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 28 

ABSTRACT 29 

Metacognition, the ability to monitor one’s own decisions and representations, their accuracy and 30 

uncertainty is considered a hallmark of intelligent behaviour. Little is known about metacognition 31 

in real-world situations where the brain is bombarded with signals in different sensory modali-32 

ties. To form a coherent percept of our multisensory environment, the brain should integrate signals 33 

from a common cause, but segregate those from independent causes. Perception thus relies on infer-34 

ring the world’s causal structure, raising new challenges for metacognition. We discuss the extent 35 

two which observers can monitor their uncertainties not only about their final integrated percept but 36 

also about the individual sensory signals and the world’s causal structure. The latter causal meta-37 

cognition highlights fundamental links between perception and other cognitive domains such as so-38 

cial and abstract reasoning. 39 

 40 

 41 

TRENDS 42 

To form a coherent percept of our multisensory environment the brain needs to integrate signals 43 

caused by a common source (e.g. event), but segregate those from different sources; natural multi-44 

sensory perception thus relies inherently on inferring the world’s causal structure.  45 

Human observers are known to metacognitively monitor the uncertainty of their perceptual esti-46 

mates in simple sensory tasks, but it is unclear whether they can monitor their uncertainties about 47 

their integrated percept, the individual sensory signals and the causal structure of complex multi-48 

sensory environments. 49 

Causal metacognition highlights fundamental links between perception and other cognitive domains 50 

such as social and abstract reasoning and may be critical for our understanding of neuropsychiatric 51 

diseases such as schizophrenia. 52 

 53 

 54 

 55 
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MAIN TEXT 58 

Metacognition: Monitoring one’s own cognition 59 

‘Metacognition’ refers to cognitive processes about other cognitive processes, knowing about 60 

knowing, or beliefs about one’s own beliefs.  It describes the formation of second-order representa-61 

tions that allow observers to monitor their first-order representations about objects or events in the 62 

real world [1–3]. Metacognitive research investigates the extent to which observers can assess the 63 

uncertainty or accuracy of their perceptual representations and judgments. For instance, observers 64 

cannot only spot a friend in the crowd, but also metacognitively evaluate their uncertainty or doubt-65 

fulness about their first-order perceptual interpretation (e.g., “Is this really my friend?”). In a wider 66 

sense, though, metacognition characterizes an observer’s ability to introspect the perceptual infer-67 

ence processes that led to their first-order world representations [4]. Metacognition can operate in a 68 

number of domains including perception [5–7], memory [8,9], collective decision-making [10] and 69 

social learning [11,12].  70 

Despite a recent surge of interest in metacognition, the majority of perception research to date has 71 

focused on simple visual or auditory tasks that were based on one single signal stream [7,13–16]. 72 

Yet, in our natural environment, our senses are constantly bombarded with many different signals. 73 

In order to form a coherent percept of the world, the brain is challenged to integrate signals caused 74 

by common events, but segregate those caused by independent events. Natural perception thus re-75 

lies inherently on inferring the world’s causal structure. In this review, we focus on the challenges a 76 

natural complex environment poses not only for first-order perception, but also for second-order 77 

metacognition. First, we introduce Bayesian Causal Inference as a normative model that describes 78 

how an ideal observer should arbitrate between sensory integration and segregation when exposed 79 

to multiple sensory signals in our natural environment [17–19]. Next, we discuss whether observers 80 

can monitor their uncertainties associated with the different sorts of estimates that Bayesian Causal 81 

Inference involves, such as the uncertainties about their final integrated percept, the individual sen-82 

sory estimates, and the inferred causal structure of the world [2,20,21]. Finally, we ask 83 

er human observers can move beyond the integrated percept and metacognitively introspect those 84 

perceptual inference processes. Is multisensory perception encapsulated as an unconscious infer-85 

ence process, or is it open to metacognitive introspection? While we focus on multisensory percep-86 

tion and cue combination as prime examples for the integration of information from independent 87 

sensory channels [17,22,23], the fundamental challenges and principles apply more generally to sit-88 
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uations and tasks that require information integration and segregation in perception and wider cog-89 

nition (Box 1). 90 

Metacognition enables human and non-human observers [24] to act more strategically, for instance, 91 

to determine whether or not to defer a response and acquire more information [20,25]. Causal meta-92 

cognition is, in particular, critical for situations with information emanating from potentially differ-93 

ent sources not only in perception, but also in social and abstract reasoning [17,26].  94 

 95 
Metacognition in perception 96 

In the 19th Century, Helmholtz described perception as ‘unconscious inference’ that maps from 97 

noisy sensory inputs to perceptual interpretations and choices under the guidance of prior experi-98 

ence [27]. Likewise, more recent Bayesian statistical models formalize perception as a probabilistic 99 

inference process whereby the brain combines prior expectations with uncertain sensory evidence to 100 

infer the most likely state of the world [28]. Perception is thus inherently uncertain and error-prone. 101 

