Affinity for self antigen selects Treg cells with distinct functional properties

Wyss, Lena; Stadinski, Brian D; King, Carolyn G; Schallenberg, Sonja; McCarthy, Nicholas I; Lee, Jun Young; Kretschmer, Karsten; Terracciano, Luigi M; Anderson, Graham; Surh, Charles D; Huseby, Eric S; Palmer, Ed

DOI: 10.1038/ni.3522

License: None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Final version of record published as above and available at: http://dx.doi.org/10.1038/ni.3522

Checked 25/8/2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 02. Jan. 2019
Affinity for self-antigen selects regulatory T cells with distinct functional properties

Lena Wyss¹, Brian D. Stadinski², Carolyn G. King³, Sonja Schallenberg⁴, Nicholas I. McCarthy⁵, Jun Young Lee⁶, Karsten Kretschmer⁴,⁷, Luigi M. Terracciano⁸, Graham Anderson⁵, Charles D. Surh⁶,⁹, Eric S. Huseby² and Ed Palmer¹

¹ Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland.
² Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
³ Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland.
⁴ Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
⁵ MRC Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
⁶ Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea and Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
⁷ Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Dresden, Germany
⁸ Institute of Pathology, Molecular Pathology Division, University Hospital of Basel, Basel, Switzerland.
⁹ Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA

Correspondence: ed.palmer@unibas.ch
How regulatory T cells (Tregs) control lymphocyte homeostasis is not fully understood. Here we identify two Treg populations with differing degrees of self-reactivity and distinct regulatory functions. Triple$^{\text{high}}$ (GITR$^{\text{high}}$, PD1$^{\text{high}}$, CD25$^{\text{high}}$) Tregs are highly self-reactive and control lympho-proliferation in peripheral lymph nodes (LNs). Triple$^{\text{low}}$ (GITR$^{\text{low}}$, PD1$^{\text{low}}$, CD25$^{\text{low}}$) Tregs are less self-reactive and limit development of colitis by promoting conversion of CD4 Tconvs into induced Tregs (iTregs). Although FoxP3$^{\text{KO}}$ (scurfy) mice lack Tregs, they contain Triple$^{\text{high}}$-like and Triple$^{\text{low}}$-like CD4 T cells with distinct pathological properties. Scurfy Triple$^{\text{high}}$ T cells infiltrate the skin while scurfy Triple$^{\text{low}}$ cells induce colitis and wasting disease. These findings indicate that TCR affinity for self-antigens drives the differentiation of Tregs into distinct subsets with non-overlapping regulatory activities.

The importance of CD4$^{+}$ regulatory T cells (Tregs) in maintaining lymphocyte homeostasis is best appreciated in mice and humans lacking these cells. FoxP3$^{\text{KO}}$ (scurfy) mice1,2,3 and patients with immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome4 suffer from excessive lymphocyte activation, lymphocytic infiltration into peripheral organs and colitis, leading to death at an early age. In healthy individuals, Tregs control homeostatic proliferation of conventional T and B cells and prevent colitis5,6,7.

Tregs are comprised of thymic Tregs (tTregs) and peripherally-induced Tregs (pTregs or iTregs), which originate from different precursor cells and develop in different locations. tTregs develop in the thymus and their development requires TCR stimulation with agonist peptide-MHCII antigens.8,9,10 In contrast, iTregs are generated in the periphery from naïve, mature CD4$^{+}$ conventional T cells (Tconv)
during T cell activation in the presence of TGFβ. Both populations are suppressive and their functional properties have been examined. Several studies suggest that tTregs are required to control immune homeostasis and autoimmunity. On the other hand, iTregs have specialized functions depending on the type of inflammation, and have a primary role in controlling mucosal immunity and fetal tolerance. A recent study indicated that tTregs by themselves are not sufficient to suppress chronic inflammation and autoimmunity in the absence of iTregs.

Tregs have also been characterized for their expression of surface markers and localization in different tissues. Based on their expression of CD44 and the lymph node homing receptor, CD62L, Tregs can be broadly divided into CD44^{lo}CD62L^{+} central Tregs (cTregs) and CD44^{hi}CD62L^{lo/-} effector Tregs (eTregs). cTregs are quiescent, primarily reside in secondary lymphoid tissues, express high levels of CD25 and are IL-2 dependent. In contrast, eTregs, the dominant Treg population in nonlymphoid tissues, are CD25^{low}, highly proliferative, but prone to apoptosis. It’s been suggested that eTreg maintenance is driven by TCR and co-stimulatory signals, but not IL-2.

Several studies demonstrated the importance of TCR stimulation to activate cTregs in order to generate suppressive eTregs. Furthermore, two very recent studies provided direct evidence that TCR expression is indispensable for Treg survival and suppressive function. The Treg repertoire contains self-reactive as well as foreign antigen reactive TCRs. Considering self-reactive Tregs, their TCR affinity for self-antigens has not yet been fully characterized. While it’s generally accepted that Tregs and naïve CD4^{+} Tconvs have non-overlapping TCR repertoires, a small percentage of TCRs are found within both T
cell populations. Furthermore, the TCR repertories of tTreg and iTregs were shown to be distinct. While the tTreg TCR repertoire is biased toward self-recognition, TCRs expressed in iTregs can recognize foreign antigens with high affinity. In line with these findings, it’s been shown that activated CD4+ T cells from TCRβtg scurfy mice preferentially used TCRs found in the Treg TCR repertoire of TCRβtg wild type mice. Despite these interesting findings, it’s still not clear how a Treg’s antigen specificity influences its’ regulatory properties.

Here we report two functionally distinct subgroups of thymic Tregs with distinct TCR repertoires and differing TCR affinities for self-antigens. Triplelow (GITRlow, PD1low, CD25low) Tregs express TCRs whose affinities for self-antigens are close to the threshold for negative selection, while Triplehigh (GITRhigh, PD1high, CD25high) Tregs express highly self-reactive TCRs, with affinities well above the negative selection threshold. Functionally, Triplehigh but not Triplelow Tregs control the extensive lymphoproliferation in mice acutely depleted of Tregs. Conversely, Triplelow but not Triplehigh Tregs control colitis by facilitating conversion of CD4 Tconv into induced Tregs (iTregs). Finally, FoxP3KO (scurfy) mice contain Triplehigh- like and Triplelow- like CD4 T cells with distinct pathological properties. Triplehigh scurfy T cells infiltrate the skin while scurfy Triplelow T cells cause colitis and wasting disease. Our results provide evidence that the degree of thymocyte self-reactivity drives the generation of distinct Treg subtypes, which control different aspects of lymphocyte homeostasis in the host.
Results

GITR, PD1 and CD25 expression define Treg subsets

FoxP3+ regulatory T cells express a continuum of GITR and PD1 (Fig 1a). As GITR^{high} / PD1^{high} Tregs express higher levels of CD25 compared to GITR^{low} / PD1^{low} Tregs (Fig 1a), we refer to these populations as Triple^{high} (GITR^{high}, PD1^{high}, CD25^{high}) and Triple^{low} (GITR^{low}, PD1^{low}, CD25^{low}) Tregs, respectively.

To compare these Treg populations to previously described Treg subsets^{16,17,18}, we examined their expression of various homing and chemokine receptors (Fig 1b). Based on their expression of these proteins, Triple^{high} and Triple^{low} Tregs are distinct from each other and distinct from central and effector Tregs (Fig S1-table;^{16,17,18}). This analysis also shows that central and effector Tregs are contained within the Triple^{intermediate} gate (Fig S2).

