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We consider, for the �rst time, the stability of the non-Newtonian boundary layer


ow over a 
at plate. Shear-thinning and shear-thickening 
ows are modelled using a

Carreau constitutive viscosity relationship. The boundary layer equations are solved

in a self-similar fashion. A linear asymptotic stability analysis, that concerns the

lower-branch structure of the neutral curve, is presented in the limit of large Reynolds

number. It is shown that the lower-branch mode is destabilised and stabilised for

shear-thinning and shear-thickening 
uids, respectively. Favourable agreement is

obtained between these asymptotic predictions and numerical results owing from

an equivalent Orr-Sommerfeld type analysis. Our results indicate that an increase in

shear-thinning has the e�ect of signi�cantly reducing the value of the critical Reynolds

number, this suggests that the onset of instability will be signi�cantly advanced in

this case. This postulation that shear-thinning destabilises the boundary layer 
ow

is further supported by our calculations regarding the development of the steamwise

eigenfunctions and the relative magnitude of the temporal growth rates.

a)Electronic mail: paul.gri�ths@le.ac.uk
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I. INTRODUCTION

The stability of the boundary layer on a 
at plate, often referred to as the Blasius

boundary layer, in reference to the seminal work of P. R. H. Blasius1, has been studied

extensively throughout the 20th century. The growth and decay of an arbitrarily small

disturbance imposed upon the basic 
ow pro�le was �rst described by the linear stability

theory introduced by Tollmien 2 and Schlichting 3 . These early works assumed that both the

base 
ow and the disturbance were strictly parallel, that is to say that they are both only

dependent on the wall normal coordinate, y�, and not the streamwise coordinate, x�. By

imposing this parallel-
ow approximation the governing perturbation equations are reduced

to the familiar, more readily solvable, Orr-Sommerfeld equation. The experimental results

of Schubauer and Skramstad 4 provided substantial justi�cation for the Tollmien-Schlichting

theory; with the parallel-
ow results agreeing well with the experimental data.

Jordinson 5 revisited the numerical solution of the Orr-Sommerfeld equation noting a

critical Reynolds number, based on a strictly parallel assumption and scaled on the local

boundary layer thickness, of 520. In an attempt to improve upon the agreement between

parallel-
ow theory and experimental results Barry and Ross 6 assumed a non-zero compo-

nent of wall normal velocity and included some of the streamwise derivatives of the base


ow, such that the governing equations remained separable. The author’s modi�ed Orr-

Sommerfeld analysis revealed a slightly reduced critical Reynolds number of 500. This

result did indeed provide a better agreement, in terms of the critical Reynolds number, with

the detailed experimental results of Ross et al. 7 .

Focusing on the lower-branch structure of the neutral curve Smith 8 was able to include

non-parallel e�ects using asymptotic triple-deck theory. Smith’s analysis revealed that non-

parallel e�ects are included in the calculations at O(R�3=4), where R is the Reynolds number

scaled on the local boundary layer thickness. Although the analysis is based on the assump-

tion of large Reynolds number, Smith’s non-parallel results showed an improved agreement,

when compared to parallel theories, with the experimental results of Ross et al. 7 . In an

attempt to obtain equivalent non-parallel results for the upper branch of the neutral curve

Bodonyi and Smith 9 consider a quintuple-deck asymptotic approach. However, unlike the

lower-branch analysis, the results did not provide a good agreement with experimental and

Orr-Sommerfeld calculations when the Reynolds number is not large. Indeed, Healey 10
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notes that this upper-branch asymptotic theory is consistent only when R > 105, the ap-

proximate location at which the critical layer emerges from the viscous wall layer. Thus,

when R < 105 the critical layer lies within the viscous wall layer, suggesting that, in this

region, the upper-branch disturbances are instead described by a triple-deck structure. The

transition from a triple-deck to a quintuple-deck structure is associated with the kink in the

neutral curve. The modi�ed triple-deck analysis of Hultgren 11 shows that both the upper

and lower branches can be calculated using a single dispersion relation.

In addition to the asymptotic non-parallel studies of Smith 8 and Bodonyi and Smith 9

the interested reader is referred to a number pertinent computational investigations, see, for

example, the full non-parallel study of Fasel and Konzelmann 12 , and the linear and non-

linear study of Bertolotti, Herbert, and Spalart 13 . Furthermore, an excellent review article

compiling the major contributions made postdating the seminal works of both Tollmien 2

and Schlichting 3 is presented by Herbert 14 .

Our discussion thus far makes reference only to the class of 
uids that satisfy a Newto-

nian governing viscosity relationship. However, there exists many physical and industrial

processes where a 
uids’ viscosity is observed to be non-constant. Fluids such as these are

said to be non-Newtonian. Generalised Newtonian 
uids are one of a number of classes of

non-Newtonian 
uids; the viscosity of a generalised Newtonian 
uid is dependent solely on

the shear-rate of the 
ow.

