑓𝑙𝑒𝑥
𝑤𝑎𝑡𝑒𝑟 ≥ 10 

GPa; 𝜎𝑓𝑙𝑒𝑥
𝑤𝑎𝑡𝑒𝑟 ≥ 130 MPa, observed for the Venus Diamond, the Grandio and Clearfil Majesty 

Posterior), which were associated with high densities (2.1-2.4 g/cm3) and 𝑊𝑖 (73-88 wt%), but 

also relatively low d90 values (Table 3 and Figure 4). While it would be adventurous to definitely 

associate these results to specific size distributions given the variations in 𝑊𝑖 (all three materials 

have bimodal distributions), the likeliness of the three characteristics to fall in similar ranges 

coincidentally for these materials is quite low. Since an increase in filler content requires the 

optimization of size distribution, a decrease in filler size and adapting the filler/resin interface, 

the case of the three noted materials highlight the influence of these characteristics on strength. 

Finally, micro hardness testing evaluates the resistance to plastic deformation under a given 

load. Consequently, this property should be strongly correlated to the filler content, accepted 

that fillers are of the same dimension than the indentation. This was presently not clearly 

observed (Figure 5c).  However, although no influence from micro particle size distribution 

could be determined, a strong correlation (0.89, spearman correlation coefficient) was observed 

between 𝐸𝑓𝑙𝑒𝑥
𝑤𝑎𝑡𝑒𝑟 and ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠𝑤𝑎𝑡𝑒𝑟, which underlined the existence of one or more common 

factors (0.86 in ethanol/water). This falls in line with results from another study [17] and the 

trend between the elastic modulus and 𝑊𝑖 was shown above. Amongst the possible reasons for 

the lack of correlation between filler content and the hardness, differences in the composition 

of glasses used between materials is one of the possible explanations. This once again confirms 



the difficulty of comparing the impact of one single variable (e.g. 𝑊𝑖) on a given property 

among a population of commercial materials, where so many variables (filler shape and 

composition, photoinitiation system, monomer type and ratios, etc) differ at the same time [32]. 

Ideally, resin composites must be chemically stable and their mechanical properties should 

not exhibit significant deterioration after aging. Many previous works have studied the impact 

of aqueous immersion on mechanical properties [33-35]. While a hydrolytic effect has been 

postulated, there is little data to support it: a thorough recent study investigating monomer 

elution failed to observe any breakdown products, even after 180 days of incubation [4]. 

However, the use of an ethanol or organic-based solution has previously been associated with 

major degradation in mechanical properties [34, 36]. Researchers have postulated either silane 

or matrix degradation, and therefore a combination of incubation mediums was chosen in the 

present study to check for chemical stability. Regarding duration, it is known that resin 

composites continue to polymerize for 24 h following irradiation [37, 38] but sorption occurs 

over a longer time scale [39]. In the present study we selected a 1-week incubation period 

following previous works [3, 40], with the specimens being rapidly immersed to mimic clinical 

settings as post-curing occurs while saliva is in contact with the restoration. Chemical aging 

may affect the structural integrity of the organic phase, and when tested, a sample would fail 

due to an overall degraded matrix and/or interface. When plotting losses for mechanical 

properties between the water and organic incubation as a function of silane content or inorganic 

content (Figure 6), a general trend of increasing losses with increasing contents could be 

observed. This was more obvious with the organic content, although no significant trend could 

be determined. Similarly to the differences amongst glasses used for the fillers, the type of 

silane and thickness of the deposited layer is highly likely to vary amongst resin composites. 

For these reasons, determining an overall correlation among commercial materials would be 

difficult. In addition, due to the tentative nature of the quantification, values for the silane 



contents may deviate from those actually used. For example, low molecular weight monomers 

may degrade at the same temperature as silanes. Some further work could focus on determining 

the type silanes and surface coverage of fillers, for example by using spectroscopy methods. 

This is however beyond the scope of the present study and another property, namely solvent 

sorption was used to provide some further information on the resin composites. 