Triple^{high} and Triple^{low} Tregs originate in the thymus

Although Triple^{high} and Triple^{low} Tregs are present in the thymus (Fig 2a), they could represent Tregs recirculating from the periphery as opposed to de novo generated thymic Tregs.^{28,29} To resolve this, we examined thymic Tregs in mice expressing FoxP3-RFP and Rag-GFP reporters (Fig 2b). RFP^{+}GFP^{+} CD4 SP thymocytes are de novo generated thymic Tregs since they are still Rag-GFP^{+}, while RFP^{+}GFP^{-} CD4 SP cells in the thymus are recirculating Tregs from the periphery.^{29} The frequency of de novo generated (RFP^{+}GFP^{+}) Triple^{high} and Triple^{low} Tregs in the thymus is similar to what’s observed among LN Tregs. The fact that both Triple^{high} and Triple^{low} Tregs develop in the thymus argues against the idea that either population are induced Tregs (iTregs). To address the possibility that Triple^{high} and Triple^{low} Tregs might be induced by foreign antigens or inflammation, we examined Tregs in germ-free (GF) and antigen-free (AF)
mice. AF mice are offspring of GF mice that were weaned onto and raised on the elemental diet of glucose and amino acids. As these animals lack a microbiome and are not exposed to dietary antigens, they contain exclusively self-antigens. GF and AF mice contain similar frequencies of LN Tregs compared to standard SPF animals (Fig 2c, top row). Importantly, SPF, GF and AF mice contain similar frequencies of \(\text{Triple}^\text{high} \) and \(\text{Triple}^\text{low} \) Tregs (Fig 2c, bottom row), which also express similar levels of NRP1 and Helios (Fig S3). These data rule out the idea that the \(\text{Triple}^\text{high} \) and \(\text{Triple}^\text{low} \) phenotypes are a response to inflammation. Furthermore, these results strongly suggest that \(\text{Triple}^\text{high} \) and \(\text{Triple}^\text{low} \) Tregs are generated through recognition of self-antigens.

\section*{Triplehigh and Triplelow Tregs express distinct TCR repertoires}

To directly compare the TCR repertoires of \(\text{Triple}^\text{low} \) and \(\text{Triple}^\text{high} \) Tregs to CD4 Tconvs, all three populations expressing the V\(\alpha \)2 family (Fig 3a), were sorted from a Rag\(^+ \), single TCR \(\beta \) chain strain (Yae62, V\(\beta \)8.2, TCR\(\alpha^+/\KO \), FoxP3\(^{\text{GFP-KI}} \); Fig S4) and subjected to deep sequencing. The 500 most frequent clonotypes in each group were analyzed for their similarity (Fig 3 b-d) and diversity (Fig 3e,f). Morisita-Horn analysis shows that the CD4 Tconv sequences from three independent groups of mice (see Methods) are similar to each other but significantly different from \(\text{Triple}^\text{low} \) and \(\text{Triple}^\text{high} \) Treg sequences obtained from the same mice (Fig 3b). \(\text{Triple}^\text{low} \) sequences isolated from different groups of mice are similar to each other as well, but different from CD4 Tconv and \(\text{Triple}^\text{high} \) TCRs (Fig 3c). Interestingly, \(\text{Triple}^\text{high} \) TCR sequences are not only different from CD4 Tconv and \(\text{Triple}^\text{low} \) sequences, but they are also variable between different groups of mice (Fig 3d). Despite their significant sequence differences, the TCR repertoires of CD4 Tconvs and \(\text{Triple}^\text{lows} \) are similarly diverse (Fig 3 e,f). The
repertoire of Triplehigh Treg TCRs may be less diverse than the CD4 Tconv and Triplelow repertoires, at least according to Shannon Entropy analysis. Taken together, deep sequencing analyses showed that Triplehigh Tregs, Triplelow Tregs and CD4 Tconvs have clearly distinct TCR repertoires, implying that TCR specificity is important in selecting these Treg subtypes.

Triplehigh Tregs are more self-reactive than Triplelow Tregs

Up to this point, our findings suggested that Triplehigh and Triplelow Tregs are distinct populations (Fig 1, 3) selected on self-antigens (Fig 2c). To directly test whether Triplehigh and Triplelow Tregs differ in their degree of self-reactivity, we examined CD5 and Nur77 expression in each subset (Fig 4a). The expression of these markers reflects T cell activation and correlates with TCR affinity for its' pMHC ligand.31,32 The higher expression of Nur77 and CD5 by Triplehigh Tregs, compared to Triplelow Tregs (Fig. 4a) argues that Triplehigh Tregs are more self-reactive than their Triplelow counterparts. To test this idea, we used in vivo BrdU labeling and observed that Triplehigh Tregs proliferate more frequently in vivo compared to Triplelow Tregs and CD4 Tconvs (Fig 4b). Furthermore, culturing unsorted CD4 T cells on syngeneic bone marrow DCs, Triplehigh Tregs proliferate more extensively than Triplelow Tregs and CD4 Tconvs (Fig 4c); this proliferation requires expression of MHC II self-antigens on antigen presenting cells (APCs).

To examine the influence of antigen affinity on the generation of CD4SP thymocytes with a Triplehigh or Triplelow phenotype (Fig 4d), B3K508TCRtg RagKo thymocytes were cultured on syngeneic BmDCs in the presence of TGFβ and IL-2. Addition of P-1A peptide (threshold negative selector) induced development of Triplelow CD4 SP thymocytes, while the P2A peptide (intermediate affinity negative selector) induced Tripleintermediate CD4SP thymocytes; finally, 3K-peptide (high
affinity negative selector) induced only Triple\(^{\text{high}}\) CD4SP thymocytes. FoxP3\(^{+}\) Tregs were also generated in these cultures, but only in the presence of negative selecting peptides (Fig 4d, middle row, Fig S5a). Culturing B3K508 Rag\(^{\text{KO}}\) thymocytes with the negative selecting ligands, P-1A (threshold negative selector), P2A (intermediate affinity negative selector) and 3K (high affinity negative selector) generated FoxP3\(^{+}\) Tregs expressing increasing amounts of PD1 (Fig 4d), CD25 and Helios (Fig S5b). Taken together, the data indicate that threshold-, intermediate- and high- affinity negative selecting antigens induce Triple\(^{\text{low}}\), Triple\(^{\text{intermediate}}\) and Triple\(^{\text{high}}\) Tregs, respectively (Fig 4d, bottom row; Fig S5b). That the threshold negative selector induces weaker TCR signals is supported by its decreased ability to induce pCD3\(\zeta\), pcJun and pERK (Fig S5c, d). These in vitro results were confirmed using bone marrow chimeras, where OT-II thymocytes developed in a RIP-OVA host expressing the cognate antigen, ovalbumin (Fig 4e). These chimeric mice contain Triple\(^{\text{high}}\) (and intermediate) but not Triple\(^{\text{low}}\) Tregs in the thymus. Taken together, these data imply that Triple\(^{\text{high}}\) and Triple\(^{\text{low}}\) Tregs are likely generated by exposure to negatively selecting antigens; moreover, the resulting Treg phenotype is most likely determined by the affinity of its’ TCR for self-antigen.

Triple\(^{\text{high}}\) Tregs suppress lymphoproliferation

To compare the regulatory properties of these two populations, FoxP3\(^{\text{DTR}}\) mice received sorted Triple\(^{\text{high}}\) or Triple\(^{\text{low}}\) Tregs from B6 mice (Fig S6a), which are unaffected by diphtheria toxin (DTx). Three days later, endogenous Tregs from the FoxP3\(^{\text{DTR}}\) host were depleted by injecting DTx every other day. LN lymphocytes then were examined by flow cytometry 11 days following the onset of Treg depletion. (Fig 5a). Triple\(^{\text{high}}\) Tregs control the extensive proliferation of Tcells and
B cells in peripheral LNs of mice depleted of their endogenous Tregs (Fig 5b),
while Treglow function poorly in this respect. As expected, Treghigh limit the activation of CD4 Tconvs (Fig 5c).