Previous studies that address the non-Newtonian boundary layer equations have often

been concerned with generalised Newtonian 
uids, and in particular 
uids that satisfy a

‘power-law’ governing relationship, see, for example, Schowalter 15 , Acrivos, Shah, and Pe-

terson 16 and more recently Denier and Dabrowski 17 . However, when the power-law bound-

ary layer equations are solved in a self-similar manner results for shear-thickening 
uids

predict a �nite-width boundary layer, whilst shear-thinning results are found to decay into

the far �eld in strongly algebraic fashion17. These features are associated with the inability

of the power-law model to accurately describe the variation of viscosity within the boundary

layer18. Gri�ths 19 has shown, in the three-dimensional case, that steady base 
ow pro�les

obtained from a power-law formulation of the problem contrast those determined using the

Carreau viscosity model. These results further question the applicability of the power-law

model in high and low shear-rate environments. Indeed, linear stability analyses conducted

on the rotating disk boundary layer have revealed that contradictory conclusions are reached
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when power-law results are compared to those owing from the Carreau 
uid model20. These

results, and the growing interest in non-Newtonian boundary layer 
ows have been the

motivation for the current investigation.

In this study we reconsider the problem of the boundary-layer 
ow of a generalised

Newtonian 
uid using the Carreau 
uid model. In addition to this we consider, for the �rst

time, the linear stability characteristics of this 
ow using both asymptotic and numerical

analyses. In contrast to recent asymptotic studies on the stability of non-Newtonian rotating


ows where upper-branch modes were considered21 the asymptotic analysis concerns the

lower-branch structure of the neutral curve and follows the methodology of Smith 8 . Both

branches of the neutral curve are obtained via a numerical analysis, whereby the e�ect of a

non-Newtonian rheology on the critical Reynolds number can be determined.

The outline of this paper is as follows. In II we derive the relevant boundary-layer

equations and introduce the self-similar form of the streamwise and wall normal velocity

components. In III we solve the nonlinear boundary-value problem outlined in II, ensuring

that the boundary-layer 
ow matches smoothly with that of the free-stream. A linear

asymptotic stability analysis is presented in IV. A new set of generalised Newtonian linear

disturbance equations are derived and we present leading, and next order, results regarding

the lower-branch structure of the neutral stability curve. A generalised Newtonian Orr-

Sommerfeld analysis is the subject matter of V. Neutral stability curves are plotted for

both shear-thickening and shear-thinning 
uids. In the limit of large Reynolds number our

asymptotic results are compared to our approximate numerical solutions. In addition to

this, within V, we also investigate the structure of the streamwise eigenfunctions and the

relative magnitude of the temporal growth rates. Finally, in VI we discuss the results of our

study and conclude by summarising our �ndings.
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II. FORMULATION

The 
ow of an incompressible non-Newtonian 
uid over an impermeable, semi-in�nite,


at plat is governed by the continuity and Cauchy momentum equations

r� � u� = 0; (1a)

��
�
@
@t�

+ u� � r�
�
u� = �r�p� +r� � � �: (1b)

Here u� = (u�; v�) are the velocity components in the streamwise and wall normal coordi-

nates (x�; y�), respectively. The 
uid density is ��, t� is time and p� is the 
uid pressure.

The stress tensor for incompressible generalised Newtonian 
uids is given by

� � = ��( _
�) _
�;

where _
� = r�u� + (r�u�)T is the rate-of-strain tensor, ��( _
�) is the generalised New-

tonian viscosity and _
�, the second invariant of the rate-of-strain tensor, is de�ned as

_
� =
p

( _
� : _
�)=2. The constitutive viscosity relation considered herein is described by

the Carreau 22 model

�� = ��1 + (��0 � �
�
1)[1 + (�� _
�)2](n�1)=2; (2)

where ��1 is the in�nite-shear-rate viscosity, ��0 is the zero-shear-rate viscosity, �� is the

characteristic time constant, and n is the 
uid index. For n > 1 the 
uid is said to be

shear-thickening, whilst for n < 1 the 
uid is said to be shear-thinning. The Newtonian

viscosity relationship is recovered when n = 1.

This system is made dimensionless via the introduction of the following variables

(u�; v�) = U�1(~u; ~v); (x�; y�) = L�(x; y); t� =
L�

U�1
t; p� = ��(U�1)2 ~p; �� = ��0�:

Here L� is a typical length scale and U�1 a typical free-stream speed. In order to investigate

the boundary layer region close to the surface of the 
at plate we rescale the problem such

that

(~u; ~v) = (UB; Re�1=2VB); y = Re�1=2Y; ~p = PB;

where the Reynolds number, scaled by the zero-shear-rate viscosity, is de�ned as

Re =
��U�1L�

��0
:
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At leading order, the continuity and Cauchy momentum equations (1) become

@UB
@x

+
@VB
@Y

= 0; (3a)

UB
@UB
@x

+ VB
@UB
@Y

= �
dPB
dx

+
@
@Y

�
�
@UB
@Y

�
: (3b)

The viscosity function � expands as such

� =

"

1 + xk2
�
@UB
@Y

�2
#(n�1)=2

; (3c)

where we have neglected the ratio ��1=��0 as this quantity is assumed to be small. This

approximation is consistent with a number of other studies involving generalised Newto-

nian 
uids (see, for example, Nouar, Bottaro, and Brancher 23), typically the zero-shear-

rate viscosity is three to four orders of magntide larger than that of the in�nte-shear-

rate viscosity24. The dimensionless form of the characteristic time constant is given by

k = ��U�1
p
��U�1=��0x�. We note that k is scaled by the streamwise coordinate x�, this

therefore restricts our attention to a strictly local analysis whereby k is evaluated at a

speci�c streamwise location along the 
at plate.