Solvent sorption was investigated in order to indirectly shed some light on the composition 

and stability of the organic fraction of the resin composites. The types of monomers and silanes 

used greatly influence how much the cured networks will absorb and swell [25] and the greatest 

sorption will occur when the solubility parameter between the solvent and the constituents of a 

resin composite is greatest. By analyzing water and ethanol-water sorption along with its 

relation to flexural strength, one could infer the extent of sorption, swelling and network 

breakdown effects. Among the materials studied, a definite increase in solvent sorption with 

increasing organic content could be observed (Figure 7a), again with no obvious influence from 

the filler size distribution. At similar organic contents, small differences in water sorption were 

seen. Larger differences were however noted for the ethanol-water sorption (the slope of the 

linear fit was 2 times higher). In both solvents these differences would be associated to 

variations in network characteristics such as cross-link density, distance between cross-links 

and overall conversion of both the filler-bound and free reactive groups [25, 41]. The increased 

solubility with the ethanol-water mixture (𝑅𝑒𝑡ℎ𝑎𝑛𝑜𝑙/𝑤𝑎𝑡𝑒𝑟 >> 𝑅𝑤𝑎𝑡𝑒𝑟, Table 6) likely 

exacerbated the compositional differences between materials due to greater swelling. Further, 

when plotting 𝜎𝑓𝑙𝑒𝑥 of the resin composites as a function of solvent sorption (Figure 8b), an 

overall decrease with increasing solvent uptake could be observed. With these results, while it 

remains difficult to conclude on any specific additional breakdown effects in the presence of 

ethanol, impacting 𝜎𝑓𝑙𝑒𝑥, it could however be hypothesized that the more the resin matrices and 

filler-resin interface swelled, the weaker they were. Statistical analysis indicated negative 



correlations between sorption and 𝜎𝑓𝑙𝑒𝑥 (-0.54 and -0.79 for water and ethanol-water incubation 

mediums, Spearman correlation coefficient, p<0.0001 in both cases). Interestingly, when 

plotting the 𝜎𝑓𝑙𝑒𝑥 losses as a function of the ratio ethanol-water to water sorption, a general 

increasing trend could be observed (Figure 7c). Stated differently, materials for which the 

lowest losses were observed also displayed similar solvent intakes in both media (ratio ~ 1). In 

addition, these materials (Grandio and Filtek Supreme XTE) also absorbed less solvent and 

were amongst the most heavily filled. Hence, this evidence again supports the maximization of 

filler content and highlights that some materials contain monomers and silanes that are more 

stable in both water and ethanol. The differences in mechanical properties and resistance to 

degradation may also be attributed to other structures than the polymer network. For example, 

the presence of stress-absorbing structures may also affect strength and crack propagation. It 

has for example been reported that the Filtek Supreme XTE contains nanoclusters made of 

agglomerated nanoparticles (Figure 3c) [42]. Such structures, whether they may be chemically 

or physically aggregated, can impede crack propagation by absorbing stress through fragment 

splitting from the main cluster and crack bifurcation [11]. Finally, the release of matter from 

the cured resin composites was only poorly correlated to organic content or sorption, for both 

the water and ethanol/water incubation. As the extent of photopolymerization defines the 

amount of remaining free monomers, the lack of correlation would in part indicate a varying 

extent of conversion between materials. Beside conversion differences among materials, 

variations such as monomer type and ratio would here also greatly influence the release of un-

reacted species. 

2) Resin composite classification 

In the first part of this study, it was repeatedly shown that amongst materials marketed as 

“nanohybrids”, there were major differences in mechanical properties and stability in solvents. 



The final part of this work will discuss whether any of the material characteristics investigated 

earlier may be suitable as basis for a new classification. 