Triplelow Tregs suppress induction of colitis

To examine whether any of these Treg subsets control colitis, CD3KO mice were injected with sorted naïve CD4 Tconvs (Fig 6a), a treatment, which results in colitis (Fig 6d, upper left panel) and weight loss (Fig 6b, solid blue line) as previously described7. Co-transfer of Treglow (Fig 6b, solid brown line; Fig 6d, upper middle panel) but not Treghigh (Fig 6b, upper panel, solid red line; Fig 6d, upper right panel) Tregs prevented weight loss and limited lymphocyte infiltration of the colonic mucosa. Analysis of LN cells from these mice indicated that co-transferred Treglow facilitated the conversion of some CD4 Tconv into induced Tregs (iTregs) (Fig 6e,f). Mice receiving Treglow Tregs had the highest percentage of iTregs (Fig 6e,f), very limited infiltration of the colonic mucosa (Fig 6d, upper middle panel) and maintained their weight (Fig 6b).

To test whether iTregs were required to control colitis15, CD4 Tconv cells isolated from FoxP3DTR mice were transferred into CD3KO mice (Fig 6a). These animals were additionally treated with DTx every third day to deplete any iTregs developing from transferred FoxP3DTR CD4 Tconvs. iTreg depletion accelerated weight loss and development of colitis (compare solid blue (Fig 6b) and dashed blue lines in Fig 6c). Co-transferred B6 Treglow (unaffected by DTx) were unable to control the development of colitis when iTregs were depleted (compare solid brown (Fig 6b) and dashed brown lines in Fig 6c; compare upper middle and lower middle panels in Fig 6d). The data support the idea that Treglow Tregs...
facilitate conversion of some CD4 Tconv into FoxP3\(^+\) iTregs, which in aggregate
limit development of colitis.

Taken together, the data (Fig 5,6) argue for two populations of Tregs: Triple\(^{\text{highs}}\),
which control lymphoproliferation in peripheral LNs and Triple\(^{\text{lows}}\), which limit the
development of colitis (at least in a lymphopenic setting). It should be noted that
the phenotypes of Triple\(^{\text{highs}}\) are stable over the 11d time course of the experiment
in Fig 5 while Triple\(^{\text{lows}}\) are stable over the 6 week time course of the experiment
in Fig 6. (see also Fig S6b). As Triple\(^{\text{lows}}\) don’t suppress lympho-proliferation and
Triple\(^{\text{highs}}\) don’t suppress colitis, there is no evidence for a significant degree of
trans-differentiation between the two subsets during the time frame of these
experiments.

Scurfy Triple\(^{\text{high}}\) and Triple\(^{\text{low}}\) CD4 T cells induce different pathologies
While FoxP3\(^{\text{KO}}\) (scurfy) mice cannot develop Tregs due to the lack of functional
FoxP3, they do carry out negative selection.\(^2\)\(^1\) For this reason, we wondered
whether FoxP3\(^{\text{KO}}\) (scurfy) mice contain Triple\(^{\text{high}}\)- like and Triple\(^{\text{low}}\)- like CD4 T
cells despite their lack of a functional FoxP3 molecule. Flow cytometric analysis
shows that these mice contain GITR\(^{\text{high}}\), PD1\(^{\text{high}}\), CD25\(^{\text{high}}\) (scurfy Triple\(^{\text{high}}\)) and
GITR\(^{\text{low}}\), PD1\(^{\text{low}}\), CD25\(^{\text{low}}\) (scurfy Triple\(^{\text{low}}\)) CD4 T cells. Scurfy Triple\(^{\text{high}}\) T cells
resembled B6 Triple\(^{\text{high}}\) Tregs in terms of PD1, GITR, CD25, Helios, CD5 and
CD62L expression (Fig 7a). Given their lack of FoxP3 expression and suppressive
capacity, scurfy Triple\(^{\text{highs}}\) may be similar to previously reported Treg
“wannabes”.\(^2\)\(^1\),\(^3\)\(^3\),\(^3\)\(^4\) Scurfy Triple\(^{\text{low}}\) T cells, on the other hand resembled CD4
Tconv cells with respect to their expression of these markers (Fig 7a).

To investigate their pathological activities, scurfy Triple\(^{\text{low}}\) and scurfy Triple\(^{\text{high}}\)
CD4 T cells were sorted (Fig S7a) and separately transferred into T cell deficient,
CD3KO hosts (Fig 7b). Transferred scurfy Triplelow T cells promoted weight loss and colitis (Fig 7c,f). Moreover, they accumulate in mesenteric LNs (Fig 7d,e) where \textasciitilde35\% of these cells express α4β7, an integrin that enables homing to the gut35 (Fig S7b). In contrast, transferred scurfy Triplehighs do not cause weight loss (Fig 7c) and preferentially accumulate in peripheral but not mesenteric LNs (Fig 7d,e). Moreover, scurfy Triplehigh T cells induce massive inflammation in the skin but only minimal inflammation in the colon (Fig 7f). Taken together, these results indicate that the absence of normal Tregs is not the sole cause of scurfy disease; the activity of dysregulated (Treg-like) scurfy Triplehighs accounts for some of the pathology observed in these mice.

Discussion

We examined the functionality of Treg subsets with distinct TCR repertoires and differing affinities for self-antigens. Our data suggest that Triplehigh and Triplelow Tregs are generated as an offshoot of negative selection. The high affinity self-reactive TCRs expressed by Triplehigh Tregs likely drives their selection in the thymus as well as their proliferation and suppressive activity in peripheral LNs.36 On the other hand, thymic precursors expressing lower affinity self-reactive TCRs plausibly differentiate into Triplelow Tregs, which facilitate conversion of CD4 Tconvs into iTregs. We also demonstrate that FoxP3KO (scurfy) mice contain Triplehigh- and Triplelow- like CD4 T cells, which are presumably derived from negative selection21 and have distinctive pathological activities: scurfy Triplehigh T cells preferentially migrate to peripheral LNs and elicit skin pathology (scurfy skin) while scurfy Triplelow cells are found in the mesenteric LNs and cause colitis.

Triplehigh and Triplelow Tregs are distinct from central and effector Treg subsets.
With respect to CD44, CD62L and ICOS expression, Triple$^{\text{high}}$ Tregs resemble eTregs and Triple$^{\text{low}}$ Tregs resemble cTregs; however, expression of CD25, CCR7, CD103, Helios and NRP1 indicates that Triple$^{\text{highs}}$ and Triple$^{\text{lows}}$ are distinct from these previously described subsets.16

Thymic Triple$^{\text{low}}$ Tregs might be generated in the thymus or alternatively, are iTregs generated in the periphery, which recirculate back to the thymus. This was clarified using FoxP3-RFP / Rag-GFP dual reporter mice, which clearly show that Triple$^{\text{high}}$ and Triple$^{\text{low}}$ Tregs are present among de novo generated, Rag-GFP$^+$, thymic Tregs. To address whether Triple$^{\text{high}}$ and/or Triple$^{\text{low}}$ phenotypes represent an activation state induced by foreign antigens or inflammation, we examined Tregs in germ free (GF) and (foreign) antigen-free (AF) mice. GF and AF mice contain similar frequencies of Triple$^{\text{high}}$ and Triple$^{\text{low}}$ Tregs as found in SPF mice on a normal diet. Since AF mice contain virtually no foreign antigens (they lack a microbiome and are fed an elemental diet), the differentiation and activation of Triple$^{\text{high}}$ and Triple$^{\text{low}}$ Tregs has to be driven by self-antigens. Taken together, these data demonstrate that Triple$^{\text{high}}$ and Triple$^{\text{low}}$ Tregs are generated in a programmed fashion, based on their reactivity to self-antigens.

