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ORIGINAL RESEARCH

Evaluation of Intravoxel Incoherent
Motion Fitting Methods in

Low-Perfused Tissue

Emma M. Meeus, MS,1,2,3 Jan Novak, PhD,2,3 Stephanie B. Withey, PhD,2,3,4

Niloufar Zarinabad, PhD,2,3 Hamid Dehghani, PhD,1,5 and

Andrew C. Peet, MD, PhD2,3*

Purpose: To investigate the robustness of constrained and simultaneous intravoxel incoherent motion (IVIM) fitting
methods and the estimated IVIM parameters (D, D* and f) for applications in brain and low-perfused tissues.
Materials and Methods: Model data simulations relevant to brain and low-perfused tumor tissues were computed to
assess the accuracy, relative bias, and reproducibility (CV%) of the fitting methods in estimating the IVIM parameters. The
simulations were performed at a series of signal-to-noise ratio (SNR) levels to assess the influence of noise on the fitting.
Results: The estimated IVIM parameters from model simulations were found significantly different (P<0.05) using simulta-
neous and constrained fitting methods at low SNR. Higher accuracy and reproducibility were achieved with the constrained
fitting method. Using this method, the mean error (%) for the estimated IVIM parameters at a clinically relevant SNR 5 40
were D 0.35, D* 41.0 and f 4.55 for the tumor model and D 1.87, D* 2.48, and f 7.49 for the gray matter model. The most
robust parameters were the IVIM-D and IVIM-f. The IVIM-D* was increasingly overestimated at low perfusion.
Conclusion: A constrained IVIM fitting method provides more accurate and reproducible IVIM parameters in low-perfused
tissue compared with simultaneous fitting.

J. MAGN. RESON. IMAGING 2016;00:000–000

Diffusion- and perfusion-weighted MRI methods are
becoming more prevalent in clinical practice due to

their ability to provide information about tissue microstruc-
ture such as cellularity and vascularity, respectively.1,2

Diffusion-weighted imaging (DWI) has the advantage of
being noninvasive with no requirement for an intravenous
contrast agent, whereas contrast is needed for perfusion
methods such as dynamic susceptibility contrast (DSC)
imaging. In brain tumors, DWI has been shown to improve
tissue characterization,3 monitor treatment response,4 differ-
entiate posttherapeutic changes from active tumor residuals,5

and aid in tumor staging.6 While DWI can provide an
insight into many microstructural features alone, using it in
combination with perfusion-derived parameters could result
in a more complete investigation.

Recently, the intravoxel incoherent motion (IVIM)

model has gained more interest with its derivation of diffusion

and perfusion related parameters from DWI sequences.7 This

is achieved by using different magnitudes of diffusion weight-

ing.8,9 The overall IVIM signal decay can be modelled as:

SðbÞ
Sð0Þ5f � exp2bD�1ð12f Þ � exp2bD (1)

where S(b)/S(0) is the signal intensity at a certain b-value

normalized by the signal intensity at b 5 0, D is the tissue

diffusion coefficient, D* is the pseudo-diffusion coefficient,

and f is the perfusion fraction describing the fraction of sig-

nal arising from the vascular network.

Links between the IVIM perfusion parameters f, D*, and

fD* have been established to classical perfusion parameters

View this article online at wileyonlinelibrary.com. DOI: 10.1002/jmri.25411

Received May 23, 2016, Accepted for publication Jul 19, 2016.

*Address reprint requests to: A.C.P., Institute of Child Health, Whittall Street, Birmingham B4 6NH, UK. E-mail: a.peet@bham.ac.uk

From the 1Physical Sciences of Imaging in Biomedical Sciences (PSIBS), Doctoral Training Centre, University of Birmingham, United Kingdom; 2Institute of

Cancer and Genomic Sciences, University of Birmingham, United Kingdom; 3Department of Oncology, Birmingham Children’s Hospital, Birmingham, United

Kingdom; 4RRPPS, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom; and 5School of Computer Science, University of

Birmingham, United Kingdom

Additional supporting information may be found in the online version of this article

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited.

