Age and identity of the oldest pine fossils
Hilton, Jason; Riding, James

DOI:
10.1130/G38050C.1

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
https://doi.org/10.1130/G38050C.1

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 04. Aug. 2019
In their study of charred conifer twigs from the Lower Cretaceous Chaswood Formation of Canada, Falcon-Lang et al. (2016) established the species *Pinus mundayi* that they interpreted as a “two needled” pine and the oldest stratigraphic evidence for the extant genus *Pinus*. This is based on their interpretation of what they thought was distinct wood anatomy and paired needle bases of *Pinus* evident in their fossils, while the Valanginian age (ca. 140–133 Ma) is based on revised palynostratigraphy. If correctly interpreted, this material predates the oldest known species *Pinus yorkshirensis* from the Hauterivian–Barremian transition at ca. 131–129 Ma (Ryberg et al., 2012), and pushes back the earliest occurrence of the genus by 4–11 m.y. However, we consider that a more thorough examination reveals that *P. mundayi* is from the Valanginian–Barremian (ca. 140–125 Ma) and that Falcon-Lang et al. have misinterpreted the anatomy of their fossils and erroneously assigned them to the genus *Pinus*.

The Chaswood Formation palynoflora is dominated by pteridophyte spores including *Aequitriradites verrucosus*, *Distaltriangulisporites perplexus*, and *Trilobosporites canadensis*. Falcon-Lang et al. interpreted this to indicate an Early Cretaceous (Valanginian–Hauterivian) age based on North American studies such as Burden and Hills (1989), and based on the range top of *T. canadensis*, they considered it could be refined to early Valanginian following Taugourdeau-Lantz (1988). However, *T. canadensis* ranges from Tithonian to Barremian in North America (Pocock 1962; Burden and Hills 1989) while its range top in eastern Canada was cited as Hauterivian (Falcon-Lang et al., 2007). In Europe, this range top is early Albian (Herngreen, 1971); hence, significantly younger. Moreover, *A. verrucosus* and *D. perplexus* have ranges of Berriasian–Albian and Valanginian–Albian, respectively, in North America (Burden and Hills 1989). Hence, the spore association of Falcon-Lang et al. is Valanginian to Barremian in age (Burden and Hills 1989). Therefore, the early Valanginian age invoked by Falcon-Lang et al. for this material appears to be unreliable.

The “short shoot bases” with paired vascular bundles illustrated by Falcon-Lang et al. for *P. mundayi* were structurally misinterpreted and actually represent axillary branch scars as they appear at the periphery of the wood. Such branch traces are characteristic for all seed plants with axillary branching (Rothwell, 1976) where branch vasculature arises by divisions of two cauline bundles of the stele. Within conifers, this configuration characterizes short shoot branches of all types, including the five-needled pine, *P. arnoldii* (Klymiuk et al., 2011), revealing that branch traces alone do not identify the type of branch that they represent.

Although axial resin ducts with thin-walled epithelial cells in the wood of *P. mundayi* also occur in *Pinus* (Richter et al., 2004; Falcon-Lang et al. 2016), thin-walled epithelial cells occasionally occur in *Picea*, *Larix*, and *Pseudotsuga*. The cross-field pitting was interpreted to be fenestral form or pinoid (see the Supplementary Information) but similarity in pit appearance suggests that these could be taphonomic artefact. Crucially, their sample lacks ray tracheids, a feature diagnostic of all present-day *Pinus*. Likewise, the helically arranged short-shoot traces passing through the growth rings of *P. mundayi* are not diagnostic for two separate needle bases or for the genus *Pinus*. The characteristics of *P. mundayi* more closely conform to the genus *Protopinumylon* Ekhold, which lacks ray tracheids, to which the species should be transferred.