Several reports show that Tregs and CD4 Tconvs cells are differently selected and have dissimilar TCR repertoires.24,25 A comparison of the TCR repertoires expressed in thymic and peripheral (induced) Tregs is difficult due to the absence of specific markers for cell sorting.8,9,14,37,38 However, analysis of peripheral (assumed to be thymus-derived) and colonic (assumed to be peripherally induced) Tregs revealed different TCR repertoires expressed in these two populations.26 Deep sequencing of Triple$^{\text{high}}$ and Triple$^{\text{low}}$ Tregs as well as CD4 Tconvs indicates
that each of these TCR repertoires is distinct; this is expected if TCR specificity is
linked to Treg differentiation. The decreased TCR diversity among Triplehigh Tregs
may be due oligoclonal expansion; this is consistent with their increased
proliferation in vivo. It should be pointed out that given their origin, the TCR
repertoire expressed on iTregs must be contained within the CD4 Tconv repertoire.
That Triplelow\textsubscript{s} and CD4 Tconvs express distinct repertoires argues that Triplelow\textsubscript{s}
and iTregs are discrete populations.

Based on CD5 and Nur77-GFP reporter expression,31,32 the affinity hierarchy
for self-reactivity is likely Triplehigh Tregs > Triplelow Tregs > CD4 Tconvs. The
increased proliferation of Triplehigh Tregs in vivo and in vitro also supports this idea.
Exposing MHC II restricted TCR transgenic thymocytes to threshold- (weak
deleting), intermediate- (moderate deleting) or high- affinity (strong deleting)
antigens generate Triplelow, Tripleintermediate or Triplehigh Tregs, respectively. These
data show that the idea that thymocyte affinity for self-antigen determines its cell
fate also applies to Treg development.

Whether different Treg populations suppress different aspects of autoimmunity
is not fully known.15 Acute Treg ablation in FoxP3DTR mice leads to the activation
of T cells specific for “available-antigens” including genome encoded self,
environmental and food antigens. This is supported by the observation that
(foreign reactive) TCRtg T cells do not undergo activation upon Treg ablation.39
We show that the massive expansion of Tconvs and B cells in Treg ablated mice
is controlled by transferring as few as 2.5x105 Triplehigh, but not Triplelow Tregs.
Within 48h following Treg depletion, DCs upregulate surface MHCII, CD8039 and
undergo a 2-12 fold expansion.40 Triplehigh Tregs may suppress
lymphoproliferation in peripheral LNs by either modifying DCs towards a tolerogenic phenotype or by directly interacting with T cells.

Experimental colitis induced by transfer of CD4 Tconvs into T cell deficient hosts is a slow, progressive disease mediated by microbiota-specific CD4\(^+\) T cells and characterized by a massive cell infiltration into the colon and weight loss within four to six weeks. A number of reports show that co-transfer of Tregs, in particular microbiota-specific Tregs prevents the onset or even cures mice from colitis. iTregs are essential for maintaining immune homeostasis, especially at mucosal interfaces; additionally iTregs contribute to fetal tolerance. In the gut, naïve CD4\(^+\) T cells are converted into iTregs following TCR stimulation in the presence of TGF\(\beta\) and IL-2; other compounds such as retinoic acid (RA) or short-chain-fatty-acids from microbiota mediate conversion as well. In addition, IL-10 is a key player in maintaining lymphocyte homeostasis in the gut as IL-10 deficient mice suffer from spontaneous colitis.

Our results clearly show that Triple\(^{low}\) but not Triple\(^{high}\) Tregs suppress colitis induction. Triple\(^{low}\) Tregs by themselves do not control colitis induction, but function by promoting the generation of iTregs from CD4 Tconvs. Mice which received Triple\(^{low}\) Tregs, but whose recently generated iTregs were depleted with DTx develop fulminant colitis. To our knowledge, there is no study, showing that a particular Treg cell population can induce the conversion of CD4 Tconvs in iTregs in vivo. One recent study indicates that M2a macrophages promote a supportive environment for iTregs and directly contribute to immunological homeostasis in the gut. Nevertheless, how Triple\(^{low}\) Tregs facilitate the generation of iTregs is still an open question.
Treg-like “wannabe” CD4 T cells accumulate in scurfy mice. These Treg-like scurfy T cells are phenotypically similar to bona fide Tregs and even express similar TCRs. Interestingly, transfer of Tconv-like CD4 T cells from scurfy mice resulted in colitis, but not the other features of scurfy disease.

It’s still not clear which scurfy T cell population promotes multi organ inflammation and how TCR affinity for self or foreign antigen is linked to the various pathologies seen in scurfy mice. Here, we show that scurfy Triplehigh T cells are similar to bona fide Triplehigh Tregs with respect to PD1, GITR, CD25 and Helios expression. Transferred scurfy Triplehighs proliferate extensively in peripheral LNs, infiltrate the skin and cause cutaneous lesions similar to those seen in scurfy mice. Interestingly, IL-2 deficient scurfy mice do not develop skin lesions, while IL-4-, IL-6-, IL-10-, Stat6- or CD103- deficient scurfy mice do. The authors suggested that IL-2 acts as the main mediator of skin inflammation in scurfy mice. In this context, scurfy Triplehigh cells cannot likely produce their own IL-2, since they express Helios, a repressor of IL-2 transcription. For this reason, the presence of IL-2 secreting, skin resident DCs might explain the accumulation of scurfy Triplehighs in the dermis.

In contrast, scurfy Triplelow cells do not initiate cutaneous lesions, but instead induce severe colitis within 4 weeks when transferred to T cell deficient recipients. It’s unclear whether scurfy Triplelow cells are the scurfy equivalent to B6 Triplow Tregs or to B6 CD4 Tconv cells. Nevertheless, at least a portion of scurfy Triplow cells are likely to be microbiota specific, since germfree scurfy mice are less prone to develop colitis compared to scurfy mice housed under SPF conditions. Taken together, these results indicate that scurfy disease is pleotropic. Although the absence of bona fide Tregs is the major contributor to the scurfy phenotype,
the presence of dysregulated Treg-like cells very likely initiates several pathological aspects of this disease.