VC 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc.
on behalf of International Society for Magnetic Resonance in Medicine 1

http://creativecommons.org/licenses/by/4.0/


cerebral blood volume (CBV), mean transit time (MTT), and

cerebral blood flow (CBF), respectively.10 However, while

IVIM-f was found to correlate well with DSC-CBV in healthy

adult gray matter11 and in low- and high-grade gliomas,12 the

IVIM-D* and IVIM-fD* have produced more contradictory

results.11,13 These studies suggest that the bi-exponential

behavior in the brain might not be sufficiently pronounced for

the robust computation of IVIM-D*.

The reliable derivation of the IVIM parameters

depends on the chosen DWI protocol (e.g. number of aver-

ages and b-values)14,15 and the subsequent postprocessing of

the image data.16 Barbieri et al16 have previously studied

the fitting of the IVIM signal data in detail, where six fit-

ting algorithms were compared for upper abdominal organs.

Variability was observed between the algorithms in all

abdominal regions, which included the simultaneous (three-

parameter) and constrained (one-parameter) fitting methods

also used in this study. However, the study did not include

the fitting method (two-parameter) more commonly used in

previous IVIM brain studies.11–13 The application of the

IVIM model in the brain differs from the abdomen in terms

of the degree of perfusion or bi-exponential behavior of the

observed signal. The perfusion in the brain is generally low-

er when compared with the abdomen and, therefore, poses

a greater challenge for the bi-exponential IVIM model.

Low-perfused tissue has been observed in regions of acute

ischemic stroke,13 traumatic brain injury,17 and both adult

and pediatric low-grade brain tumors.12,18 The assessment

of low-perfused tissue with the IVIM model could provide a

noninvasive alternative to the more commonly used DSC-

MRI. The purpose of this study was to assess and compare

the constrained and simultaneous IVIM fitting methods in

low-perfused tissue.

Materials and Methods

Data Simulations
Model data simulations were performed to investigate the effects of

the fitting algorithms on the accuracy and reproducibility of the

estimated IVIM parameters. All simulations and data analysis were

implemented using in-house Python software (Anaconda, Continu-

um Analytics, v. 2.7.10) with the LmFit library.19 The model data

signal values were generated with Eq. [1] using the same b-value

distribution as used for the patient imaging (b 5 0, 20, 40, 80,

110, 140, 170, 200, 300, 500, 1000 s/mm2). The IVIM parame-

ters for the gray matter (GM) and tumor model were obtained

using the average values of the corresponding regions from the

patient cohort. The following IVIM values were used for the

GM model: D 5 8.32 3 1024 mm2/s, D* 5 2.68 3 1022 mm2/s,

f 5 0.115 and tumor model: D 5 1.63 3 1023 mm2/s, D* 5

7.23 3 1023 mm2/s, and f 5 0.0953.

Random white Gaussian noise was introduced to the model

data to mimic SNR levels of 20 to 70 based on (Eq. [2]):

SNR5
l
r

(2)

where l is the maximum signal and r is the standard deviation of

the noise. The noise was created using a Gaussian function, which

returned a symmetric Gaussian filter with appropriate values of l
and r for the chosen SNR level. Random values from the filter

were added to the simulated data to create sets of signal data with

random noise. An example of the generated gray matter signal data

at different SNR levels is shown in Figure 1 together with an

experimental signal derived from a healthy gray matter region.

SNR levels were selected based on previous publications20,21 and

the patient cohort in our study to cover appropriate noise levels

observed in diffusion-weighted imaging. The SNR values were

determined with the standard NEMA method22 from the DWI

protocol using dynamic imaging. The SNR values at b 5 1000

s/mm2 were found to be in the range of 35–53. The data simula-

tions were performed using 1000 random data iterations for each

model and SNR level. Data iterations with ill-conditioned Jacobian

matrix were defined as outliers.