For the various existing resin-composite classifications, filler size seems to be the most 

frequently used criteria [8]. However, the present results have shown that it neither relates to 

mechanical properties nor water or ethanol-water sorption. Further, such classification is not 

even strictly followed, with some manufacturers mislabeling their materials as “nanohybrids”, 

instead of the more appropriate “microhybrids” terminology due to the presence of particles 

much larger than 1 µm (Figures 3 and 4). Based on the present results, the inorganic filler 

content appears as a more appropriate predictor than filler size, with a clear correlation with 

both 𝐸𝑓𝑙𝑒𝑥 and sorption. Such as classification (irrespectively of filler type and size), would also 

indirectly give some qualitative information about the quality of the filler technology used, 

since maximizing filler content while maintaining clinically relevant rheological properties 

requires progress in size distribution as well as in the quality and chemistry of the resin-filler 

interface. For some manufacturers however, aesthetics, handling or other properties are 

regarded as central features, leading to varying material design choices. Most notably, PPF were 

introduced to improve polishability [43], gloss and potentially limit the development of 

polymerization stress [44]. Another potential role of PPF would be to increase light scattering, 

and thereby improve the optical transition with the tooth. However composites used to prepare 

PPF are cured and ground well before a PPF-containing composite is actually photopolymerized 

in the oral cavity. This means that PPF lack active binding sites, are difficult to silanize, which 

in turn equivocates to a poor integration in the resin matrix. As it was observed in the present 

study and elsewhere [45], most PPF-containing materials display relatively low 𝐸𝑓𝑙𝑒𝑥 and 𝜎𝑓𝑙𝑒𝑥 

considering their apparent filler content (𝑾𝒕𝒐𝒕𝒂𝒍). It follows that in a classification based on the 

filler content as discriminative characteristic, only the particles with an elastic modulus well 

above that of the organic phase could be considered as reinforcing fillers. The introduction of 



other compounds beside PPF, for example inorganic-organic monomers (condensed methacryl 

silanes [46]) also represents a challenge for classification (for example the “Ormocer” Admira 

Fusion). Other molecules such as polyhedral oligomeric silsesquioxane (POSS) could lead to 

similar classification issues. Hence, for such classification to be efficient to predict material 

properties, it becomes necessary to associate filler content to a specific property, evidently 

advocated here to be the elastic modulus. In other words, for a compound to be considered as 

reinforcing filler, its introduction should improve the elastic modulus compared to the same 

material without it. Whether or not this filler content/elastic modulus combination is most 

suitable can be discussed, since other properties such as fatigue resistance or fracture toughness 

are crucial properties. In any case we support for a similar rationale to be considered and 

observed when conceiving any classification.  

Finally, defining the terminology of the classification for dental resin composites is also of 

some importance. Ideally, the terminology used should also participate to inform the reader or 

consumer on the important material properties. The term “hybrid”, currently under use, is rather 

unclear and the use of “nano” is delicate given the disagreements regarding its use in dentistry. 

The aim presently is not to discuss at depth semantics: given the basis advocated above, namely 

the use of filler content as an indicator of material properties, one needs a scale against which 

to grade a material. For the filling of a material and if particle dispersion was to be optimal, 

there is a theoretical threshold of 74 vol%, a packing limit. A second and arbitrary level could 

be set at 50 vol%, as the balance between 𝜑𝑟𝑒𝑠𝑖𝑛 and 𝜑𝑓𝑖𝑙𝑙𝑒𝑟. Below this limit, a material may 

be termed “ultra-low fill” (Figure 8). At 50 𝑣𝑜𝑙% < 𝜑𝑟𝑒𝑠𝑖𝑛 < 74 𝑣𝑜𝑙%, a material could be 

referred to as “low-fill”. At 74 vol%, the material may be termed “compact”. In practice, since 

perfectly homogeneous resin composites cannot be obtained, one should keep in mind that 

increases in filler content will necessarily be obtained by using different size regimes, all 

materials being therefore “hybrids” in any case. Higher values than 74 vol% could hence be 



obtained (such as with the Clearfil Majesty Posterior, Table 1 bis). Further, reaching high filling 

contents requires the best efforts in silanization. A “compact” composite would likely also 

present low sorption values and possibly greater stability and durability under chemical 

challenges. 

Additional terms could potentially be added to fine-tune a description. Such terms may inform 

on other important clinical aspects such as rheological characteristics (“fluid”, “packable”, 

“flowable”, etc) or polishability. A material such as the Grandio Flow could for example be 

labeled as a “compact flowable”. 

