Emergency management of acute hypercalcaemia in adult patients
Walsh, Jennifer; Gittoes, Neil; Selby, Peter

DOI: 10.1530/EC-16-0055
License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 11. Dec. 2018
Introduction

Under physiological conditions, serum calcium concentration is tightly regulated. Abnormalities of parathyroid function, bone resorption, renal calcium reabsorption or dihydroxylation of vitamin D may cause regulatory mechanisms to fail and serum calcium to rise. Serum calcium is bound to albumin, and measurements should be adjusted for serum albumin. This guideline aims to take the non-specialist through the initial phase of assessment and management.

Severity of hypercalcaemia

<3.0 mmol/L: often asymptomatic and does not usually require urgent correction
3.0–3.5 mmol/L: may be well tolerated if it has risen slowly, but may be symptomatic and prompt treatment is usually indicated
>3.5 mmol/L: requires urgent correction due to the risk of dysrhythmia and coma

Clinical features of hypercalcaemia

- Polyuria and thirst
- Anorexia, nausea and constipation
- Mood disturbance, cognitive dysfunction, confusion and coma
- Renal impairment
- Shortened QT interval and dysrhythmias
- Nephrolithiasis, nephrocalcinosis
- Pancreatitis
- Peptic ulceration
- Hypertension, cardiomyopathy
- Muscle weakness
- Band keratopathy

Causes

Ninety percent of hypercalcaemia is due to primary hyperparathyroidism or malignancy

Less common causes include

- Thiazide diuretics
- Familial hypocalciuric hypercalcaemia
- Non-malignant granulomatous disease
- Thyrotoxicosis
- Tertiary hyperparathyroidism
- Hypervitaminosis D
- Rhabdomyolysis
- Lithium
- Immobilisation
- Adrenal insufficiency
- Milk-alkali syndrome
- Hypervitaminosis A
- Theophylline toxicity
- Phaeochromocytoma
Emergency Guidance

J Walsh et al. Acute hypercalcaemia emergency guidance

G10–G11 5:10

Endocrine Connections

Investigation

History
- Symptoms of hypercalcaemia and duration
- Symptoms of underlying causes, e.g. weight loss, night sweats, cough
- Family history
- Drugs including supplements and over-the-counter preparations

Examination
- Assess for cognitive impairment
- Fluid balance status
- For underlying causes, including neck, respiratory, abdomen, breasts, lymph nodes

ECG
- Look for shortened QT interval or other conduction abnormalities

Bloods
- Calcium adjusted for albumin
- Phosphate
- PTH
- Urea and electrolytes

If further treatment required after intravenous saline, consider intravenous bisphosphonates

Zoledronic acid 4mg over 15 min
OR Pamidronate 30–90mg (depending on severity of hypercalcaemia) at 20mg/h
OR Iblandronic acid 2–4mg
- Give more slowly and consider dose reduction in renal impairment
- Monitor serum calcium response: will reach nadir at 2–4 days
- Can cause hypocalcaemia if vitamin D deficiency or suppressed PTH

Second-line treatments
Glucocorticoids (inhibit 1,25OHD production)
- In lymphoma, other granulomatous diseases or 25OHD poisoning
- Prednisolone 40mg daily
- Usually effective in 2–4 days
Calcimimetics, denosumab, calcitonin
- Under specialist supervision
- Can be considered if poor response to other measures
Parathyroidectomy
- Can be considered in acute presentation of primary hyperparathyroidism if severe hypercalcaemia and poor response to other measures

Management

Rehydration

Intravenous 0.9% saline 4–6 L in 24 h
- Monitor for fluid overload if renal impairment or elderly
- Loop diuretics rarely used and only if fluid overload develops; not effective for reducing serum calcium
- May need to consider dialysis if severe renal failure

High calcium and high PTH=primary or tertiary hyperparathyroidism*
High calcium and low PTH=malignancy or other less common causes
(*Familial hypocalciuric hypercalcaemia may be misdiagnosed as primary hyperparathyroidism due to hypercalcaemia with inappropriately normal or raised PTH. However, the hypercalcaemia is not usually severe and it is less likely to present as an emergency)

Sources

Disclaimer
The document should be considered as a guideline only; it is not intended to determine an absolute standard of medical care. The doctors concerned must make the management plan for an individual patient.


Received in final form 3 August 2016
Accepted 3 August 2016