Metacognitive research investigates whether observers can assess their uncertainty about the per-102 

ceptual representations that are formed on the basis of noisy sensory evidence. Are observers ap-103 

propriately confident about the accuracy of their perceptual choices and eventually use this infor-104 

mation to adjust subsequent responses [21,29]? Accumulating evidence based on decisional confi-105 

dence ratings [30], no loss gambling [31], or post-decision wagering [32,33] demonstrates that hu-106 

man and non-human observers can indeed access the uncertainty of their perceptual representa-107 

tions and adjust their decisional confidence accordingly. In some cases, observers even compute 108 

their confidence about the correctness of their perceptual judgment (e.g., motion discrimination) in 109 

a Bayes-optimal fashion. In other words, their confidence truthfully reflects the probability that 110 

their perceptual choices are correct given the sensory signals (e.g., motion) [29]].  111 

Critically, observers’ decisional confidence depends on the uncertainty of their first-order perceptu-112 

al representations (for other influences, see [34]). For instance, when presented with weak motion 113 

signals, observers will not only be close to chance when discriminating motion direction but also 114 

when judging whether their motion discrimination response was correct. In other words, observers’ 115 

perceptual sensitivity (e.g., their ability to discriminate left from right motion, say) constrains their 116 

maximally possible metacognitive sensitivity (i.e., their ability to discriminate between their correct 117 

and incorrect choices) [14,35]. While d’ is used as a signal-theoretic index to quantify observers’ 118 

perceptual sensitivity, meta-d’ has recently been proposed as a signal-theoretic index to quantify 119 

observer’s metacognitive sensitivity. A large meta-d’ indicates that observers can reliably discrimi-120 

nate between their correct and incorrect perceptual judgments. Critically, while meta-d’ depends on 121 

both the quality of the sensory evidence and its metacognitive assessment, directly comparing the 122 

perceptual and the metacognitive d’ quantifies observer’s metacognitive efficiency [14,35]. It pro-123 
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vides insights into an observer’s ability to evaluate the uncertainty of their perceptual representa-124 

tions and choices. A ‘metacognitively-ideal observer’ (i.e., where  meta-d’ is equal to d’) can access 125 

all information that was used for the first-order perceptual judgment for his/her second-order meta-126 

cognitive evaluation. 127 

Abundant evidence suggests that the brain is able to represent and use estimates of uncertainty for 128 

neural computations in perception, learning, and cognition more widely [21–23,36,37]. Yet, the un-129 

derlying neural coding principles remain debated. For instance, uncertainty may be represented in 130 

probabilistic population codes  [38,39] or else rely on sampling-based methods [40]. Likewise, it 131 

remains controversial whether metacognitive ‘confidence estimates’ are directly read-out from first-132 

order neural representations [13,20] or formed in distinct ‘metacognitive’ neural circuitries 133 

[7,41,42]. In support of a shared system, or common mechanism, underlying perceptual decisions 134 

and confidence, neurophysiological research has demonstrated that the same neurons in a lateral 135 

parietal area encode both monkey’s perceptual choice and its confidence [43,44]. Dissociations be-136 

tween perceptual choice and confidence may emerge when decision confidence is interrogated after 137 

the subject committed to a perceptual choice thereby relying on different sensory evidence 138 

[3,13,45]. By contrast, neuropsychological and neuroimaging studies in humans point toward dedi-139 

cated metacognitive neural circuitries in the prefrontal cortex [7,42,46]. For instance, fMRI work 140 

revealed that activations in anterior prefrontal cortex reflect changes in confidence when perceptual 141 

performance is held constant [47]. Likewise, patients with anterior prefrontal lesions showed a se-142 

lective deficit in metacognitive accuracy [42]. Decisional confidence estimates encoded in dedicat-143 

ed circuitries may serve as a common currency and enable direct comparisons across different cog-144 

nitive tasks [15] or sensory modalities [5]. 145 

 146 

The multisensory challenge: Causal inference and reliability-weighted integration 147 

Imagine you are packing your shopping items from your trolley into the back of your car which is 148 

parked on a busy street. Suddenly you hear a loud horn. Is this sound coming from a car on the op-149 

posite side of the road, competing for a parking spot, or from a car hidden behind your back indicat-150 

ing that your trolley is blocking the traffic? Or is the sound perhaps coming from one of your shop-151 

ping items? While the latter suggestion seems rather unlikely, the other two may be valid interpreta-152 

tions of the sensory inputs (see figure 1). This example illustrates the two fundamental computa-153 

tional challenges that the brain faces in our everyday multisensory world: First, it needs to solve the 154 

so-called causal inference problem [17–19] and determine whether or not signals come from com-155 

mon sources and should be integrated. Second, if two signals come from a common source, the 156 
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brain is challenged to integrate them into the most reliable percept by weighting them optimally in 157 

proportion to their reliabilities (i.e., inverse of sensory variance [22,23,48,49]). 158 