MRI
All MR imaging was performed on a Philips Achieva 3 Tesla (T)

TX (Philips Healthcare, Best, the Netherlands) MRI scanner with

a 32-multichannel receive head coil at Birmingham Children’s Hos-

pital, United Kingdom. Seven different brain tumor patients (age

1.6 to 10.2 years; mean age, 4.6 years) were scanned. The tumor

types included: hypothalamic/chiasmatic pilocytic astrocytoma,1

glioneuronal tumor,1 optic pathway glioma,4 and hypothalamic gli-

oma.1 Informed parental consent was obtained for all subjects and

the East Midlands – Derby Research Ethics Committee (REC 04/

MRE04/41) approved the study operating under the rules of

Declaration of Helsinki 1975 (and as revised in 1983). The DW-

MRI protocol used a sensitivity-encoded (SENSE) approach with

single-shot, spin echo planar imaging sequence. For each subject

11 exponentially spaced b-values were acquired in three orthogonal

directions with TR/TE 5 4000/91 ms, field of view (FOV)

240 3 240 mm2, matrix size 96 3 96, slice thickness 3.5 mm with

30 contiguous axial slices and in-plane resolution of 2.5 3

2.5 mm2. The total scan duration was 2.12 min.

Data Analysis
Nonlinear least squares minimization was performed with the

Levenberg-Marquardt algorithm for the IVIM fitting of signal

data. The fitting was performed on a voxel-by-voxel basis using the

bi-exponential methods outlined in Figure 2, which varied from a

nonconstrained simultaneous fitting to a more constrained step-

wise fitting with fixed IVIM parameters.

For the one- and two-parameter fitting, the model assumed that

the perfusion effects were negligible at high b-values (> 200 s/mm2)23;

therefore, the mono-exponential relationship was be used to define

IVIM-D (Eq. [3]).

SðbÞ
Sð0Þ5exp2bD (3)

Additionally, the one-parameter method used the linear fit from

Eq. [3] to derive the IVIM-f value by extrapolating the fit to the
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y-intercept, S(int). When no vascular component is present,

S(int) 5 S(0). The IVIM-f parameter can be defined as:

f 5
Sð0Þ2SðintÞ

Sð0Þ (4)

The reproducibility was computed in terms of coefficient of varia-

tion (CV) for each IVIM parameter at each SNR and determined

as the percentage of the ratio of standard deviation of the mean

parameter to the mean parameter for a set of model data iterations.

Similarly, the Bland-Altman analysis of relative bias was computed

for each parameter as a percentage of the difference between the

ground truth IVIM parameters and the estimated IVIM parameters

with limits of agreement determined from the standard deviation

of the mean difference (95% confidence intervals).

Statistical Analysis
The statistical analysis was performed in SPSS Statistics (IBM,

Chicago, IL, v.22). Analysis of variance (ANOVA) was performed

for the repeated IVIM model data simulations and the estimated

parameter values derived using the different fitting methods. This

FIGURE 1: An example of simulated bi-exponential gray matter signal created for the different SNR levels of 70, 50, and 30 (a–c)
and experimental diffusion signal (d) derived from a healthy gray matter region.

FIGURE 2: Bi-exponential IVIM fitting methods used in this study using the Levenberg-Marquardt algorithm with least-squares
minimization.

Meeus et al.: IVIM Fitting in Low-Perfused Tissue
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was to test if estimated parameters differed significantly (P< 0.05)

between the fitting algorithms. The Tukey post hoc analysis was used

to define which algorithms differed significantly (P< 0.05). The

model data were further analyzed using confidence intervals and the

resulting 2D error norm plots computed with the LmFit library.19

The method used an F-test to compare the null model (best fit) with

an alternate model where one parameter value was fixed.

Results

Model Data Simulations
The tumor and gray matter simulation results for the fitting

methods and the estimation of IVIM-D, IVIM-D*, and

IVIM-f parameters are shown in Figure 3 and Tables 1 and 2.

The absolute accuracy was determined using the true IVIM

values and the measured mean value obtained from fitting of

the simulated data (Fig. 3). The estimation of IVIM-D (Fig.