In summary, our results show that the extent of self-reactivity underlies the development of two distinct populations of regulatory T cells. The highly self-reactive Triple$^{\text{high}}$ Tregs control the homeostatic proliferation of lymphocytes, while the less self-reactive Triple$^{\text{low}}$ Tregs facilitate the generation of iTregs in order to maintain lymphocyte homeostasis in the colon. Scurfy mice contain dysregulated Treg-like CD4 T cells, which contribute to the pathology of scurfy disease.
Methods

Mice

All mice (female and male) were between 5–12 weeks old and had a C57BL/6 genetic background. Male FoxP3KO mice were used at 2-3 weeks of age. CD45.1 congenic C57BL/6 (B6 Ly5.1), CD45.2 congenic C57BL/6 (B6), RIP-OVA mice expressing a membrane bound form of Ova under the control of the rat insulin promoter (RIP)\(^{48,49,39}\) OTII TCRtg mice recognizing I\(A^b/OVA_{323-339}\)\(^{50}\), B6.Nur77-GFP\(^{31}\) and FoxP3KO\(^{51}\) were all obtained from The Jackson Laboratory (Bar Harbor, ME). 3BK506 TCRtg and 3BK508 TCRtg mice recognizing I\(A^b/3K\) and Triple KO mice deficient for MHC class II, invariant chain and Rag\(^{KO}\) (referred here as MHCII KO) were provided by P. Marrack and J. Kappler (Denver, USA) and are described elsewhere\(^{52}\). FoxP3\(^{DTR,39}\) mice were kindly provided by A. Rudensky (New York, USA). FoxP3eGFP and CD3\(\varepsilon^{-/-}\) (CD3\(^{KO}\)) were kindly provided by T. Rolink (Basel, Switzerland) and single TCR \(\beta\) chain (OT-I V\(\beta\)5) transgenic mice kindly provided by D. Zehn (Lausanne, Switzerland) and are described elsewhere.\(^{53,54,55}\) Mice were housed under specific pathogen-free conditions and bred in our colony (University Hospital Basel) in accordance with Cantonal and Federal laws of Switzerland. Animal protocols were approved by the Cantonal Veterinary Office of Baselstadt, Switzerland. Mice expressing the YAe62 TCR\(\beta\) chain\(^{56,57}\) and all mouse sub-lines were maintained in a pathogen-free environment in accordance with institutional guidelines in the Animal Care Facility at the University of Massachusetts Medical School. Foxp3.RFP/GFP mice on the C57BL/6 background were bred and maintained at the animal facility of the CRTD (Dresden, Germany) under specific pathogen-free conditions; animal experiments were performed in accordance with the German law on care and use of laboratory
animals and approved by the Regierungspräsidium Dresden. Antigen free and
germ free C57BL/6 mice\(^{30}\) were bred and maintained at the animal facility of the
Pohang University of Science and Technology. This research was approved by
the Institutional Animal Care and Use Committees (IACUC) of the Pohang
University of Science and Technology (2013-01-0012). Mouse care and
experimental procedures were performed in accordance with all institutional
guidelines for the ethical use of non-human animals in research and protocols
from IACUC of the Pohang University of Science and Technology. FoxP3-RFP /
Rag-GFP dual reporter mice\(^{29}\) on the C57BL/6 background were bred and
maintained at the animal facility of the Biomedical Services Unit at the University
of Birmingham and all experiments were performed in accordance with local and
national Home Office regulations.

Flow Cytometry and cell sorting

Thymocytes and T cell were stained with LIVE/DEAD Fixable near-IR stain Kit
(Life Technologies, Invitrogen) and surface antibodies against CD3 (145-2C11),
CD4 (RM4-5), CD5 (53-7.3), CD8 (53.58), CD19 (ID3), CD25 (PC61), CD44 (IM7),
CD45.1 (A20), CD45.2 (104), CD45R (B220, RA3-6B2), CD62L (MEL-14), CD103
(2E7), CD197 (CCR7, 4B12), CD278 (ICOS, 7E.17G9), CD279 (PD1, RMP 1-30),
CD357 (GITR, DAT-1/ YGITR765), NRP1 (polyclonal), TCR\(\beta\) (H57-597) and \(\alpha\)4\(\beta\)7
(DATK32). Intracellular staining for FoxP3 (FJK-16s/ 150D), Helios (22F6), pcJun
(D47G9), pCD3\(\xi\) (K25-407.69) and pERK (197G2) was performed using the
FoxP3 staining kit (eBioscience). For BrdU experiments, mice were injected with
1mg/d BrdU (5-bromodeoxyuridine, BD Bioscience) for 3 days and cells were then
stained for incorporated BrdU using a BrdU Flow Kit (BD Bioscience) followed by
staining for intracellular markers. All antibodies were purchased from BD
Bioscience, BioLegend, eBioscience or CellSignaling Technology. For flow
cytometric analysis, a FACS Cantoll (BD Bioscience) and FlowJo software
(TreeStar) were used. For cell isolation, CD4+ T cells were enriched using
Dynabeads® Untouched™ Mouse CD4 Cells Kit (Life Technologies, Invitrogen)
from cell suspensions from different sources (peripheral LN, mesenteric LN,
spleen); subpopulations of enriched CD4 cells were further sorted on a
FACSAriaIII or Influx cell sorter (BD Biosciences). Cell numbers were determined
using AccuCheck Counting Beads (Life Technologies, Invitrogen) according to
manufacturer’s instructions.

In vitro assays
Bone marrow derived DCs (BmDCs) were generated from bone marrow cells
of 5-7 week old B6 or B6.MHCIIKO mice. Bone marrow cells were cultured under
maturation conditions for 10 days in full medium supplemented with GM-CSF
(hybridoma supernatant, LUTZ-GMCSF, kindly provided by V.Horejsi). Autologous
mixed lymphocyte reactions (auto-MLRs) were performed by co-culturing 1x10^5
syngeneic (B6 or MHCII KO) BmDCs with 3x10^5 CFSE labeled (Life Technologies,
Invitrogen) magnetic bead enriched CD4 cells (Dynabeads, Invitrogen) in 96-well-
U-shaped plates for 5 days. For in vitro, Treg development experiments, 1x10^5
thymocytes from 3BK508tg mice were co-cultured with 1x10^5 B6 BmDCs in the
presence of IL2 (25U/ml, hybridoma X63 supernatant) and recombinant mouse
TGFβ1 (10ng/ml, R&D Systems) for 48h with or without 10^-6M 3K
(FEAQKAKANKAV), P2A (FEAAKAKANKAVD) or P-1A (FAAQKAKANKAVD)
peptides (all obtained from Eurogentec). Re-aggregated thymic organ cultures
were performed as previously described. In brief, RTOC were established from
B3K508, MHC II KO thymocytes and thymic epithelial cells from B6 mice and
cultured in presence of P-1A (20 µM), P2A (2 µM) or 3K (0.2 µM) peptides for 7
days before analysis. All in vitro assays were performed at 37°C in 5% CO₂ using
complete RPMI medium (GIBCO, Life Technologies).

Generation of bone marrow chimeric mice

For generating bone marrow chimeric mice, the protocol from Koehli et al.⁴⁹ was adapted. Recipient mice (CD45.1/2) were lethally irradiated with 900 rad
(GammaCell, Best Theratronics, CA). Bone marrow cells from 5-8 week old B6
mice (CD45.1) and OT-II RagKO (CD45.2) were isolated and depleted of mature T
cells. A mixture of 9:1 of B6 and OT-II RagKO bone marrow cells (4x10⁶ total cells)
were injected intravenously (i.v.) into irradiated recipient mice. Mice were analyzed
12-14 weeks after reconstitution and treated with antibiotics (Nopil, Mepha
Pharma AG) in the drinking water until 2 weeks before analysis. The congenic
markers CD45.1 and CD45.2 were used to identify T cells derived from different
donor bone marrows as well as the host.

In vivo suppression assays

FoxP3DTR mice were injected intra-peritoneally (i.p.) with Diptheria Toxin
(DTx) (Calbiochem) every other day for 10-12 days (first and second injection
50µg/kg; subsequent injections 25µg/kg). In some groups, 2.5x10⁵ sorted Tregs
from pooled LNs were injected i.v. 3 days prior to first DTx injection. Mice were
analyzed one day after last their DTx injection. For colitis experiments, 6-10 week
old T cell deficient CD3KO mice received (i.v.) 3.2x10⁵ sorted naïve CD4 T cells
from pooled LNs of B6Ly5.1 (CD4⁺CD25⁻) or FoxP3DTR Ly5.1 (CD4⁺GFP⁺) mice. In
some groups, 0.8 x10⁵ sorted Tregs from pooled LN were co-transferred.