In the laboratory, the principles of multisensory integration can be studied by presenting conflicting 159 

and non-conflicting signals. For instance, if auditory and visual signals are presented in synchrony 160 

yet at different spatial locations, the ventriloquist illusion emerges. The perceived sound location 161 

shifts towards the location of a spatially distant visual signal and vice versa depending on the rela-162 

tive auditory and visual reliabilities. Importantly, spatial biasing is reduced at large spatial dispari-163 

ties when it is unlikely that the two signals come from a common source [50,51]. This attenuation 164 

of sensory integration at large spatial disparities is well accommodated by hierarchical ‘Bayesian 165 

Causal Inference’ that explicitly models the potential causal structures that could have generated the 166 

sensory signals i.e., whether auditory and visual signals come from common or independent sources 167 

[18,52] (for related models based on heavy tailed prior distributions, please see [17,53,54]). During 168 

perceptual inference, the observer is then thought to invert this generative process. Under the as-169 

sumption of a common signal source, the two unisensory estimates of a physical property are com-170 

bined and weighted according to their relative reliabilities (i.e., inverse of variance). For instance, to 171 

estimate the location of a singing bird from audition and vision the observer should give a stronger 172 

weight to the visual signal at day time than at night. Under the hypothesis of two different sources, 173 

the auditory and visual signals are treated independently. On a particular instance, the brain needs to 174 

infer the causal structure of the world (e.g., one or two sources) from the sensory inputs. Multiple 175 

sorts of intersensory correspondences [55] such as spatiotemporal coincidence (i.e. auditory and 176 

visual signals happening at the same time and location [56–62], semantic (e.g. the shape and 177 

singing of a bird) [63–65] or higher-order correspondences (e.g., gender: female voice with female 178 

face) can inform the brain as to whether signals are likely to come from a common source or 179 

independent sources. Finally, an estimate of the physical property in question (e.g., auditory loca-180 

tion) is obtained by combining the estimates under the two causal structures using different deci-181 

sional functions [18,52,66]. For instance, using model averaging observers may form a final esti-182 

mate by averaging the estimates from the two causal structures weighted by their posterior probabil-183 

ities. Alternatively, they may report the estimate of the most likely causal structure as final estimate, 184 

a decisional strategy referred to as model selection. 185 

 186 

Monitoring uncertainties about the world’s causal structure and environmental properties 187 

The additional complexity of multisensory perception or more generally tasks that rely on multiple 188 

information channels raise questions and challenges that go beyond metacognition studied, for ex-189 

ample, with simple visual discrimination or detections tasks. In particular, it raises the question of 190 
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whether observers can monitor the different sorts of uncertainties involved in Bayesian Causal In-191 

ference: 192 

First, observers may monitor their uncertainty about the causal structure that has generated the 193 

sensory signals [18,19,66]. The uncertainty about the causal structure increases with the noise in the 194 

sensory channels. For instance, at dawn, it is more difficult (i.e. associated with greater uncertainty) 195 

to attribute a singing voice to a specific bird in the bush than in bright sunlight. Hence, the 196 

uncertainty about the inferred causal structure critically depends on the sensory uncertainty given in 197 

all sensory channels [52]. Moreover, causal uncertainty emerges because there is some natural 198 

variability in the temporal, spatial or higher-order (e.g. semantic) relationship of the sensory signals. 199 

Even when two signals are generated by a common source, they do not need to be precisely 200 

temporally synchronous or spatially collocated. For speech signals, it is well established that visual 201 

facial movements often precede the auditory signal to variable degrees at speech onset [67]. 202 

Further, differences in velocity of light and sound induce variability in arrival times of the visual 203 

and auditory signals at the receptor level that depend on the distance of the physical source from the 204 

observer [68,69]. Likewise, higher-order correspondences, such as gender or semantics may relate 205 

probabilistically to low level physical features (e.g. a low-pitched voice is more likely to be 206 

associated with a male than a female person). Experimentally, we therefore need to determine 207 

whether observers’ causal uncertainty reflects the uncertainty determined by the signal-to-noise 208 

ratio of the sensory signals and their spatiotemporal and higher-order (e.g. semantic) statistical 209 

relationships. Moreover, causal uncertainty may be influenced by participants’ prior expectations 210 

[70,71] that sensory signals are likely to come from a common external source, or be generated by 211 

one’s own voluntary actions [72,73] (see Box 3). 212 

Second, it is well-established that observers use the uncertainty associated with the individual cues 213 

or sensory signals to assign the appropriate weighting during cue combination or multisensory 214 

integration. Yet, an unresolved question is whether these uncertainty estimates for individual cues 215 

are then lost or accessible for metacognition. To approach these questions, future experiments may 216 

consider asking observers to explore objects visuo-haptically (i.e., via vision and touch) and report 217 

both the haptic size they perceived and their uncertainty about their perceptual estimate in the 218 

context of the visual information as well as if they had fully ignored the visual information (e.g., 219 

they  may be asked to imagine that they had closed their eyes and only haptically explored the 220 

object). If observers maintain partial access to the unisensory estimates and their associated 221 

uncertainties we would expect that the two reports differ.  222 

Finally, observers may monitor their uncertainty associated with their final perceptual estimate (e.g. 223 

the reported location during audiovisual localization tasks). According to Bayesian Causal 224 