The system (3) is closed subject to the following boundary conditions

UB = VB = 0 at Y = 0; (4a)

UB ! Ue(x) as Y !1; (4b)

where Ue(x) is the streamwise velocity component outside of the boundary layer. The �rst

of these conditions ensures that the no-slip criterion is satis�ed at the wall, the second

states that the streamwise velocity inside the boundary layer must match with that of the

free-stream far from the wall.

In the absence of a streamwise pressure gradient the free-stream velocity is chosen to be

Ue = 1; thus the boundary layer equations (3) admit similarity solutions of the form

UB(x; Y ) = f 0(�); VB(x; Y ) =
�f 0(�)� f(�)

2
p
x

; (5)

where � = Y=
p
x. The function f must satisfy

f 000�̂ = �
ff 00

2
; (6a)
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where

�̂ = [1 + n(kf 00)2][1 + (kf 00)2](n�3)=2

= [1 + (kf 00)2](n�1)=2 + (n� 1)(kf 00)2[1 + (kf 00)2](n�3)=2 = �̂p + �̂s: (6b)

Here the e�ective viscosity function is denoted by �̂. We note that the e�ective viscosity

can be split into primary (�̂p) and secondary (�̂s) components; these functions are such that

�̂pjn=1 = 1 and �̂sjn=1 = 0.

The system (6) is closed subject to the following boundary conditions

f = f 0 = 0 at � = 0; (7a)

f 0 ! 1 as � !1: (7b)

Dabrowski 18 considered a similar problem in the case when ��1=��0 = O(1). Our analysis

is essentially a modi�cation of his. However, owing to our formulation of the problem, we

are able to make direct comparisons with the familiar Blasius solution. This proves useful

in the forthcoming stability analyses.

7
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III. BASE FLOW

Before numerically solving the nonlinear boundary-value problem de�ned by (6) and (7)

it proves useful to �rst develop the large-� asymptotic form for the solution f . This ensures

that the numerical solutions satisfy the correct form of decay into the far �eld. Owing from

(7b) we write f = (� � a) + f̂(�) + � � � as � !1, where a is a constant and the correction

term f̂ is such that f̂ � 1. By de�ning � = � � a and retaining only leading order terms,

from (6) we have that

f̂ 000 +
�f̂ 00

2
= 0;

where the primes denote di�erentiation with respect to �. Therefore in the limit as � !1

we �nd that

f 0 = 1 + A
p
�

2
erfc

�
�
2

�
+ � � � = 1 +

Ae��2=4

�
+ � � � ;

where A is a constant of integration. Thus solutions owing from the Carreau 
uid model

exhibit the same exponential decay into the far �eld as the corresponding Newtonian solu-

tions (see Jones and Watson 25). Hence in this case the inner boundary-layer 
ow will match

smoothly with that of an outer potential 
ow. This is unlike the equivalent power-law anal-

ysis where the shear-thinning solutions have been shown to decay algebraically into the far

�eld meaning that matching considerations are necessary in that case17.

We solve (6) subject to (7a) and (7b) using a shooting method that utilises a fourth-order

Runge-Kutta quadrature routine coupled with a Newton iteration scheme to determine the

value of f 00 at the wall. Throughout this analysis the value of k is held �xed at k = 10

whilst the 
uid index is varied across a range of shear-thinning and shear-thickening values.

Given the dimensionless form of the characteristic time constant and the rheological data

presented by Bird, Armstrong, and Hassager 24 , who note that typically O(100) � �� �

O(102), we believe that this choice of k is physically representative of values that would

be observed experimentally. Furthermore, following this order of magnitude approach our

initial calculations reveal that implementing this value of k produces base 
ow solutions

that are both fully converged, and exhibit an observable variation of viscosity, within the

con�nes of the boundary layer region.

Our results are presented in �gures 1 and 2 and have been tabulated overleaf, with

Newtonian solutions included as a comparative aid. Within Table I we provide values for

8
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2
0 2 4 6 8 10

f 0

0

0.2

0.4

0.6

0.8

1
n = 0 :25
n = 0 :5
n = 0 :75
n = 1

(a)

2
0 2 4 6 8 10

f 0
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1
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(b)

2
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7̂

0

0.2

0.4

0.6

0.8

1
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1.4
n = 0 :25
n = 0 :5
n = 0 :75
n = 1

(c)

2
0 2 4 6 8 10

7̂

0

0.5

1

1.5

2

2.5

3

3.5
n = 1
n = 1 :25
n = 1 :5
n = 1 :75

(d)

FIG. 1. Steady base 
ow pro�les for shear-thinning and shear-thickening Carreau 
uids. In (a)

and (b) the streamwise velocity function f 0 is plotted against the boundary layer coordinate �. In