Recipients of naïve FoxP3DTR CD4 T cells (CD4⁺GFP⁺) were injected every third
day with DTx (10µg/kg), i.p.. For adoptive transfer of scurfy CD4 T cells, 6-10
week old T cell deficient CD3\(^{\text{KO}}\) were reconstituted with 5x10\(^5\) sorted CD4 subpopulations from pooled LNs of 2-3 week old sick (scurfy) FoxP3\(^{\text{KO}}\) male mice. Recipient mice were weighed weekly at the same time of day and sacrificed when initial body weight dropped more than 20% or at the latest six weeks after T cell transfer. The congenic markers, Ly5.1 and Ly5.2 were used to identify T cells from the different donors as well the host. Tissue samples were fixed in 4% paraformaldehyde, embedded in paraffin, sectioned and stained with hematoxylin and eosin.

Clonotype Analysis of GITR\(^{\text{low}}\) PD-1\(^{\text{low}}\) versus GITR\(^{\text{high}}\) PD-1\(^{\text{high}}\) peripheral Tregs

Naïve CD4\(^+\) (CD4\(^+\) CD25\(^-\) Foxp3\(^-\)), Triple\(^{\text{low}}\) T\(_{\text{reg}}\) (CD4\(^+\) CD25\(^{\text{low}}\) Foxp3\(^+\)) GITR\(^{\text{low}}\) PD-1\(^{\text{low}}\) or Triple\(^{\text{high}}\) T\(_{\text{reg}}\) (CD4\(^+\) CD25\(^{\text{high}}\) Foxp3\(^+\) GITR\(^{\text{high}}\) PD-1\(^{\text{high}}\)) T cell populations were sorted from 3 replicate groups (2 mice per group) of single TCR\(\beta\) chain transgenic (B6.YAe62\(\beta\)tg\(^{+}\) TCR\(\alpha^{\text{tg}+/}\) mice were sorted to 98% purity (FACS Aria, BD Biosciences). RNA was isolated using Trizol and precipitated with RNase free glycogen (Invitrogen) following the manufactures protocol. cDNA was prepared using oligo-dT’s (Promega) and Omniscript RT kit (Qiagen). cDNA was amplified with 20 rounds PCR with generic V\(\alpha\)2 primer (5’-CCCTGGGAAGGGCCCTGCTCTGATA-3’) and TCR C\(\alpha\) primer (5’-GGTACACAGCAGGGTTCTGGATGAGCTGATG-3’). 1/10\(^{\text{th}}\) volume of the first round PCR was amplified with an additional 20 rounds of PCR using barcoded primers, for post sequence identification of originating T cell population, containing Illunima PE read primer and P5/7 regions, respectively. The resulting 300bp fragment was gel purified (Gene Clean II, MP Biomedicals) and sequenced on a MiSeq using a single read 250bp run (Illunima). Sequence data sets were parsed by barcode
using the program fastq-multx59 and clonotypes for each population were
tabulated using TCRklass60. A table of analyzed sequences and their frequencies
is shown in Fig S8. All sequences will be made available online.

Similarity and Diversity of TCR clonotypes

The similarity of TCRs utilized within each population was quantified using the
Morisita-Horn similarity index, 0 (minimal similarity) and 1 (maximal similarity).
The Morisita-Horn (M-H) similarity indexes were calculated by tabulating the
frequency in which the top 500 clonotypes of an individual population from one
replicate sample was found in all other populations, using EstimateS Ver9.1.061
software. Statistical significance for M-H index values was assessed using a
Mann-Whittney U test, GraphPad Prism version 6.04. The diversity of TCR
repertoire for each population was measured using the top 500 most frequent
clonotypes. The Shannon Entropy62 value for each sample was calculated as \(H = -\sum p_i \log_2 p_i \), where \(p_i \) is the frequency of the clonotype within the top 500
clonotypes. Lower \(H \) values indicate lower diversity. Additionally, the Simpson's
diversity index63 using the formula \(D_s = 1 - \sum [n_i(n_i - 1)]/[N(N - 1)] \), where \(n_i \) is the
TCR clone size of the \(i \)th clonotype and \(N \) is the total number of the top 500
clonotypes sampled. The index ranges from 0 to 1 with 1 indicating high diversity.

Statistical analysis

Statistical analysis were performed using Prism 6.0 (Graphpad software). If not
other indicated, Students t test (unpaired, two-tailed) was used to assess statistical
significance. P-values ≤ 0.05 were considered significant (*\(p \)≤ 0.05, **\(p \)≤ 0.01,
\(p \)≤0.001, *\(p \)≤ 0.0001) P values >0.05; non-significant (ns)
References

Acknowledgements

We thank U. Schneider for animal husbandry. E. Traunecker and T. Krebs for cell sorting; and G. DeLibero, L. Jeker and O. Stepanek for reviewing the manuscript. This study was funded by grants to E.P. (310030-149972/1 [SNF], Sybilla [EU FP7], and TerraIncognita [ERC]); to E.S.H. (RO1-DK095077, U19 AI109858), E.S.H. is a member of the UMass DERC (grant DK32520); to B.D.S. (T32 AI 007349); to K.K. (Federal Ministry of Education and Research grant (BMBF), German Center for Diabetes Research (grant DZD e.V., FKZ01GI0924), Center for Regenerative Therapies Dresden, Cluster of Excellence grant FZT 111); to G.A. (Programme Grant from MRC); to C.D.S. (Project IBS-R005-D1 from the Inst. for Basic Science, Korean Ministry of Science) and to L.M.T (Oncosuisse KFS-3169).

Author Contributions

L.W. and E.P. conceived and designed the experiments. L.W. performed all experiments except the following: thymic RTOCs carried out by C.G.K; analysis of Tregs in FoxP3.RFP/GFP mice, carried out by S.S. and K.K.; deep sequencing and analysis of TCR clonotypes, carried by B.D.S. and E.S.H; analysis of thymic Tregs in FoxP3-RFP / Rag-GFP dual reporter mice, carried out by N.I.M. and G.A.; analysis of Tregs in GF, AF and SPF mice, carried out by J.Y.L. and C.D.S.; and evaluation of histological sections, carried out by L.M.T. The manuscript was written by L.W. and E.P. All co-authors have read the manuscript.