Inference, these final (e.g., auditory and visual) perceptual estimates are formed by combining the 225 
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estimates under the assumptions of common and independent sources according to various decision 226 

functions such as model averaging, probability matching or model selection [66]. As a result, the 227 

uncertainty of these final Bayesian Causal Inference perceptual estimates is dependent on 228 

observer’s sensory and causal uncertainty. A critical question for future investigation is to 229 

determine the extent to which observers’ uncertainty about their reported perceptual estimate 230 

reflects their perceived causal uncertainty or the causal uncertainty as predicted based on their 231 

sensory uncertainties. 232 

A few studies have started to directly tackle the question of metacognitive uncertainty or confidence 233 

estimates in multisensory perception, albeit not always with these different sorts of uncertainties in 234 

mind. For instance, a recent psychophysical study [74] demonstrated that observers’ correctly 235 

assessed the accuracy of their temporal order judgments in confidence ratings. These results 236 

indicate that the precision of audiovisual temporal relation estimates is accessible to metacognition. 237 

Further, a recent study by White and colleagues [75] presented observers with audiovisually non-238 

conflicting (e.g., visual <<ba>> with auditory /ba/), conflicting phonemic cues that could be 239 

integrated into a so-called McGurk percept (e.g., McGurk: visual<<ga>> with auditory /ba/ 240 

resulting in an illusory [da] percept) and conflicting phonemic cues that could not be integrated into 241 

one unified percept (i.e., non McGurk: visual <<pa>> with auditory /ka/). Observers reported their 242 

perceived auditory phoneme, immediately before providing a second-order confidence rating. The 243 

authors demonstrated that observers were less confident about their illusory McGurk percepts than 244 

about their auditory percept for conflicting or non-conflicting stimuli. From a Bayesian Causal 245 

Inference perspective, observers’ lower confidence about their McGurk responses may emerge from 246 

an increase in causal uncertainty for McGurk stimuli. While non-conflicting signals are likely to 247 

come from a common source and conflicting signals from independent sources, McGurk stimuli 248 

introduce an intermediate phonological conflict that introduces uncertainty about the underlying 249 

causal structure. This causal uncertainty may indirectly influence and increase observers’ 250 

uncertainty about their final phoneme percept. However, this is only one of several possible 251 

explanations for the observed response profile (see also [76]). It highlights the need for future dual-252 

task paradigms that ask observers concurrently to rate not only their confidence about their 253 

phonological percept, but also their causal uncertainty about whether sensory signals (e.g. auditory 254 

phoneme and facial movements in speech recognition) were generated by a common source. 255 

 256 

Perceptual and causal metamers 257 

Further insights into whether observers can move beyond the integrated percept and metacognitive-258 

ly monitor the perceptual inference can be obtained from so-called metamers, i.e. (near)-identical 259 

perceptual interpretations formed from different combinations of sensory signals [77]. Let’s assume 260 
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we present an observer with two signals in synchrony, a brief flash at -2º visual angle (i.e. left) and 261 

a spatially equally reliable beep at +2º visual angle (i.e. right). Where will the observer perceive this 262 

event? Because of the small audiovisual spatial disparity, the observer may infer that the two sig-263 

nals come from a common source and hence integrate them weighted by their relative reliabilities. 264 

As a result, he would perceive the audiovisual event at 0º degree visual angle, where in fact no sig-265 

nal was presented at all. Hence, this conflicting flash-beep event would elicit the same percept as 266 

a non-conflicting flash-beep event where both auditory and visual signals are presented at 0º degree 267 

visual angle. In other words, the conflicting and the non-conflicting flash-beep events elicit percep-268 

tual metamers. Moreover, the observer inferred that the auditory and visual signals come from a 269 

single event in both situations. Hence, the two cases elicit not only perceptual but also causal met-270 

amers. The critical question is whether observers may nevertheless be able to discriminate between 271 

the conflicting and non-conflicting flash-beep events indicating that they can metacognitively ac-272 

cess additional information about the underlying perceptual inference process. 273 