Even if the wood anatomy described by Falcon-Lang et al. were diagnostic of extant *Pinus*, which the lack of ray tracheids argues against, there is no way of knowing when that combination of characters evolved. Was it in conjunction with the evolution of diagnostic *Pinus* seed cone characters (Ryberg et al., 2012) or was it uncoupled? During the Early Cretaceous, the Pinaceae underwent an explosive evolutionary radiation that included a wide range of *Pinus*-like species (Smith et al., 2016). If evolution of the seed cone can be taken as a gauge for wood evolution in *Pinus*, then a diagnostic suite of characters for *Pinus* wood (including axial resin ducts with thin-walled epithelial cells) probably evolved over a period of several million years with those characters accumulating one-by-one during that interval (Ryberg et al., 2012). Seed cones of extinct *Pinus* and *Pinus*-like Pinaceae (including many *Pityostrobus* species) occupied a much broader range of morphospace than do living *Pinus* species (Smith et al., 2016). If the same was true for wood characters, and combinations of wood and seed cone characters for extinct Pinaceae, then it is highly probable that some *Pityostrobus* species had wood that is indistinguishable from that of living *Pinus*. Uncertainty exists regarding the utility of single wood characters for distinguishing between extinct species of *Pinus* and the sister group (or groups) of *Pinus* during the time interval when the genus was undergoing its initial radiation.

We conclude that *P. yorkshirensis*, from the Hauterivian–Barremian transition (Ryberg et al., 2012), remains the oldest record of *Pinus* and that *P. mundayi* is not demonstrated to be a species of *Pinus*. We maintain that Pinaceae evolved during the Jurassic (Rothwell et al., 2012) and that evolutionary diversification of *Pinus* was well under way by the Early Cretaceous (Smith et al., 2016). We suspect that stratigraphically older species of *Pinus* remain to be discovered, but emphasize that to be accepted as such, discoveries need to be placed within rigorous stratigraphic and systematic frameworks.

ACKNOWLEDGEMENTS

James B. Riding publishes with the approval of the Director, British Geological Survey (Natural Environment Research Council). This is Birmingham Institute of Forest Research publication No. 19.

REFERENCES CITED

Supplementary Information

Systematic interpretation of characters of ‘Pinus’ mundayi as described by Falcon-Lang et al. (2016)

<table>
<thead>
<tr>
<th>Character</th>
<th>Systematic significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Long-shoots, 3.6–4.2 mm in diameter and <17 mm long, preserving pith, primary vasculature, secondary xylem, and (locally) phloem</td>
<td>Not diagnostic of Pinus</td>
</tr>
<tr>
<td>2 Stellate pith, 1.15 mm in diameter, composed of axially elongate parenchyma, cells 100–120 μm high and 20–25 μm in diameter</td>
<td>Not diagnostic of Pinus</td>
</tr>
<tr>
<td>3 Profuse pits on all walls</td>
<td>Not diagnostic of Pinus</td>
</tr>
<tr>
<td>4 Eustele comprising ~20 endarch primary xylem patches (Fig. 1C), composed of scalariform tracheids, ~10 μm in diameter</td>
<td>Not diagnostic of Pinus</td>
</tr>
<tr>
<td>5 Secondary xylem, 1.2–1.4 mm in radius, comprising one or two rings of growth, each ring being composed of thin-walled earlywood tracheids, 10–25 μm in diameter, that pass centripetally into thick-walled latewood, 10–15 μm in diameter</td>
<td>Not diagnostic of Pinus</td>
</tr>
<tr>
<td>6 Earlywood tracheids show 1–2-seriate, circular, bordered pits, 10–15 μm, with circular apertures, and opposite arrangement where biseriate</td>
<td>Not diagnostic of Pinus</td>
</tr>
<tr>
<td>7 Latewood tracheids lack pits or show sparse, circular bordered pits only</td>
<td>Not diagnostic of Pinus</td>
</tr>
<tr>
<td>8 Rays uniseriate, 1–11 cells high, and lack ray tracheids</td>
<td>Not diagnostic of Pinus; Ray tracheids are characteristic of living species of Pinus</td>
</tr>
<tr>
<td>9 Cross-fields of ray parenchyma showing 1–4 fenestriform or pinoid pits</td>
<td>Not diagnostic of Pinus</td>
</tr>
<tr>
<td>10 Few scattered axial parenchyma strands occurring close to axial resin ducts</td>
<td>Not diagnostic of Pinus; present in a few species such as P. hartwegii Lindl., but more common in species of Abies and Larix</td>
</tr>
<tr>
<td>11 Thin layer of secondary phloem, <350 μm in radius, locally adhering to outermost part of shoot</td>
<td>Not diagnostic of Pinus</td>
</tr>
<tr>
<td>12 Periderm not preserved</td>
<td>Not diagnostic of Pinus</td>
</tr>
</tbody>
</table>

Data:

© 2016 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.