(c) and (d) the e�ective viscosity function �̂ is plotted against �. In all cases the �{axis has been

truncated at � = 10. The Newtonian solutions are included as a comparative aid.

the Blasius constant �, which is given by

� =
Z 1

0
(1� f 0) d� = ��

s
��U�1
��0x�

; (8)

where �� is the displacement thickness. Utilising this de�nition we introduce the Reynolds

number R = ��U�1��=��0 = �
p
xRe, based on the local boundary-layer thickness. This form

of the Reynolds number will be used in the forthcoming asymptotic and numerical analyses.
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TABLE I. Numerically calculated values of the e�ective wall shear f 00(0), the e�ective viscosity at

the wall �̂(0), and the Blasius constant �.

n f 00(0) �̂(0) �

0.25 1.0049 0.0454 0.7391

0.5 0.5663 0.2148 1.1150

0.75 0.4117 0.5325 1.4372

1 0.3321 1 1.7208

1.25 0.2831 1.6089 1.9747

1.5 0.2498 2.3472 2.2052

1.75 0.2255 3.2020 2.4165

2
0 2 4 6 8 10

-0.5

0

0.5

1

1.5

2
7̂
7̂p

7̂s

(a)

2
0 2 4 6 8 10

0

0.5

1

1.5

2

2.5
7̂
7̂p

7̂s

(b)

FIG. 2. The e�ective viscosity function �̂ plotted against the boundary layer coordinate � for

shear-thinning (a) and shear-thickening (b) Carreau 
uids. As a point of reference, for both cases,

the primary (�̂p) and secondary (�̂s) components of the e�ective viscosity function have also been

included. The �{axis has been truncated at � = 10.
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x �

y �

III

II

IO(" 3 )

O(" 4 )

O(" 5 )

O(" 3 )

UB

UB = 1

III

IIO(" 4 )

O(" 5 )
UBU

FIG. 3. Schematic diagram showing the lower-branch structure of the Blasius boundary layer.

The zones I, II and III denote the upper, main and lower decks respectively. The grey shaded

area indicates the boundary-layer region whereas the unshaded area indicates the inviscid region

where the base 
ow matches with that of the free-stream. The small parameter " on which the

disturbance structure is based is de�ned in (9).

IV. ASYMPTOTIC ANALYSIS

In order to describe the lower-branch structure of the neutral stability curve we assume

that the Reynolds number is large. Having done so we perform a linear asymptotic stability

analysis that is valid for all values of the 
uid index n. As in the Newtonian case we �nd

that on the lower branch the linear disturbances are governed by a triple-deck structure, on

a streamwise length scale of O(Re�3=8), consisting of upper, main and lower decks. This is

outlined schematically in Figure 3. Our small parameter, scaled on the global boundary-layer

thickness, is given by

" = Re�1=8: (9)

This choice of scaling stems from the results of classical Orr-Sommerfeld theory that reveals,

in the Newtonian limit at least, that the lower-branch neutrally stable modes will have

a wavelength of O(Re1=8) as Re ! 1. Knowing that the length scale over which the

boundary layer develops is independent of both k and n suggests that this choice of scaling

is appropriate for all cases considered within this study.

The upper, main and lower decks are found to be of thickness O("3), O("4) and O("5)

respectively. The analysis in the upper and main decks is largely similar to that presented
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by Smith 8 , who considered the corresponding Newtonian problem. It is within the viscous

lower deck where we see the emergence of leading-order generalised Newtonian terms.

We model the initial growth of the disturbances by assuming that the base 
ow is subject

to in�nitesimally small perturbations and write

~u = U0 + u(x; y; t); ~v = V0 + v(x; y; t); ~p = P0 + p(x; y; t); (10)

where U0 = UB(x; Y ) + � � � , V0 = Re�1=2VB(x; Y ) + � � � and P0 = PB(x; Y ) + � � � , with

u, v, p = O(1) as " ! 0. After substitution of (10) into the dimensionless continuity and

Cauchy momentum equations, and neglecting nonlinear terms, we arrive at the governing

linear disturbance equations, namely

@u
@x

+
@v
@y

= 0; (11a)

@u
@t

+ U0
@u
@x

+ V0
@u
@y

+ u
@U0

@x
+ v

@U0

@y
= �

@p
@x

+
1
Re

�
2
@
@x

�
��
@u
@x

+ ���
@u
@y
FU0
x

�

+
@
@y

�
��
�
@u
@y

+
@v
@x

�
+ ���

@u
@y
�
1 + F V0

x
���

; (11b)

@v
@t

+ U0
@v
@x

+ V0
@v
@y

+ u
@V0

@x
+ v

@V0

@y
= �

@p
@y

+
1
Re

�
2
@
@y

�
��
@v
@y

+ ���
@u
@y
F V0
y

�

+
@
@x

�
��
�
@u
@y

+
@v
@x

�
+ ���

@u
@y
�
1 + F V0

x
���

; (11c)

where F j
i = (@j=@i)=(@U0=@y) and

�� =

"

1 + �2
�
@U0

@y

�2
#(n�1)=2

; (11d)

��� = (n� 1)�2
�
@U0

@y

�2
"

1 + �2
�
@U0

@y

�2
#(n�3)=2

; (11e)

with � = ��U�1=L�. Here �� is the leading order viscosity function whilst ��� is the leading

order viscosity perturbation.