First, observers would be able to discriminate between the non-conflicting and conflicting signals, if 274 

they monitor their uncertainty about their perceptual interpretation and causal inference. In the 275 

small conflict case, those observers who use Bayesian Causal Inference with model selection may 276 

decide that the two signals come from a common source and integrate them weighted by their rela-277 

tive reliabilities. Critically, even though they commit to one single event as the more likely causal 278 

structure, they should be less certain about their causal inference. In other words, monitoring their 279 

causal uncertainty would allow observers to discriminate between conflicting and non-conflicting 280 

sensory signals, even if they elicit perceptual and causal metamers. Within the framework of Bayes-281 

ian Causal Inference and depending on decisional functions and biases [66], it is also conceivable 282 

that observers may integrate different combinations of auditory and visual signals into the same 283 

perceptual (e.g. auditory, visual) estimates and yet report different causal structures. Hence, percep-284 

tual metamers may not necessarily imply causal metamers. 285 

Second, observers may be able to go beyond the integrated percept and maintain at least partial ac-286 

cess to the individual sensory signals (see discussion above). Again, this partial access would allow 287 

them to discriminate between conflicting and non-conflicting flash-beep events. In a wider sense of 288 

metacognition it would demonstrate that multisensory perception is not informationally encapsulat-289 

ed, but that observers can introspect and metacognitively monitor the unisensory representations 290 

that form the basis for their perceptual inference. 291 

Surprisingly, only a few studies to date have used perceptual metamers as an approach to character-292 

ize observers’ metacognitive access in cue combination. An intriguing early study by Hillis et al. 293 

[77] focused on the emergence of perceptual metamers in visual (slant from disparity and texture 294 

cues in vision) and visuo-haptic (object size from vision and touch, i.e., haptic cues) contexts. In an 295 
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oddity judgment task, observers were asked to identify the odd stimulus in a sequence of three 296 

stimuli: two identical standard stimuli defined by non-conflicting cues and one odd stimulus defined 297 

by conflicting cues that could be fused into a perceptual metamer of the standard stimulus [77,78]. 298 

The results revealed that observers lost access to individual cues in the visual, but not in the visuo-299 

haptic setting: Only conflicting visual cues were mandatorily fused into perceptual metamers of the 300 

non-conflicting standard stimulus. Yet, even in the visual case participants were able to discriminate 301 

the conflicting stimulus from the non-conflicting ones for larger conflict sizes indicating that meta-302 

mers emerge only for small conflict size. What happened, though, in those unisensory cases with 303 

larger conflict? As the oddity judgment task does not explicitly define the dimension according to 304 

which participants should compare the stimuli, it remains unclear whether observers identified the 305 

conflicting stimulus because they did not integrate the conflicting cues into one unified slant esti-306 

mate, i.e., into a perceptual metamer of the non-conflicting stimulus, or whether instead they inte-307 

grated them, but were aware that their metameric percepts emerged from different causal structures 308 

or at least associated with different causal uncertainties. Observers may still have fused conflicting 309 

signals into approximate perceptual metamers without them being causally metameric to the non-310 

conflicting standard stimulus. In other words, observers may potentially have identified the odd-311 

one-out because of partial access to the causal structure that has generated the sensory inputs. In-312 

deed, observers reported a ‘weird’ percept for larger conflict sizes (personal communication, Marc 313 

Ernst) indicating that they were aware of the conflict manipulation while still integrating signals 314 

into a near-unified percept.  This may perhaps be taken as initial evidence that perceptual and causal 315 

metamers may be to some extent dissociable. Future studies that explicitly assess the emergence of 316 

perceptual and causal metamers are needed to experimentally determine whether participants can 317 

form perceptual metamers while recognizing that they are based on different causal structures.  318 

Another approach to dissociate perceptual and causal metamers is to introduce conflicts along mul-319 

tiple dimensions such as lower temporal and higher-order phonological dimensions. For instance, 320 

observers may be presented with conflicting and non-conflicting visual and auditory phonetic cues 321 

at multiple audiovisual asynchronies. For small audiovisual asynchronies, conflicting audiovisual 322 

signals, such as a visual <<ga>> and an auditory /ba/,  may be fused into a [da] percept at the pho-323 

nological level as in the classical McGurk-MacDonald illusion [79] (Figure 2). The critical question 324 

is whether the fusion of conflicting audiovisual signals into a [da] percept as a perceptual metamer 325 

of a non-conflicting audiovisual [da] emerges in cases where observers inferred that the two signals 326 

come from different sources because of their audiovisual asynchrony (i.e., no causal metamer).  327 

Research showing that the temporal integration windows that allow the McGurk illusion to emerge 328 

mostly correspond to those where observers perceive the audiovisual signals as being synchronous 329 

has suggested that the detection of temporal conflicts precludes the emergence of perceptual meta-330 
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mers [80]. However, other evidence suggests that conflicting visual phonetic information influences 331 

the perceived auditory phonemes even when observers are able to detect low-level temporal con-332 

flicts [81]. In the light of this controversial evidence, future studies are needed to determine whether 333 

perceptual metamers at higher representational levels emerge even when lower level temporal con-334 

flicts prevent the emergence of causal metamers. 335 

 336 

Concluding remarks 337 

Accumulating evidence shows that human observers can metacognitively assess the uncertainty of 338 

perceptual estimates formed from vision, touch or audition, in unisensory perception. Conversely, 339 