3a,d) was robust for both the constrained and simultaneous

fitting for tumor and gray matter model. At lower SNR levels

the mean IVIM-D decreased, which lead to an increase of

both IVIM-f and IVIM-D* mean values (Fig. 3b,c,e,f ). While

increasing variance was observed for all the IVIM parameters

at decreasing SNR levels, the variance was comparatively

reduced for the IVIM-D and IVIM-f.
A significant difference between the algorithms was

observed in the tumor model for the estimation of mean

IVIM-D (SNR 30–70; P 5 0.001–0.005), IVIM-D* (SNR

20–30; P 5 0.001) and IVIM-f (SNR 30–60; P 5 0.001–

0.008) values. This was shown by the post hoc test to be due

to the difference between the constrained fitting methods and

the three-parameter fitting. Better accuracy was achieved with

the constrained fitting methods (Fig. 3a–c). The constrained

fitting methods (one- and two-parameter) produced different

values of IVIM-f at SNR 30–40. In the gray matter model,

significant differences were observed for the estimation of the

mean IVIM-D* (SNR 20–30; P 5 0.001) and IVIM-f (SNR

20–30; P 5 0.001–0.031) values. Similar to the tumor model,

the difference arose in both the constrained and simultaneous

fitting methods.

FIGURE 3: The accuracy results for the estimated IVIM parameters from the data simulations using the different fitting methods
with tumor (a–c) and gray matter model (d–f). The true IVIM values are shown as dashed lines and error bars represent the standard
deviation of the estimation.
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The IVIM parameter reproducibility (coefficient of

variation, CV%) and the number of outliers from the fitting

methods are reported in Table 1 and the relative bias (%)

with limits of agreement in Table 2. The gray matter model

resulted in higher reproducibility and a smaller number

of outliers compared with the tumor model. The three-

parameter fitting was the most reproducible for the gray

matter model, but generated the largest number of outliers.

The relative bias between the ground truth IVIM parame-

ters and the estimated IVIM parameters in the gray matter

model showed very similar behavior between the fitting

methods as shown in Figure 3. For the low-perfused tumor

model, the more constrained fitting methods increased the

reproducibility with one-parameter fitting being the most

reproducible overall with the lowest number of outliers. The

relative bias for the tumor model indicated similar accuracy

between the fitting methods. However, the variance for

the estimation of IVIM-D* was increased using the three-

parameter fitting.

Overall, the one-parameter fitting method estimated the

most accurate and precise IVIM-D, IVIM-D*, and IVIM-f

values. At SNR of 40, the mean error % / reproducibility

(CV%) for IVIM-D, IVIM-D*, and IVIM-f were 0.35/8.67,

41.0/58.3, and 4.55/50.9 for the tumor model, respectively,

and 1.87/9.54, 2.48/21.7, and 7.49/22.3 for the gray matter

model, respectively.

Uniqueness of the IVIM Parameters
Confidence intervals were computed for the IVIM parameters

at different SNR levels to investigate their uniqueness. An

example case of 2D-confidence interval or error-norm plots

with the gray matter model (based on one-parameter fitting) is

shown in Figure 4 for SNR levels of 40 (a–c) and 20 (d–f ).

The plots represent signal data, where data fitting was starting

to fail due to a greater amount of random noise (“worst case

scenario”). The most robust parameters were the IVIM-D and

IVIM-f, which varied little within the 95.0% confidence

region (Fig. 4c,d). However, the IVIM-D* was increasingly

overestimated at decreasing IVIM-f (Fig. 4b) or increasing

IVIM-D (Fig. 4f ) values, which corresponded to decreasing

bi-exponential behavior. Similar behavior was observed across

all three bi-exponential fitting methods. The error-norm plots

for the tumor model can be found in the Supplementary

Material, which is available online. The plots showed multiple

minima in the fitting of the IVIM parameters, which resulted

in a wider distribution of estimated values, also observed as an

increased number of outliers (Table 1).

The distributions of the estimated IVIM parameters at

increasing SNR levels are shown in Figure 5 for the one-

parameter fitting. The estimation of the IVIM-D values (Fig.

5a) was robust with few outliers, while a wider spread of values

was observed for both IVIM-D* (Fig. 5b) and IVIM-f (Fig.

5c). The IVIM-f value distributions were found positivelyT
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skewed at the reducing SNR levels (opposite to the negatively

skewed IVIM-D) and the median gave a better measure of the

central tendency. This was similarly observed in Figure 4 as

the elongation of the confidence levels toward greater IVIM-f

values. With IVIM-D and IVIM-f fixed in the one-parameter

fitting, the estimation of IVIM-D* is dependent on both.