Conclusion 

The characterization of filler particles characteristics showed that over a wide range of 

tested commercial resin composites, particle size, shape, distributions and contents greatly vary. 

The 𝐸𝑓𝑙𝑒𝑥 and 𝜎𝑓𝑙𝑒𝑥 were measured in the range 3.7-16.3 GPa and 86-161 MPa, respectively 

after storage in water. Lower values were observed after storage in 75/25 vol% ethanol/water, 

but not for all materials. The resin composite with the highest properties also had the highest 

filler contents and exhibited the lowest solvent sorption. Currently, the most used classification 

is based on particle size distribution. Mechanical properties were however not correlated to it. 

Instead, the filler content appeared better suited as basis for classification, it being correlated to 

the flexural modulus and solvent sorption. Sorption was also linked to the flexural strength, 

with increasing sorption levels being associated to decreasing strength, highlighting the 

importance on limiting solvent uptake. 

Based on these results, a simple and unambiguous classification was suggested, based on 

the filler content and using two levels: 50 and 74 vol%. The terms ultra-low fill, low-fill and 

compact resin composites would apply to materials with filler contents lower or higher than 50 

vol% or higher than 74 vol%, respectively. With this classification, or one similar, the 

terminology is more likely related to a material’s physico-mechanical properties. Finally, the 



various functional agents introduced in modern dental composites need to be characterized for 

their effect on the said properties. For example, particles introduced to improve polishability on 

the one side, but which impact mechanical properties on the other side cannot also be considered 

as reinforcing fillers.  
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Figure 1: Schematic description of filler distribution according to current classification. 

Hybrid resin composites include a combination of micro and nanoparticles (left figure). 

Numbers denote continuous distributions (1 and 2) with spherical (1) or irregular particles (2) 

and a bimodal distribution (3) of micro particles. A nanohybrid resin composite contains 

nanoparticles (< 100 nm) and sub-micron “microparticles” (≤ 1 µm) (right figure) 

 

 

Figure 2: Mass loss (left axis) and its first derivative with respect to temperature (right axis) as 

a function of temperature, measured with TGA for Aerosil R7200 (methacrylsilane aftertreated 

fumed silica, Evonik GmbH) 



 

Figure 3: a) representative SEM pictures showing the variation in size and geometry for a 

selection of “micro” particles. Scale bar is 1 µm in the six pictures (5 000 or 10 000 x 

magnification). b) representative SEM pictures showing the size and geometry of some pre-



polymerized fillers found in Tetric Evo Ceram, Gaenial, Venus Pearl and Kalore. The scale bar 

in the three inserts is identical (30 000x magnification). c) representative SEM pictures showing 

the variation in geometry for a selection of “nano” particles. Scale bar is 100 nm in the three 

pictures (100 000 x magnification) 

 

Figure 4: Particle density distribution, plotted as a function of the estimated particle size 

extracted by sedimentation during the first cycle (micro particles). Materials were grouped 

based on unimodal (a) or bimodal (b) distributions. In a), the bumps seen around 10 µm 

correspond to aggregated particles 



 

Figure 5: Flexural modulus, flexural strength and Vickers hardness (a, b and c, respectively) 

plotted as a function of the highest filler content measured either by centrifugation or TGA. 

Data includes all materials tested after an aqueous incubation of 1 week at 37 °C. Error bars 

indicate standard deviations and may be hidden by symbols or were excluded for clarity (in b) 



 

Figure 6: flexural modulus, flexural strength and hardness losses after an ethanol/water 

incubation compared to water, as a function of organic content (A, B and C, respectively) or 

organic content (a, b and c, respectively). Average values for each material are shown and error 

bars indicate standard deviations. Error bars for the organic content are hidden by the symbols 



 

Figure 7: a) water (circles) or ethanol/water (diamonds) sorption as a function of organic 

content. Linear fits were applied to all data and constrained to pass through the origin point; b) 

Flexural strength as a solvent sorption; c) Loss in flexural strength between the ethanol/water 

and water incubation as a function of the ratio of solvent sorptions (only fourteen materials 

appear; for the Filtek Silorane, Clearfil Majesty Flow and Venus Diamond Flow, S or R could 

not be determined). In all graphs, average values for each material are shown and error bars 

were omitted 



 

Figure 8: Simple classification based on the inorganic filler volume content, which would 

reflect the elastic modulus. A resin composite containing nano and micron-sized particles is 

presented 

  



Tables 

Table 1 Description of resin composites used in the study. Data provided by the manufacturers. 