research in multisensory perception demonstrates that observers integrate signals from multiple 340 

sensory modalities into percepts that take into account the uncertainty about the world’s causal 341 

structure. In this review, we have merged these two research fields and discuss the new challenges 342 

and questions that metacognition poses for situations where the brain needs to integrate information 343 

from multiple channels such as in multisensory perception and cue combination. Recent 344 

developments of hierarchical Bayesian models of multisensory perception raise the possibility that 345 

human observers can introspect perceptual inference processes and monitor not only the final 346 

integrated percept, but also the unisensory estimates and the causal relationship - thereby 347 

challenging the long-dominant view in philosophy that observers are causally naive about 348 

perceptual inference (Box 2). Future studies in causal metacognition will need to determine the 349 

extent to which human observers can accurately assess their uncertainty about the perceptual 350 

estimates and the inferred causal structure of the environment. They open up new research avenues 351 

that link metacognition in perception more tightly with higher-order cognitive capacities such as 352 

abstract causal reasoning [82] or the aggregation of information across agents (Box 1 and 353 

Outstanding Questions). Causal metacognition sheds new light on the emergence of the sense of 354 

agency [83] (Box 3) and will be critical for our understanding of neuropsychiatric diseases such as 355 

schizophrenia that affect multisensory binding, causal inference and metacognitive control [75,84–356 

87]  357 
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 Box 1: Monitoring causal uncertainty beyond perception.  358 

Causal inference is not only critical for perception but, more generally, for many other cognitive 359 

domains such as inductive, abstract, or social reasoning [82]. If two burglaries occur in the same 360 

town on the same day, the police ought to inquire as to whether they are likely to be performed by 361 

the same or different criminal gangs. Likewise, if a patient presents initially with a rash followed by 362 

high fever, cough, shortness of breath and wheezing, the medical doctor needs to infer whether all 363 

these symptoms are caused by measles infection or whether some of them may be caused by a 364 

subsequent bacterial (e.g., streptococcal) superinfection which requires antibiotic treatment. These 365 

examples highlight that causal inference is pervasive in our everyday lives. Causal metacognition 366 

enables observers to monitor their uncertainty about the underlying causal structure and decide 367 

whether to seek additional evidence in order to arbitrate between several potential causal structures. 368 

If the medical doctor is in doubt whether the patient may have incurred an additional streptococcal 369 

infection, s/he may order blood tests, chest x-ray, etc. 370 

Causal inference is also fundamental for successful communication and interactions across social 371 

agents. For instance, if two social agents talk about a person called ‘Peter’ they usually assume that 372 

they refer to the same person as the causal source that generates their thoughts and representations 373 

associated with ‘Peter’. In fact, this shared causal perspective is fundamental for successful 374 

collective decision making [10]. Surprises and comic moments may emerge if agents discover 375 

during the course of their conversation that their inference was wrong and they had actually been 376 

referring to two different individuals that were both called ‘Peter’. In other words, they suddenly 377 

discovered that their thoughts and representations were not caused by one common source ‘Peter’, 378 

but by two different individuals.  379 

Causal Inference as a process to arbitrate between one or multiple causes for sensory signals, 380 

medical symptoms or mental representations is part of the wider question of how observers can 381 

infer hidden structure from statistical correlations in observed data (e.g. correlations between 382 

different symptoms). How can they build veridical or at least useful models of the world? As 383 

reviewed in more detail in [17,88–90], Bayesian models can be used to accommodate human 384 

structure inference across numerous domains including inductive reasoning [82], semantics [91], 385 

social cognition [10] or aggregation of information across individuals [92].   386 
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Box 2: Challenging causal naivety assumptions in philosophy 387 

The capacity to represent causation is usually granted only on the evidence that explicit causal rea-388 

soning, and inferences to hidden or distant causes are performed. As Hume’s challenge goes, there 389 

is a difference in predicting that one event regularly follows another, and in representing that it was 390 

caused by this first event. This view, started in philosophical discussions [93], is also widespread in 391 

psychology [94]. Does causal metacognition challenge this claim, suggesting that we are sensitive 392 

to differences between hidden causal structures when we perceive events? How sophisticated do we 393 

need to be to monitor the uncertainty of our causal models of the world? 394 

Evidence of causal metacognition in younger children and non-human animals should address this 395 

question, and possibly reveal whether hidden causal structures are accessed and monitored as such, 396 

even in the absence of more explicit causal reasoning. But causal metacognition brings a broader 397 

challenge to philosophical models of perception. It is widely assumed indeed that we are causally 398 

naive when it comes to perceiving the world: Perception does not make us aware of objects as caus-399 

es of our perception [95]. When we perceive a singing bird, we do not see that a physical bird, or 400 

light, is causing our perception: We perceive a bird, as a mind-independent object, not as a likely 401 

cause of our percept. The claim that perception rests on a process of causal inference, at the sub-402 

personal level [96,97], though widely accepted by cognitive neuroscientists, explains from the out-403 

side what the system is set up to do, but does not suppose that causes are represented as such, even 404 

less consciously accessed [98,99]. Sensitivity to differences in the causal origin of our integrated 405 

percepts offers an intermediate step where the causal character of perception is made manifest.     406 