Author Information

The authors declare no competing financial interests. Correspondence and requests for materials should be addressed to E.P. (ed.palmer@unibas.ch).
Figure Legends

Figure 1: Triple$^{\text{high}}$ and Triple$^{\text{low}}$ Tregs cells are phenotypically distinct and originate in the thymus.

a) CD4 LN T cells were analyzed for FoxP3, GITR, PD1 and CD25 expression by flow cytometry. Gates show frequencies of CD4$^{+}$FoxP3$^{+}$ cells (left panel, green gate), Triple$^{\text{high}}$ Tregs (GITR$^{\text{high}}$PD1$^{\text{high}}$CD25$^{\text{high}}$, second panel, red gate) and Triple$^{\text{low}}$ Tregs (GITR$^{\text{low}}$PD1$^{\text{low}}$CD25$^{\text{low}}$, second panel, brown gate). Bar graph (left) shows frequencies of Triple$^{\text{high}}$ and Triple$^{\text{low}}$ Tregs in LNs of B6 mice (n=6 mice). Histogram (right panel) shows CD25 expression (MFI) on Triple$^{\text{high}}$ and Triple$^{\text{low}}$ Tregs (n=4 mice) b and c) Expression of homing and activation markers on Triple$^{\text{high}}$ (red) and Triple$^{\text{low}}$ Tregs (brown), obtained from B6 LNs and analyzed by flow cytometry b) CD44 and CD62L, CD103, CCR7 and ICOS c) Helios and NRP1 (n= 4 mice). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 (Student’s t test). Bar graphs show mean ± SEM. Data is taken from 2-3 independent experiments.
Figure 1

a) CD4+ CD4+ FoxP3+ FoxP3+ 9.6 HLR HLR 18.6 9.2

b) CD44 CD44 CD62L CD62L CD103 CD103 CCR7 CCR7 ICOS ICOS

c) Helios Helios NRP1 NRP1
Figure 2: Triple\(^{\text{high}}\) and Triple\(^{\text{low}}\) Tregs cells have thymic origin.

a) B6 thymocytes mice were analyzed for FoxP3, GITR and PD1 expression by flow cytometry. Gates show frequencies of Triple\(^{\text{high}}\) (red) and Triple\(^{\text{low}}\) Tregs (brown). Bar graph shows mean frequency of Triple\(^{\text{high}}\) and Triple\(^{\text{low}}\) Tregs in thymi (n=6 mice, data is taken from 3 independent experiments.)

b) CD4SP FoxP3\(^{+}\) thymocytes from FoxP3RFP/Rag2GFP dual reporter mice were analyzed by flow cytometry for RagGFP expression (left histogram). Frequencies of Triple\(^{\text{high}}\) and Triple\(^{\text{low}}\) Tregs among recirculating thymocytes RagGFP\(^{-}\) (left contour plot) and de novo generated RagGFP\(^{+}\) (right contour plot) are indicated. Bar graphs depict mean frequencies of Triple\(^{\text{high}}\) (red) and Triple\(^{\text{low}}\) (brown) Tregs among recirculating (RagGFP\(^{-}\)) and de novo generated (RagGFP\(^{+}\)) thymocyte populations.

c) Lymph node cells from SPF, germ free (GF) and antigen free (AF) B6 mice were analyzed for CD4, FoxP3, GITR and PD1 expression by flow cytometry. Frequencies of FoxP3\(^{+}\) CD4 T cells are shown (top row, green gates). Bar graphs show mean frequency of FoxP3\(^{+}\) CD4 T cells. Frequencies of Triple\(^{\text{high}}\) (red gates) and Triple\(^{\text{low}}\) Tregs (brown gates) are shown (bottom row). Bar graph show mean frequencies of Triple\(^{\text{high}}\) (red bar) and Triple\(^{\text{low}}\) (brown bar) Tregs. (n=2 mice) ns= not significant (Kruskal-Wallis Test). Bar graphs indicate mean ± SEM.
Figure 3: **Triplehigh and Triplelow Tregs express distinct TCR repertoires.**

Analysis TCR clonotypes in Treg subsets from Yae62 Vβ8.2, TCRα+/KO FoxP3-GFPKI (single TCR β chain) mice. a) V\textalpha 2 expression among CD4 Tconvs (blue), Triplehigh Tregs (red) and Triplelow Tregs (brown). b) Morisita-Horn similarity analysis of V\textalpha 2+ TCR clonotypes from CD4 Tconvs (blue) compared to Triplelow (brown) Treg and Triplehigh (red) Treg clonotypes from three independent groups of single TCRβ chain (Y Ae62tg, TCRα+/KO, Rag+) mice. For the Morisita-Horn Index, values of 0 and 1 represent minimal and maximal similarity, respectively (see Methods for full description). c) Morisita-Horn similarity analysis comparing V\textalpha 2+ TCR clonotypes from Triplelow Tregs (brown) to CD4 Tconvs (blue) and Triplehigh Treg (red) clonotypes. d) Morisita-Horn similarity analysis comparing V\textalpha 2+ TCR clonotypes from Triplehigh Tregs (red) to CD4 Tconvs (blue) and Triplelow Treg (brown) clonotypes. TCR repertoire diversity was analyzed by calculating Shannon Entropy (e) and Simpson Diversity (f) scores. For Shannon Entropy analysis, higher H values indicated higher diversity; for Simpson Diversity analysis, the index ranges from 0 to 1 with 1 indicating high diversity (see Methods for full description).
Figure 3

(a) Percentage of V\textsubscript{2}+ T-cells among Tconv, Triplelow Treg, and Triplehigh Treg.

(b) Morisita-Horn Index among Tconv, Triplelow Treg, and Triplehigh Treg.

(c) Simpson Diversity among Tconv, Triplelow Treg, and Triplehigh Treg.

(d) Simpson Diversity among Tconv, Triplelow Treg, and Triplehigh Treg.

(e) Shannon Entropy among Tconv, Triplelow Treg, and Triplehigh Treg.

(f) Shannon Entropy among Tconv, Triplelow Treg, and Triplehigh Treg.

Legend:
- Blue: Tconv
- Red: Triplelow Treg
- Orange: Triplehigh Treg
Figure 4: Triplehigh and Triplelow Tregs have different self-reactivity.

a) Triplehigh (red) and Triplelow (brown) Tregs from B6 LNs were analyzed for CD5 (n=4 mice) and Nur77-GFP (n=2 mice) expression by flow cytometry. Bar graphs indicate mean MFI.
b) In vivo proliferation of B6 LN derived Triplehigh (red), Triplelow (brown) Tregs and Tconvs (blue). Mean percentages of proliferating (BrdU+) cells are shown (n=4 mice).
c) Representative histograms show in vitro proliferation (CFSE dilution) of LN-derived Triplehigh Tregs (red) Triplelow Tregs (brown) and CD4 Tconvs (blue) from cultures of purified CD4 LN Tcells and B6 or B6.MHCIIK0 BmDCs. Bar graph shows mean numbers of proliferating cells (n=6 samples from 2 independent experiments). ns= not significant, *p \leq 0.05 (Student’s t test). Bar graphs indicate mean ± SEM.
d) Representative flow cytometric analysis of GITR and PD1 expression on 3BK508tg CD4SP (top row) or 3BK508tg CD4SP FoxP3+ thymocytes (bottom row) 48h after stimulation with P-1A, P2A, 3K or no peptide presented on mature B6 BmDCs in the presence of IL2 and TGF\textbeta (n=3 independent experiments). Middle row shows FoxP3 expression among CD4SP cells in these cultures as indicated.
e) Left panels: Flow cytometric analysis of FoxP3 expression in OT-II derived, CD4SP thymocytes, of lethally irradiated RIP-mOVA (upper panel) and B6 (lower panel) bone marrow chimeras reconstituted with bone marrow cells from Ly5.1+ B6 and Ly5.2+ OT-II, RagKO mice. Numbers indicate percentage of cells within gates. Right panel: Flow cytometric analysis of thymic OTII derived CD4SP FoxP3+ thymocytes for GITR and PD1 expression in RIP-mOVA hosts. Contour plots are representative of 4 individual chimeric mice.
Figure 4

(a) [Graph with histograms showing CD5 and Nur77 with MFI x 100 on the y-axis and various markers on the x-axis.]

(b) [Graph showing BrdU cells [%] with MFI x 100 on the y-axis and various markers on the x-axis.]

(c) [Graph showing numbers of proliferated cells [%] with various markers on the x-axis and y-axis.]