PPF stands for Pre-Polymerized Fillers 

Material/Shade Type/Format Batch n° Organic matrix Manufacturer 

Admira 

Fusion/A3 

Nanohydrid 

Ormocer/Composite 
V53177 Ormocer Voco GmbH 

Clearfil Majesty 

ES Flow/A3 
Nanohybrid/Flowable 1K0078  

Kuraray 

Dental 

Clearfil Majesty 

Posterior/A3 
Nanohybrid/Composite BC0013  

Kuraray 

Dental 

ELS Flow/A3op Microhydrid/Flowable B810 

TegDMA & 

HEMA-free, 

Low-shrink 

Saremco 

dental 

ELS/A3 Microhydrid/Composite B797 

TegDMA & 

HEMA-free, 

Low-shrink 

Saremco 

dental 

Exp. Flow 

LC/A3 
Experimental flowable V55226  Voco GmbH 

Exp. LC/A3 
Experimental 

Composite 
V53177  Voco GmbH 

Filtek 

Silorane/A3 
Microhybrid/Composite N462672 Low-shrink 3M ESPE 

Filtek Supreme 

XTE/A3 
Nanohybrid/Composite N609054  3M ESPE 

Gaenial 

Anterior/A3 
Nanohybrid/Composite 1311281 

BisGMA-free, 

PPF 
GC 

Grandio 

Flow/A3 
Nanohybrid/Flowable 1344366  Voco GmbH 

Grandio/A3 Nanohybrid/Composite 1408240  Voco GmbH 

Kalore/A3 Nanohydrid/Composite 1309051 
Low-shrink, 

PPF 
GC 

Tetric Evo 

Ceram/A3 
Nanohybrid/Composite P11989 PPF 

Ivoclar 

Vivadent 

Venus Diamond 

Flow/A3 
Nanohybrid/Flowable 010102  

Heraeus 

Kulzer 

Venus 

Diamond/A3 
Nanohybrid/Composite 010052  

Heraeus 

Kulzer 

Venus Pearl/A3 Microhybrid/Composite 010029 PPF 
Heraeus 

Kulzer 

 

Table 1 bis Description of resin composites used in the study. Data and information collected 

from manufacturers’ brochures and scientific product files 

Material Filler content wt%/vol% Filler specifications 

Admira Fusion 84/NS  

Clearfil Majesty 

Posterior 

92/82 Glass ceramics/Alumina micro 

particles (0.02-7.9 µm) 



Clearfil Majesty ES 

Flow 

75/59 Barium glass/silica particles (0.18-

3.5 µm) 

ELS 74/49 Barium glass/silica particles (0.004-

3 µm) 

ELS Flow 53/28 Barium glass particles (0.05-3 µm) 

Exp. Flow LC NS  

Exp. LC NS  

Filtek Silorane 76/55 Quartz and Yttrium fluoride 

particles 

Filtek Supreme XTE 78.5/63.3 0.6-10 µm zirconia/silica clusters, 

20 nm silica (20 nm) and zirconia 

(4-11 nm) dispersed particles 

Gaenial Anterior  Two types of pre-polymerized 

particles ([400 nm Strontium glass 

and 100 nm lanthanoid fluoride] or 

[16 nm silica)]) (16-17 µm), silica 

(850 nm) and fumed silica (16 nm) 

Grandio 87.0/71.4  

Grandio Flow 80.2/65.7  

Kalore 82/NS 17 µm pre-polymerized particles 

(400 nm Strontium glass and 100 

nm lanthanoid fluoride), Strontium 

and fluoroaluminosilicate glasses 

(700 nm), silica (16nm) 