Therefore, not surprisingly a larger number of outliers was

observed for the IVIM-D*. However, the IVIM-D* had limit-

ed robustness even at the higher SNR levels.

Patient Imaging
Two example cases of pediatric patients with assumed glio-

neuronal tumor and low-grade hypothalamic glioma are

shown in Figure 6. The maps were computed with the one-

parameter fitting. The IVIM-D maps (Fig. 6c,d) show

regions of low and high tissue diffusivity, which could be

representative of the high and low cellularity within the

tumors. The IVIM-f maps (Fig. 6e,f ) show areas of hypo-

perfusion, in particular for the glioma case.

FIGURE 4: An example of one-parameter fitting and the resulting error norm plots for gray matter model at SNR 40 (a,c,e) and
SNR 20 (b,d,f) where data fitting was starting to fail due to greater amount of random noise. The plots were computed for all
three IVIM parameter combinations of f-D* (a,b), f-D (c,d), and D-D* (e,f). The contour colors describe the percentage confidence
as shown by the color bar.
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Discussion

Fitting of multi b-value DWI for the determination of

IVIM parameters was undertaken to evaluate the robustness

of the fitting methods in low-perfused tissue. The simula-

tions showed that the constrained one- and two-parameter

fitting methods performed similarly for the tumor and gray

matter model data. However, the estimated parameters from

these methods differed significantly to the three-parameter

fitting derived parameters. The use of constrained fitting

methods reduced the number of outliers, increased accuracy

and provided more reproducible results in the estimation of

IVIM parameters. Therefore, the more constrained methods

provided more robust results compared with the simulta-

neous fitting.

The IVIM studies of abdomen and body14,24–26 have

often used the one-parameter fitting to increase the reliabili-

ty of the IVIM-D* parameter at higher levels of perfusion.

However, the reproducibility of IVIM-D* in the gray matter

model was found to be similar across the three fitting meth-

ods. Contrary to prior studies, the constrained fitting meth-

ods and in particular the one-parameter fitting were found

to produce more reliable results for the tumor model with

the subtle bi-exponential signal. This was observed with the

estimation of the IVIM-D* and to a lesser extent with

IVIM-f. Therefore, the subtle bi-exponential signal observed

in tissues of low perfusion can benefit from the use of more

constrained fitting methods.

Results from the data simulations showed that the esti-

mation of IVIM-D and IVIM-f was more robust and reli-

able compared with IVIM-D*. Both IVIM-f and IVIM-D*

were affected by the degree of perfusion or bi-exponential

behavior, which resulted in greater variance for the low-

perfused tumor model. However, the IVIM-f was still esti-

mated with good accuracy at a lower SNR using the one-

parameter fitting method. A similar perfusion-related influ-

ence was observed in a study by Wu et al,11 where simula-

tions showed greater variance for the less-perfused white

matter compared with gray matter. Therefore, low-perfused

tissues have a higher SNR requirement for the computation

of reliable IVIM derived parameters. Overall, our simula-

tions suggest that the one-parameter fitting method can pro-

vide the most reliable results with the smallest number of

outliers, followed by the two-parameter fitting, which has

been more commonly applied in the brain.12,13

The uniqueness of the IVIM parameters was investi-

gated using error norm plots. For models such as bi-

exponential, the approximation of the standard error from

the covariance matrix can begin to fail and confidence inter-

vals can provide a better measure of robustness of the

parameters. Most of the gray matter and tumor model itera-

tions produced symmetrical uncertainties and the standard

errors derived from the covariance matrix produced suffi-

cient approximates of uncertainties. Therefore, the presented

gray matter and tumor model cases do not reflect the

majority of the data observed at the corresponding SNR lev-

els, but rather indicated the behavior of the models at high

random noise levels.