We expect that the lower-branch mode is scaled on a streamwise length scale of O("3).

As such we consider disturbances proportional to

E = exp
�

i
"3

�Z
�(x; ") dx� !(")�

��
;

where � = "t. We restrict our attention to neutral disturbances and expand the wavenumber

12
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�, and the frequency !, as such

� = �1 + "�2 +O("2); (12a)

! = !1 + "!2 +O("2): (12b)

In the subsequent analysis we adopt a multiple-scales approach whereby @=@x is replaced

by @=@x+ (i="3)�.

A. The Main Deck

The main deck encapsulates the entirety of the boundary layer therefore we reintroduce

our wall normal coordinate Y = Re1=2y = "�4y = O(1). As Y ! 0 we �nd that the base


ow takes the form

U0 � �(x)Y +O(Y 4); V0 � �"4�0(x)Y 2=2 +O(Y 5); (13)

where �(x) = f 00(0)=
p
x. Conversely as Y ! 1 the base 
ow is essentially that of the

free-stream with U0 = 1 and V0 = 0. Following Smith 8 we expand the disturbances in the

main deck in the form

u = [u1(x; Y ) + "u2(x; Y ) +O("2)]E; (14a)

v = ["v1(x; Y ) + "2v2(x; Y ) +O("3)]E; (14b)

p = ["p1(x; Y ) + "2p2(x; Y ) +O("3)]E: (14c)

After substitution of (14) into (11) we determine that at O("�3)

u1 = A1(x)
@UB
@Y

; v1 = �i�1A1(x)UB; p1 = p1(x): (15)

At the next order we have that

u2 =
�
A2(x)� A1(x)

�2

�1

�
@UB
@Y
� p1(x)

�
@
@Y

�
UB
Z Y

c

d�
U2
B(x; �)

��
; (16a)

v2 = �i�1

�
A2(x)� p1(x)

Z Y

c

d�
U2
B(x; �)

�
UB + i!1A1(x); (16b)

p2 = p2(x)� �2
1A1(x)

Z Y

0
U2
B(x; �) d�; (16c)

where c is a positive non-zero constant and A1 and A2 are unknown amplitude functions.

13
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B. The Lower Deck

Here the wall normal coordinate is Z = Re5=8y = "�5y = O(1), and the expansions for

the disturbances are now

u = [U1(x; Z) + "U2(x; Z) +O("2)]E; (17a)

v = ["2V1(x; Z) + "3V2(x; Z) +O("4)]E; (17b)

p = ["P1(x; Z) + "2P2(x; Z) +O("3)]E: (17c)

Given (13) we write the base 
ow in the lower deck as such

U0 = "�(x)Z +O(Z4);

V0 = �
"6�0(x)Z2

2
+O(Z5):

Substituting (17) into (11) we �nd that the solutions for Vi can be eliminated from the

problem. At leading order we determine that

U1 = B1(x)
Z �

�0

Ai(�) d�; (18a)

P1 = �
!1

�1

B1(x)Ai0(�0)
�0

; (18b)

where Ai is the decaying Airy function and

� =
�

i�1�
�̂0

�1=3�
Z �

!1

�1�

�
:

For ease of notation we write �0 = �jZ=0, and �̂0 = �̂(0). At next order we �nd that

U2 = B2(x)
Z �

�0

Ai(�) d�+B1(x)
�2

�1

�
Ai00(�)� Ai00(�0)

3
+ �0[Ai(�)� Ai(�0)]

�
; (19a)

P2 = �
!1

�1

�
B2(x)Ai0(�0)

�0
+
B1(x)
�0

�2

�1

�
Ai0000(�0)

3
+ �0Ai00(�0)� Ai0(�0)

��
; (19b)

where �0 = �0[(�1!2=!1�2)� 1].

14
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C. The Upper Deck

We introduce the upper-deck wall normal coordinate as �y = Re3=8y = "�3y = O(1), and

write the disturbance expansions as

u = ["�u1(x; �y) + "2�u2(x; �y) +O("3)]E; (20a)

v = ["�v1(x; �y) + "2�v2(x; �y) +O("3)]E; (20b)

p = ["�p1(x; �y) + "2 �p2(x; �y) +O("3)]E: (20c)

In the upper deck we have that U0 = 1 and V0 = 0. Substituting (20) into (11), and after

elimination of the velocity components, we �nd that the solutions in the upper deck, at the

�rst two orders, are governed by the following pressure equations

�p1 = C1(x)e��1 �y; �p2 = [C2(x)� �2C1(x)�y]e��1 �y: (21)

Utilising these expressions for �p1 and �p2 we determine that

�v1 = �ie��1 �yC1(x); �v2 = �ie��1 �y
�
C2(x) + C1(x)

�
!1

�1
� �2�y

��
: (22)

Solutions for �ui are not stated here as these are super
uous to the remaining analysis.