How this form of causal metacognition fits within causal cognition in general, and whether it is also 407 

present in more explicit forms of reasoning is an open question. While it is common to stress the 408 

difference between aggregating information between agents, and combining information from dif-409 

ferent sensory modalities, it might be the case that both are optimal if the uncertainty about the un-410 

derlying causal model dictating the problem is adequately monitored.  411 
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Box 3: Causal metacognition and sense of agency 412 

Causal inference enables the brain to dissociate the sensory effects caused by one’s own actions 413 

from those caused by other agents or events in the outside world. Previous neuroimaging and 414 

neurophysiological studies have suggested that the cerebellum may form a predictive forward 415 

model that maps from the action plan to the motor outputs and their sensory consequences. These 416 

forward models enable the brain to distinguish between self- and other-generated sensory signals 417 

leading to effects such as sensory attenuation (e.g.. predicted outputs of our own tickling are not felt 418 

as tickling [100]) or intentional binding (e.g. the temporal interval between a voluntary action and 419 

its sensory consequences is subjectively compressed [72,73,83], see figure I). Both effects are 420 

considered central to our sense of agency that is the subjective judgment or feeling that we are 421 

causally responsible for changes in the environment. Critically, the temporal compression effect 422 

was increased in patients with schizophrenia indicating an enhanced sense of agency [85–87]. From 423 

the perspective of causal metacognition, we would expect the sense of agency to be related to the 424 

degree of confidence about our beliefs that a certain sensory outcome was self- rather than other-425 

generated [84]. Further, manipulating biases in confidence by prior context or instructions may 426 

influence sensory attenuation and intentional binding, even when the sensory and motor 427 

components are held constant. For instance, if an agent is more confident that he/she has generated 428 

certain sensory signals, he/she should experience the same signal as less tickling and the interval 429 

between the action and the occurrence of the tickling sensation to be less compressed in time. A 430 

critical question for future research is therefore whether the altered sense of agency in patients with 431 

schizophrenia [85], may be associated with more general changes in causal metacognition.  432 

 433 

  434 
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GLOSSARY 435 

Causal metamers: identical causal structures inferred from signals generated by physically different 436 

causal structures. 437 

Causal metacognition: monitoring the inferred causal structure underlying certain signals (e.g. 438 

sensory signals)  439 

Confidence rating, post-decision wagering, no loss gambling [30]: are methods to assess an 440 

observer’s metacognitive insights or awareness. For instance, observers may rate their confidence 441 

about the correctness of their decision on a numerical scale. In post-decision wagering, they are 442 

asked to bet on the correctness of their reported choices. As a result, observers should place higher 443 

wagers when they are more confident about the correctness of their decision to maximize their 444 

gains. In no-loss gambling, observers need to choose whether they are given a reward depending on 445 

the correctness of their perceptual choice, or depending on a lottery with pre-specified probabilities. 446 

Both post-decision wagering and no-loss gambling provide observers with an incentive to reveal 447 

their decisional confidence and subjective probabilities truthfully. Yet, post-decision wagering may 448 

be sensitive to additional biases such as risk aversiveness.  449 

Bayesian Causal Inference models: normative Bayesian models that describe how an observer 450 

should integrate sensory signals to compute an estimate of an environmental property.  Bayesian 451 

Causal Inference [17–19,52,66] explicitly models the potential causal structures (i.e. common or 452 

independent sources) that could have generated the two signals.  453 

Intersensory correspondences: the observer uses different sorts of correspondences such as spatial 454 

colocation [50–52,58,59], temporal coincidence [56,57,60] and correlations [61,62], semantic or 455 

phonological congruency [63–65] to determine which signals are likely to come from a common 456 

source and should be bound during perception. 457 

Perceptual metamers: are identical perceptual (e.g. spatial, phoneme) estimates formed from 458 

physically different signals.  459 

Metacognition: cognitive processes about other cognitive processes (e.g. formation of 460 

representations about world representations [1–3,24]).  461 

McGurk illusion: an audiovisual illusion [71,79,81] where observers perceive for instance the 462 

phoneme [da] when presented with a video of a face articulating <<ga>> and a voice uttering /ba/. 463 
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The McGurk illusion is a prime example of a perceptual metamer; i.e. the conflicting signals are 464 

perceived as identical to a face and voice articulating [da]. 465 

Sense of agency: the subjective feeling that one initiates and controls one’s own actions [72,73,83]. 466 