(d) [Heatmap showing different conditions (no peptide, P-1A (10^{-6} M), P2A (10^{-6} M), 3K (10^{-6} M)) with various markers (PD1, CD4, CD4SP, FoxP3, GTR) on the x-axis and y-axis.]

(e) [Heatmap showing different conditions (OTII CD4SP, FoxP3) with various markers (PD1, CD4) on the x-axis and y-axis.]
Figure 5: Triple$^{\text{high}}$ but not Triple$^{\text{low}}$ Tregs suppress in vivo lymphoproliferation.

a) 2.5x105 sorted B6 Tregs cells, (unaffected by DTx) from pooled B6 LN s were injected intravenously (i.v.) into 6-10 week old FoxP3$^{\text{DTR}}$ mice. Three days later, host FoxP3$^+$ cells were depleted intra peritoneal (i.p.) injection of DTx every other day for 10 days. Proliferation of host lymphocytes in Ly5.1 FoxP3$^{\text{DTR}}$ mice previously injected i.v. with either no cells (black, n=10 mice), B6 Triple$^{\text{low}}$ Tregs (brown, n=4 mice) B6 Triple$^{\text{high}}$ Tregs (red, n=6 mice), or total B6 Tregs (green, n=3 mice). FoxP3$^{\text{DTR}}$ recipients (see above) and B6 control mice (gray, n=4 mice) were treated every other day with diphtheria toxin (DTx) and analyzed at d11-13 after cell transfer. Bar graphs show numbers of host-derived, live, CD4$^+$, CD8$^+$ and B cells in peripheral LN s. c) Flow cytometric contour plots and bar graph show the percentage of naïve endogenous CD4 Tconvs (Ly5.1$^+$ CD44$^{\text{low}}$ CD62L$^{\text{high}}$) in mice described in b) n≥4.*p≤ 0.05, **p≤ 0.01, ***p≤0.001, (Student’s t test). Bar graphs show mean ± SEM. Data is taken from 2-4 independent experiments.
Figure 6: Triplelow but not Triplehigh Tregs suppress colitis.

a) To induce colitis, 6-10 week old T cell deficient CD3KO recipients received 3.2x105 sorted naïve CD4 Tconvs (CD4+CD25−) isolated from B6 Ly5.1+ mice (B6 Tconv). In some groups, 0.8 x105 sorted, Ly5.2+ Triplehigh or Triplelow Tregs from pooled B6 LNs were co-transferred along with Tconvs. In experiments where iTreg generation was inhibited during colitis induction, 6-10 week old T cell deficient CD3KO recipients were first injected i.v. with 3.2x105 sorted, naïve CD4 Tconvs isolated from FoxP3DTR, Ly5.1+ mice (FoxP3DTR Tconv). In some groups, 0.8 x105 sorted B6 Triplelow Tregs cells (unaffected by DTx) were co-transferred along with FoxP3DTR Tconvs. To deplete Tconv-derived iTregs, recipients were injected i.p. every third day with DTx (10µg/kg). Mice were weighed weekly at the same time of day and were sacrificed when they lost > 20% of their initial body weight or at six weeks following adoptive transfer. b) Graph shows percentage of weight change of CD3KO mice injected with either no cells (black, n=5), Ly5.1 B6 CD4 Tconvs (blue, n=9 mice) or Ly5.1 B6 CD4 Tconvs co-transferred with either Ly5.2 Triplelow Tregs (brown, n=9 mice) or Triplehigh Tregs (red, n=6 mice). c) Graph shows percentage of weight change in CD3KO mice, which received either no cells (black, n=5 mice), Ly5.1 FoxP3DTR CD4 Tconvs alone (dashed blue, n=3 mice) or Ly5.1 FoxP3DTR CD4 Tconvs co-transferred with B6 Triplelow Tregs (dashed brown, n=3 mice) and injected every third day with DTx. Statistical analysis compares difference of weight change at 6 weeks following cell transfer. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 (Student’s t test). d) Representative H&E staining of colon sections from CD3KO mice adoptively transferred with cell populations indicated in a-c). e) Flow cytometric analysis of Ly5.1 B6 CD4 Tconvs or Ly5.1 FoxP3DTR CD4 Tconvs six weeks after transfer from mice described in c). Contour plots show CD4/FoxP3
staining of transferred CD4 Tconvs isolated from mesenteric or peripheral LNs. f) Bar graphs show percentage of CD4 Tconv-derived induced Tregs (iTregs) found in mesenteric or peripheral LNs. *p ≤ 0.05, **p ≤ 0.01 (Student's t test) ns = not significant. Bar graphs show mean ± SEM. Data is taken from 2-4 independent experiments.
Figure 6

a) CD3KO

Ly5.2 Tregs (0.8x10^5 cells) and/or Ly5.1 Tconv (3.2x10^5 cells)

weekly: measure weight
every 3rd day: 10µg/kg DTx i.p.

analysis

b) weight change [%]

Tconv
Tconv + Triplehigh Tregs
Tconv + Triplelow Tregs
DTR Tconv
DTR Tconv + Triplelow Tregs
no cells

weight change [%]

weeks after cell transfer

Transferred CD4+Tconv cells (Ly5.1)

mLN

FoxP3

LN

% of iTregs (FoxP3+ Tconv)

CD4

0.8% 1.2% 5% 0.1% 0.4%

0.9% 0% 15% 0.04% 0.4%

mLN

0.008

0 4 8

ns

* ns

** ns

ns

ns

* ns
Figure 7: Scurfy Triplehigh and scurfy Triplelow CD4 T cells induce different pathologies.

a) FoxP3KO (Scurfy) mice contain Treg like cells. Left panel: Flow cytometric analysis of CD4 T cells showing scurfy Triplehigh (PD1high GITRhigh CD25high; orange gate) and scurfy Triplelow (PD1neg GITRneg CD25neg; purple gate) CD4+ T cells. Additional panels: PD1, GITR, CD25, Helios, CD5 and CD62L expression in scurfy Triplehigh (orange solid), scurfy Triplelow, B6 Triplehigh Tregs (dotted red) and B6 CD4 Tconv (dotted blue) cells. b) Sorted scurfy Triplehigh or scurfy Triplelow T cells were transferred to T cell deficient CD3KO hosts. Host mice were weekly monitored for weight change and development of other pathologies. c) Graph shows mean percentage of weight change ± SEM of CD3KO recipients following adoptive transfer of no (black, n=3 mice), scurfy Triplehigh (orange, n=8 mice) or scurfy Triplelow (purple, n=8 mice) CD4+ T cells. ***p≤ 0.001 (Student’s t test) ns = not significant. d) Photographs of peripheral and mesenteric LNs from CD3KO mice transferred with scurfy Triplehigh or scurfy Triplelow CD4 T cells e) Absolute number of scurfy CD4 cells ± SEM in peripheral LNs and mLNs six week after cell transfer, (orange, scurfy Triple\textsuperscripts{highs}, violet, scurfy Triple\textsuperscripts{lows}) (n=8 mice) , *p≤ 0.05. f) Representative photographs and H&E staining of tail skin and colons sections of CD3KO recipient six weeks after adoptive cell transfer. B6 control mice are shown as well. Data is taken from 5 independent experiments.
Figure 7

a

b

CD3KO

week 0 1 2 3 4 5 6

sorted scurfy cells

i.v. (5x10^6 cells)

weekly: measure weight

analysis

weight change [%]

weeks after cell transfer

D

Scurfy Triplehigh Scurfy Triplelow

LN

mLN

f

B6 Scurfy Triplehigh Scurfy Triplelow

CD3KO CD3KO

Skin (tail)

Colon