D. Matching

In order to determine governing eigenrelations for the wavenumbers �1 and �2 we match

our solutions between the three decks with the aim of eliminating the unknown functions of

x.

Matching the solutions for v between the main and upper decks gives

P1(x) = �1A1(x); (23a)

P2(x) = �1A2(x)� 2!1A1(x) + �2
1A1(x)

�Z 1

0
U2
B(x; �) d��

Z 1

c

d�
U2
B(x; �)

�
: (23b)

Similarly, matching the solutions for u between the lower and main decks gives

B1(x)
Z 1

�0

Ai(�) d� = �A1(x); (24a)

B2(x)
Z 1

�0

Ai(�) d� = �A2(x) +B1(x)
�2

�1

�
Ai00(�0)

3
+ �0Ai(�0)

�

� �
�
A1(x)

�2

�1
+ �1A1(x)

Z 0

c

d�
U2
B(x; �)

�
: (24b)
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Combining (18b), (23a) and (24a) we eliminate A1(x) and B1(x) and obtain our leading

order eigenrelation
Ai0(�0)R1

�0
Ai(�) d�

=
�1

�2

�
i�1�
�̂0

�1=3

: (25)

Combining (19b), (23b) and (24b) we eliminate A2(x) and B2(x) and obtain the eigenrelation

at the next order. Having restricted our attention to neutral disturbances we require that

�i must be real. In order for �1 to be real we require that �0 � �2:2970i1=3, thus

Ai0(�0)R1
�0

Ai(�) d�
� 1:0003i1=3; (26)

and (25) yields

�1 � 1:0002 4
p
�̂0[f 00(0)]5=4x�5=8; (27a)

!1 � 2:2973
p
�̂0[f 00(0)]3=2x�3=4: (27b)

In order for �2 to be real we determine that

!2 =
!2

1

�1
+
�1!1

2
Î ; where Î =

p
x
Z 1

0
(f 0)�2 � (f 0)2 d� =

p
x~I: (28)

Details regarding the evaluation of the �nite part of the integral ~I are outlined in the Ap-

pendix A. Having computed ~I we are able to determine similar expressions for �2 and !2.

However, at this stage, it proves more useful to interpret our results in terms of the ex-

perimental frequency parameter F = !���0=��(U�1)2 = Re�3=4!. Theoretical predictions are

often presented in the (R;F ) plane as it easier to make direct comparisons with experimental

results. Despite the lack of experimental data for the cases when n 6= 1 we choose to present

our results in a manner that is consistent with previous investigations.

Given the de�nitions of R, F , and our results for !1 and !2 ((27b) and (28)), we have

that

F = 2:2973
p
�̂0[�f 00(0)]3=2R�3=2f1+2:2968[�̂0�f 00(0)]1=4[1+0:2177f 00(0)~I]R�1=4+� � � g: (29)

This expression represents two terms in the asymptotic expansion of the neutrally stable

lower-branch mode. The dependence of the result on the 
uid index n is encompassed in

the factors of �̂0, �, f 00(0) and ~I appearing in (29). Plots of F against R for a range of

shear-thinning and shear-thickening values are presented in Figure 4. The 
ow is unstable

in the region above the curves. Thus, as n decreases our results predict that the lower-branch

16
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FIG. 4. Asymptotic predictions of the neutrally stable lower-branch mode for (a) shear-thinning

and (b) shear-thickening Carreau 
uids. Using a log{log scale the experimental frequency param-

eter is plotted against the Reynolds number based on the local boundary-layer thickness.

mode of the neutral curve will become less stable. Furthermore, observations made from

Figure 4 suggest that the 
ow will be signi�cantly less stable as the 
uid index is decreased

from unity, whilst for values of n larger than 1 the 
ow will become only marginally more

stable. However, the stabilising or destabilising e�ect of the 
uid index n in terms of the

critical Reynolds number can only be determined via numerical calculations of the neutral

stability curve.

Interestingly, in the lower deck, we �nd that terms owing from the derivatives of the

viscosity functions do not appear in the calculations until the �fth order (O(R�3=4)), the

same order at which non-parallel e�ects are �rst encountered. This suggests that these

additional viscous e�ects will not provide a signi�cant contribution to the linear stability

characteristics of the boundary-layer 
ow when a parallel 
ow assumption is imposed. It is

also noteworthy to mention that terms owing from both the leading order and perturbed

viscosity functions appear in the calculations, at this order, in the main deck. This suggests

that the non-parallel stability of the 
ow may be more signi�cantly a�ected by a non-

Newtonian rheology.
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V. NUMERICAL ANALYSIS

In order to complement the asymptotic results obtained previously we introduce a com-

parable Orr-Sommerfeld-type analysis. By assuming that the base 
ow is strictly parallel,

and that the disturbances have the normal mode form:

u(x; y; t) = û(y)ei(�x�!t); (30a)

v(x; y; t) = v̂(y)ei(�x�!t); (30b)

p(x; y; t) = p̂(y)ei(�x�!t); (30c)

the governing linear disturbance equations (11) are reduced to a set of ordinary di�erential

equations. Eliminating the streamwise velocity and pressure perturbations we determine a

generalised Newtonian Orr-Sommerfeld equation

~�(v̂0000 � 2�2v̂00 + �4v̂) + 2~�0(v̂000 � �2v̂0) + ~�00(v̂00 + �2v̂)