Sensory reliability: is the inverse of sensory variance (or uncertainty). Reliability decreases with the 467 

noise of a sensory signal. 468 

Ventriloquist illusion: a multisensory perceptual illusion induced by presenting two signals from 469 

different sensory modalities in synchrony, but at different spatial locations. In classical audio-visual 470 

cases, the perceived location of a sound is shifted towards the actual location of the visual signal, 471 

and vice versa [18,50–52]. 472 

 473 

 474 

 475 

 476 

  477 
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OUTSTANDING QUESTIONS 478 

‣To what extent can observers metacognitively monitor the individual signals, the inferred causal 479 

structure, and their respective uncertainties in sensory or cue-integration? Do their perceptual 480 

uncertainties reflect their causal uncertainties, and vice versa? 481 

‣How does causal metacognition in perception relate to metacognition in other cognitive domains 482 

such as causal reasoning or social interactions? 483 

‣What are the benefits of causal metacognition in perception? Do observers adjust their future 484 

perceptual interpretations based on their causal metacognitive assessments?   485 

‣Is the sense of agency grounded in causal metacognition?  486 

‣Which neural circuitries sustain causal metacognition during perceptual and other cognitive tasks 487 

in the human brain? 488 

‣Is causal metacognition impaired in neuropsychiatric diseases such as schizophrenia? 489 

‣How does causal metacognition develop during infancy and childhood? Does it emerge later than 490 

metacognition about perceptual decisions based on a single information stream? 491 

‣Non-human organisms have been shown to monitor their uncertainties about their perceptual 492 

decisions. Can they also monitor their uncertainty about the causal structure of the world? 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

  501 
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FIGURE LEGENDS 502 

Figure 1 503 

Metacognition in multisensory perception  504 

Left: Generative Model: The generative model of Bayesian Causal Inference for spatial localization 505 

determines whether the ‘visual car’ and the ‘sound of the horn’ are generated by common (C=1) or 506 

independent (C=2) sources (for details, see [18]). For common source, the ‘true’ audiovisual 507 

location (SAV) is drawn from one prior spatial distribution. For independent sources, the ‘true’ 508 

auditory (SA) and ‘true’ visual (SV) locations are drawn independently from this prior spatial 509 

distribution. We introduce independent sensory noise to generate auditory (xA) and visual (xV) 510 

inputs [18]. 511 

Middle: Bayesian Inference Model: During perceptual inference the observer is thought to compute 512 

three sorts of estimates from the auditory and visual signals for spatial localization: 1. spatial 513 

estimates under the assumption of common source (i.e., forced fusion estimate: 𝑆𝐴𝑉,𝐶=1� ) and 514 

independent sources (i.e. full segregation estimates separately for auditory and visual locations: 515 

𝑆𝑉,𝑐=2� , 𝑆𝐴,𝐶=2� ), 2. estimates of the causal structure and 3. the final auditory and visual Bayesian 516 

Causal Inference spatial estimates based on model averaging that take into account the observer’s 517 

causal uncertainty by marginalizing (i.e. integrating) over the different causal structures: 𝑆𝑉�, 𝑆𝐴�). 518 

Each of those estimates is associated with uncertainties as indicated by the specified probability 519 

distributions. 520 

Right: Metacognition may be able to access and monitor the three sorts of estimates and their 521 

uncertainty: 1. forced fusion and full segregation spatial estimates, 2. the inferred causal structure 522 

and 3. the final auditory and visual Bayesian Causal Inference spatial estimates. 523 

 524 

Figure 2 525 

Perceptual and causal metamers in the audiovisual McGurk illusion 526 

Left: Observers are presented with non-conflicting audiovisual stimuli, i.e. a video of a face 527 

articulating <<da>> and a voice uttering /da/. They will perceive the audiovisual signals as coming 528 

from one source and integrate them into a [da] percept. 529 

Right: Observers are presented with conflicting audiovisual stimuli, i.e., a video of a face 530 

articulating <<ga>> and a voice uttering /ba/. In the McGurk illusion, they should perceive the 531 
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audiovisual signals as coming from one source and integrate them into a [da] percept, which would 532 

be a causal and perceptual metamer to the estimates formed from the non-conflicting audiovisual 533 

signals. However, perceptual and causal inference may also result in other outcomes. Observers 534 

may potentially perceive a [da] and yet recognize the audiovisual conflict and hence infer that the 535 

two signals come from independent sources (i.e. perceptual metamer but no causal metamer). 536 

 537 

 538 

Figure I (Box 3)  539 

Intentional binding, sense of agency and causal metacognition 540 

Observers have been shown to perceive the interval between an action and its sensory consequences 541 

(e.g., a ‘beep’) of a certain duration that is temporally compressed, when the action was voluntary 542 

and associated with a sense of agency – a phenomenon referred to as ‘intentional binding’ [72]. 543 

Causal metacognition may be closely related to the sense of agency by virtue of monitoring the 544 

uncertainty about the causal relationship between one’s own voluntary actions and their sensory 545 

consequences.  546 

 547 

 548 

 549 

 550 

 551 

 552 
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