Tetric Evo Ceram 82.5/NS 34 wt% Pre-polymerized and 48.5 

wt% Ytterbium fluoride, Barium 

glass and mixed oxide particles 

(0.4-0.7 µm) 

Venus Diamond 81/64 Barium Aluminium Fluoride 

glass/highly discrete nanoparticles 

(5 nm-20 µm) 

Venus Diamond Flow 65/41 Barium Aluminium Fluoride 

Silicate glass/Ytterbium Fluoride 

and Silicium Oxide (20 nm- 5 µm) 

Venus Pearl 80/59 Barium Aluminium Fluoride glass 

/highly discrete nanoparticles (5 

nm-5 µm) 

 

Table 2 Density of the un-cured resin composites, filler contents quantified by TGA corresponding to 

total inorganic content (𝑊𝑖) and by centrifugation corresponding to an acetone-insoluble fraction 

(𝑊𝑡𝑜𝑡𝑎𝑙), itself resulting from the sum of contents of particles larger or smaller than ≈ 500 nm (𝑊>500 

or 𝑊<500 respectively). Standard deviations of three measurements in parentheses. * a significant 

fraction of the smallest particles was not recovered 

Material d (g/cm3) 𝑾𝒊 (wt%) 𝑾𝒕𝒐𝒕𝒂𝒍 (wt%)   = 𝑾>𝟓𝟎𝟎 (wt%)  + 𝑾<𝟓𝟎𝟎 (wt%) 

Admira Fusion 2.18 86.3  (0.2) 78.1  (0.9) 61.7  (0.6) 16.4  (0.5)* 

Clearfil Majesty ES Flow 1.80 67.2  (0.1) 66.9  (0.1) 25.5  (0.4) 41.4  (0.4) 

Clearfil Majesty Posterior 2.39 88.1  (0.1) 78.9  (0.5) 69.8  (0.2) 9.1  (0.3)* 

ELS 2.07 72.7  (0.1) 72.1  (0.6) 59.1  (0.3) 13.0  (0.4) 

ELS Flow 1.68 52.2  (0.1) 52.1  (0.1) 43.5  (0.1) 8.6  (0.1) 

Exp. Flow LC 1.91 75.2  (0.3) 72.0  (0.9) 59.8  (0.6) 12.2  (0.4) 



Exp. LC 2.10 82.9  (0.1) 79.6  (0.1) 67.3  (0.1) 12.3  (0.1) 

Filtek Silorane 2.02 77.8  (0.1) 74.2  (1.1) 62.4  (0.9) 11.8  (1.1) 

Filtek Supreme XTE 1.90 73.0  (0.2) 64.9  (0.5) 58.8  (0.3) 6.1  (0.4)* 

Gaenial 1.72 57.8  (0.1) 73.5  (0.1) 68.2  (0.2) 5.2  (0.1) 

Grandio 2.06 85.8  (0.3) 83.2  (1.3) 73.6  (1.2) 9.6  (0.1) 

Grandio Flow 1.91 78.6  (0.2) 76.1  (0.9) 64.0  (0.7) 12.1  (0.3) 

Kalore 1.97 71.1  (0.1) 79.8  (0.6) 74.0  (1.8) 5.8  (1.2) 

Tetric Evo Ceram 2.18 70.5  (0.1) 80.9 (0.3) 65.9  (0.9) 15.0  (0.6) 

Venus Diamond 2.20 78.6  (0.5) 76.4  (0.9) 68.4  (2.2) 8.1  (1.4) 

Venus Diamond Flow 1.92 60.1  (0.1) 63.3  (0.2) 62.6  (0.1) 0.7  (0.2) 

Venus Pearl 2.02 75.5  (0.1) 74.7  (1.5) 68.5 (0.3) 6.2  (1.7) 

 

Table 3 Distribution characteristics. The subscript indicate the particle diameter at said % in 

the cumulative distribution 

Material 𝒅𝟓𝟎 (µm) 𝒅𝟗𝟎 (µm) 𝒅𝟗𝟗 (µm) 