+ ~~�(v̂0000 + �2v̂00) + 2~~�0v̂000 + ~~�00v̂00 = iR[(�U0 � !)(v̂00 � �2v̂)� �U 000 v̂]: (31a)

Here the primes denote di�erentiation with respect to y and

~� = [1 + (�U 00)2](n�1)=2 = [1 + (kf��)2](n�1)=2 = �̂p; (31b)

~~� = (n� 1)(�U 00)2[1 + (�U 00)2](n�3)=2 = (n� 1)(kf��)2[1 + (kf��)2](n�3)=2 = �̂s: (31c)

We note that diU0=dyi = �i(di+1f=d�i+1), with � as given in (8), and that substitution of

n = 1 returns the familiar Newtonian Orr-Sommerfeld equation, as would be expected.

We solve the eigenvalue problem (31) subject to the boundary conditions

v̂ = v̂0 = 0 at y = 0; (32a)

v̂ ! v̂0 ! 0 as y !1: (32b)

The neutral temporal and spatial stability of the system is determined using Chebfun26,

more speci�cally the eigs routine developed by Driscoll, Bornemann, and Trefethen 27 . By

restricting � to be real, and by �xing values for � and R, the eigenvalue problem for ! is

solved subject to (32). The most dangerous eigenvalue, that with largest imaginary part,

is calculated. We then use a bisection algorithm to �nd, for a �xed R, the value of �

corresponding to !i = 0. The curves of neutral spatial stability are then determined from
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the eigenvalues with zero imaginary part, in which case ! = !r. That is, within the con�nes

of our temporal analysis, we �x �i = 0, and solve for ! whilst varying �r. Using a searching

routine we then determine the values of �r such that !i = 0.

Particular attention has been paid to the location of the critical Reynolds number Rc,

and the corresponding critical values of the wavenumber �c, and frequency !c. The results

for these critical values, for a range of the 
uid index n, are displayed in Table II.

In order to validate our numerical scheme we compare the results for n = 1 with those

of Thomas 28 who considered the corresponding Newtonian problem. As noted in Table II

our Newtonian values for Rc, �c and !c are in excellent agreement with Thomas 28 . We

contribute any marginal di�erences, between the quoted critical values, to the extremely

high accuracy of the Chebfun software26.

Results from our numerical computations are presented in �gures 5, 6 and 7. In Figure 5

we plot, for moderate Reynolds numbers, the curves of neutral temporal and spatial stability

for shear-thinning and shear-thickening Carreau 
uids. We observe that the critical Reynolds

number increases with the 
uid index n and does so in a linear fashion. This suggests that,

in terms of the critical Reynolds number, shear-thinning has the e�ect of destabilising the

boundary layer 
ow whilst shear-thickening appears to have the opposite e�ect. In agreement

with the asymptotic predictions, we �nd that the lower branch mode is destabilised and

stabilised for 
ows with n < 1 and n > 1, respectively. However, interestingly, we note

that the stability characteristics of the upper branch mode does not mirror that of the lower

branch. The upper branch is in fact stabilised for shear-thinning 
uids and destabilised

for shear-thickening 
uids. Our predictions suggest that the upper branch of the neutral

stability curve is more noticeably a�ected by the introduction of a non-Newtonian rheology.

We plot a comparison between our numerical predictions and our asymptotic solutions

in Figure 6. Using a logarithmic scale the frequency parameter F (= !=R) is plotted against

the Reynolds number R. An excellent quantitative agreement is observed between the two

sets of solutions, especially in the limit of large Reynolds number. For clarity of presentation

we choose to plot only one shear-thinning and one shear-thickening pro�le. However, we

note that an equally good agreement is observed for each n in the region of interest.

In order to investigate the e�ect the derivatives of the viscosity functions have on the

linear stability characteristics of the 
ow we remove the ~�0, ~�00, ~~�0, and ~~�00 terms from (31a)

and recompute the curves of neutral stability. These results, for both shear-thinning and
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FIG. 5. Curves of neutral stability for (a), (c) and (e) shear-thinning and (b), (d) and (f) shear-

thickening Carreau 
uids. In (a) and (b), (c) and (d) and (e) and (f) we plot the wavenumber,

real part of the frequency and the experimental frequency parameter against R, respectively. In

all cases the R{axis has been truncated at R = 5000. The Newtonian solutions are included as a

comparative aid.
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FIG. 6. Large Reynolds number neutral stability curves presented in the (R;F ) plane for shear-

thinning and shear-thickening Carreau 
uids. The dashed lines represent the two term asymptotic

solutions determined in IV. The numerical solutions have been truncated at R = 105.
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FIG. 7. A comparison between shear-thinning and shear-thickening neutral stability curves pre-

sented in the (R;�) and (R;!r) planes. The solid lines are a reproduction of the curves plotted

in Figure 5. The dashed lines represent an Orr-Sommerfeld solution where the derivatives of the

viscosity functions have been ignored. In both cases the R{axis has been truncated at R = 2500.
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TABLE II. Numerically calculated values of the critical Reynolds number Rc and the corresponding

critical eigenvalues. Our Newtonian solutions are excellent in agreement with those of Thomas 28

who notes that Rc = 519:2, �c = 0:303 and !c = 0:120.