In the case of the tumor model, multiple minima were

observed in the estimation of the IVIM parameters. The

FIGURE 5: Boxplots for IVIM-D (a), IVIM-D* (b), and IVIM-f (c)
derived using the one-parameter fitting with the gray matter
model at increasing SNR levels, with the y-axis describing the
error to the true value. The crosses are the means, the central
lines (red) are the medians, and the notches describe the 95%
confidence levels in the median. The box edges are the first
(Q1) and the third (Q3) data quartiles, with whiskers showing
the more extreme data points not considered outliers.
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convergence of the algorithm to these local minima at lower

SNR levels was likely to affect the overall mean values, as

the distribution of the estimated IVIM parameters was

shifted. The application of multi-compartmental models to

MRI data have been previously studied by Jelescu et al,27

who showed that the global minima was not always the cor-

rect solution. However, the convergence to the correct mini-

mum is important for the clinical reliability of the model.

In our tumor simulations, there was only a single minimum

for cases with SNR> 50 and at SNR 40 multiple minima

were observed for< 7% of cases. In the cases of multiple

minima, the global minimum was also found to be correct.

Therefore, an experimental solution would be to improve

the SNR by increasing the number of averages of the

acquired signal data. This would minimize the number of

multiple minima cases, improve the data fitting and increase

the reliability of the model as shown in the simulations.

The behavior of the gray matter model showed that

the estimation of IVIM-D and IVIM-f was still robust in

the presence of noise. A loss in uniqueness of the IVIM-D*

was observed, with a range of IVIM-D* values estimated for

fixed IVIM-f and IVIM-D values. This was also illustrated

as the large number of outliers for IVIM-D*. In comparison

to the other fitting methods, the constrained one-parameter

fitting provided the best estimate of IVIM-D*. With the

limited robustness and loss in uniqueness of IVIM-D*, we

concluded it did not provide a reliable measure of microvas-

cular diffusion for the low perfusion regime in the brain.

An increase in the number of low b-values could potentially

increase the robustness of IVIM-D*, which was previously

shown in the liver study by Cohen et al.14 Also, as previous-

ly mentioned, an increase in the number of averages would

improve the fitting and, hence, the robustness of the IVIM-

D* and IVIM-f. An alternative approach would be to use

the IVIM model as a complimentary technique to arterial

spin labeling (ASL-MRI). This would provide a more com-

plete noninvasive investigation of perfusion with the compu-

tation of IVIM-f (comparable to CBV) and ASL-CBF

parameters.

The limitations in the fitting methods used in this study

include the use of a model that assumes the signal is bi-

exponential. In regions where the signal decay was or

approaches mono-exponential behavior, the accuracy, and

reproducibility of the estimated IVIM-f and IVIM-D* values

was decreased. The IVIM-f was affected to a lesser degree than

the IVIM-D*, which performed poorly in the model simula-

tions. Another issue encountered in the brain was the presence

of cerebrospinal fluid (CSF). In most cases, this caused the

fitting to estimate values of IVIM-f that were higher than

0.3 and a threshold was introduced to remove this

“nonphysiological” data. However, partial volume effects from

CSF were found to be problematic in some areas. A more

sophisticated approach, which could determine the number of

exponential components from the data might improve the fit-

ting of the low-perfused regions and potentially provide more

reliable results. The IVIM model used in this study did not

take into account any relaxation time effects, which were pre-

viously found to affect the perfusion-related parameters in the

abdominal organs.28 This was based on the more recent find-

ings by Orton et al,29 who showed statistical support for the

extended IVIM model in the liver, but not for the lower per-

fused organs (spleen and kidney). Therefore, these effects are

likely to be negligible in the low-perfused tissues investigated

in this study.

In conclusion, based on the simulated data, the best per-

forming fitting algorithm was the constrained one-parameter

FIGURE 6: Example cases of glioneuronal tumor (top) and hypothalamic glioma (bottom) shown on b0 images (a,b), IVIM-D maps
(c,d), and IVIM-f maps (e,f).
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method, which resulted in the most reliable IVIM parameters.

The estimated IVIM parameters had similar accuracy (mean

error and bias) between the fitting methods, but differences

were observed in the reproducibility and number of outliers.

While the lower degree of bi-exponential behavior with the

tumor model resulted in a larger variance in the IVIM param-

eters, the estimation of IVIM-D and IVIM-f was robust. The

data simulations and also the presence of local minima indi-

cated that there is an SNR requirement for reliable IVIM data

analysis (SNR> 40). This study showed that the constrained

fitting of the IVIM model can be used to assess low-perfused

tissues.
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