Admira Fusion 1.6 3.3 13.2 

Clearfil Majesty ES Flow 3.6 16.6 29.4 

Clearfil Majesty Posterior 2.1 7.2 26.2 

ELS 0.8 3.2 19.2 

ELS Flow 0.8 1.6 17.4 

Exp. Flow LC 2.0 4.2 18.6 

Exp. LC 2.0 4.3 23.1 

Filtek Silorane 1.3 6.0 21.3 

Filtek Supreme XTE 2.3 7.2 18.0 

Gaenial 8.2 28.3 45.5 

Grandio 5.6 15.6 26.1 

Grandio Flow 6.1 17.5 29.3 

Kalore 4.6 26.0 42.1 

Tetric Evo Ceram 1.8 30.0 46.7 

Venus Diamond 1.7 11.3 24.2 

Venus Diamond Flow 1.6 3.9 14.7 

Venus Pearl 2.0 8.7 32.3 

 

Table 4 Mechanical properties of the tested resin composites. Standard deviations in 

parentheses. Letters connect similar values in each column (p < 0.05) 

Material 
water 75/25 vol% ethanol/water 

𝑬𝒇𝒍𝒆𝒙 (GPa) σ (MPa) HV 0.2/30 𝑬𝒇𝒍𝒆𝒙 (GPa) σ (MPa) HV 0.2/30 

Admira Fusion 8.0  (0.4) F,G 86 (18) F,G 62.0  (1.0) G 4.6 (0.3) H 46 (10) F,G 46.7 (0.6) E 

Clearfil Majesty ES Flow 6.3  (0.3) H,I 126 (10) B,C,D 
61.7  (1.7) 

G,H 

5.1 (0.3) G 105 (15) C 50.3 (0.6) D 

Clearfil Majesty 
Posterior 16.3  (0.7) A 158 (19) A 

108.3  (2.3) 
A 

13.8 (0.7) B 113 (14) C 106.7 (1.2) A 

ELS 6.2  (0.4) I 
103 (11) 

D,E,F,G 
48.7  (0.6) J 

1.4 (0.1) K 14 (3) J 19.3 (0.6) L 

ELS Flow 3.7  (0.1) J 103 (5) D,E,F,G 25.7  (0.6) N 0.7 (0.1) L 19 (2) J 8.0 (0.2) N 

Exp. Flow LC 8.7  (0.6) 
D,E,F 

100 (33) E,F,G 55.7  (1.2) I 
6.3 (0.3) F 68 (14) E 40.0 (0.8) G 

Exp. LC 13.7  (2.0) B 146 (20) A,B 64.7  (0.5) F 10.0 (1.1) C 92 (14) D 47.0 (0.4) E 
Filtek Silorane 9.6  (0.8) D 128 (12) B,C 55.7  (1.2) D 8.6 (0.8) E 124 (18) B 39.1 (0.5) G 
Filtek Supreme XTE 11.1  (0.6) C 120 (9) C,D,E 99.2  (1.3) C 9.4 (0.3) D 134 (9) A 77.0 (0.5) B 
Gaenial 5.9  (0.4) I 93 (6) F,G 37.0  (0.0) M 1.8 (0.1) J,K 35 (3) I 19.1 (0.4) L 

Grandio 16.3  (0.9) A 128 (18) B,C 
105.3  (1.5) 

B 

15.0 (0.8) A 134 (12) A 69.0 (1.0) C 

Grandio Flow 8.4  (0.3) 
E,F,G 

83 (10) G 60.0  (0.0) H 
6.1 (0.5) F 38 (8) F,G,H 21.0 (0.6) K 

Kalore 7.5  (0.3) G,H 98 (4) E,F,G 46.7  (0.6) K 2.2 (0.1) J 36 (2) H,I 43.0 (0.5) F 
Tetric Evo Ceram 7.4  (0.3) G,H 92 (4) F,G 40.7  (1.3) L 3.4 (0.3) I 52 (7) F 24.7 (1.2) J 
Venus Diamond 12.0  (0.7) C 161 (14) A 68.3  (0.6) E 5.2 (0.4) G 93 (10) D 33.0 (0.1) I 



Venus Diamond Flow 4.7  (0.2) J 
107 (10) 

C,D,E,F 
23.7  (0.4) O 

0.9 (0.1) L 38 (4) G,H,I 11.0 (0.1) M 

Venus Pearl 9.6  (0.7) D,E 161 (12) A 67.5  (0.9) E 3.8 (0.5) I 92 (12) D 36.4 (1.5) H 

 

Table 5 Degradation of the mechanical properties after an incubation in 75/25 vol% 

ethanol/water compared to water (both 1 week at 37 °C) 

Material 𝑬𝒇𝒍𝒆𝒙 (%) σ (%) HV (%) 

Admira Fusion 43 46 25 
Clearfil Majesty ES Flow 19 -18 18 
Clearfil Majesty Posterior 16 28 2 
ELS 77 86 60 
ELS Flow 82 81 69 
Exp. Flow LC 28 34 28 
Exp. LC 27 36 27 
Filtek Silorane 11 3 49 
Filtek Supreme XTE 15 -10 23 
Gaenial 69 62 49 
Grandio 8 -2 35 
Grandio Flow 28 45 65 
Kalore 70 63 8 
Tetric Evo Ceram 55 42 39 
Venus Diamond 56 42 52 
Venus Diamond Flow 81 65 54 
Venus Pearl 60 42 46 

 

Table 6 Sorption (S) and released matter (R) after one week of incubation at 37 °C in either 

water or ethanol/water. Standard deviations in parentheses. x indicate that due to significant 

solvent retention, no value could be determined  

Material 𝑺𝒘𝒂𝒕𝒆𝒓 (%) 𝑺𝒆𝒕𝒉𝒂𝒏𝒐𝒍/𝒘𝒂𝒕𝒆𝒓 (%) 𝑹𝒘𝒂𝒕𝒆𝒓 (%) 𝑹𝒆𝒕𝒉𝒂𝒏𝒐𝒍/𝒘𝒂𝒕𝒆𝒓 (%) 

Admira Fusion 0.55  (0.01) 0.76  (0.02) 0.12  (0.07) 0.07  (0.02) 
Clearfil Majesty ES Flow x    
Clearfil Majesty Posterior 0.25  (0.00) 0.35  (0.02) 0.02  (0.01) 0.20  (0.02) 
ELS 0.43  (0.02) 1.52  (0.09) 0.09  (0.01) 0.89  (0.02) 
ELS Flow 0.71  (0.02) 2.31  (0.22) 0.11  (0.04) 0.74  (0.18) 
Exp. Flow LC 0.46  (0.06) 0.97  (0.15) 0.11  (0.01) 0.37  (0.01) 
Exp. LC 0.33  (0.01) 0.61  (0.02) 0.10  (0.02) 0.32  (0.01) 
Filtek Silorane x    
Filtek Supreme XTE 0.96  (0.01) 0.95  (0.05) 0.09  (0.01) 0.20  (0.01) 
Gaenial 0.99  (0.01) 1.99  (0.05) 0.06  (0.04) 0.48  (0.04) 
Grandio 0.36  (0.02) 0.40  (0.00) 0.09  (0.09) 0.14  (0.01) 
Grandio Flow 0.54  (0.01) 1.17  (0.06) 0.28  (0.02) 0.75  (0.08) 
Kalore 0.76  (0.03) 1.44  (0.13) 0.09  (0.05) 0.44  (0.09) 
Tetric Evo Ceram 0.65  (0.08) 1.20  (0.18) 0.15  (0.09) 0.56  (0.14) 
Venus Diamond 0.43  (0.01) 0.86  (0.03) 0.13  (0.00) 0.44  (0.03) 
Venus Diamond Flow x    
Venus Pearl 0.33  (0.01) 0.91  (0.02) 0.02  (0.00) 0.42  (0.02) 

 

 

 