n Rc �c !c

0.25 89.82 0.3375 0.0997

0.5 221.69 0.2977 0.1013

0.75 368.83 0.2977 0.1108

1 519.12 0.3022 0.1198

1.25 667.58 0.3122 0.1300

1.5 812.61 0.3212 0.1390

1.75 953.52 0.3307 0.1478

FIG. 8. Amplitude of the streamwise eigenfunctions as a function of � for (a) shear-thinning and (b)

shear-thickening Carreau 
uids. The results have been normalised with respect to the Newtonian

maximum amplitude. In all cases R = Rc and � = �c.

shear-thickening 
uids, are presented in Figure 7. As predicted by the asymptotic theory,

these additional, higher order viscous e�ects do not signi�cantly alter the linear stability

characteristics, under the assumption of parallel 
ow.

In Figure 8 we plot the streamwise eigenfunctions against the boundary layer coordinate

�. In order to be able to make comparative statements regarding the solutions for varying

values of the 
uid index n, all solutions have been normalised with respect to Newtonian

maximum and the results are presented at the respective critical locations. We observe that

the peak of the normalised eigenfunction increases in magnitude as the 
uid becomes more

shear-thinning, whilst the opposite is true for shear-thickening 
uids. Moreover, the peak

of the eigenfunction translates towards, and away from the wall, in the shear-thinning and
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FIG. 9. Temporal growth rates as a function of � for (a) shear-thinning and (b) shear-thickening

Carreau 
uids. The results have been normalised with respect to the Newtonian maximum growth

rate. In all cases R = 2Rc.

shear-thickening regimes, respectively. These results suggest that, at the critical location,

the streamwise disturbance propagates closer to the wall, with a larger relative magnitude

as shear-thinning e�ects are increased. It in fact transpires that this behaviour is observed

for both the streamwise and wall normal disturbances for a range of Reynolds numbers on

both the upper and lower branches.

Owing from our temporal stability analysis in Figure 9 we plot the relative magnitude of

the growth rates for a range of the 
uid index n. Again, in order to be to make comparative

comments, the solutions are normalised with respect to Newtonian maximum and we choose

to present the results at twice the critical Reynolds number for each of the respective 
ows.

We observe that the growth rates are signi�cantly increased as the value of n decreases

from unity whereas they are marginally reduced as n increases. Furthermore, the width of

the unstable region is also noticeably expanded for shear-thinning 
ows. We interpret this

as a destabilising e�ect in the sense that the range of unstable wavenumbers is e�ectively

increased. We determine similar qualitative results for a range of values of R where R = mRc

and m > 1.
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VI. DISCUSSION AND CONCLUSIONS

In this study we have considered the problem of the boundary-layer 
ow of a generalised

Newtonian 
uid with constitutive viscosity relationship governed by a modi�ed Carreau

model. Our base 
ow solutions are such that far from the 
at plate, at the outer edge of the

boundary layer, a Newtonian viscosity relationship is recovered. It would be expected that

the boundary-layer thickness decreases and increases for shear-thinning and shear-thickening


uids respectively. This intuition is con�rmed by the self-similar velocity pro�les displayed

in Figure 1.

The triple-deck, asymptotic linear stability analysis presented in IV assumes that, irre-

spective of the 
uid index n, the lower-branch mode is scaled on a streamwise length scale

of O(R�3=4). It is within the viscous lower deck where we see the emergence of leading

order non-Newtonian correction terms. Our analysis reveals that the structure of the lower

branch neutral mode is a�ected by the e�ective viscosity at the wall, the e�ective wall shear

and the dimensionless thickness of the boundary layer. Results owing from our two term

asymptotic expression (29) show that the lower branch mode will be destabilised and sta-

bilised for shear-thinning and shear-thickening 
uids, respectively. We demonstrate that a

two term asymptotic expansion is su�cient to give suitable agreement, in the limit of large

Reynolds number, with parallel 
ow results owing from an Orr-Sommerfeld type analysis.

However, the asymptotic framework presented here has the capacity to take non-parallel


ow e�ects into account. We note that non-parallel terms �rst appear in the calculations at

the �fth order for both Newtonian8 and non-Newtonian 
ows. It transpires that additional

viscous terms owing from the derivatives of the two viscosity functions (�� and ���, given in

(11)) also enter the calculations at this order. This suggests that an extension of the current

asymptotic analysis, to include non-parallel e�ects, certainly warrants future investigation.

In V we derived a new, generalised Newtonian, Orr-Sommerfeld equation that takes into

account both primary and secondary viscous e�ects. Our numerical results help to support

our asymptotic hypotheses and we �nd that the lower-branch mode is indeed destabilised

and stabilised for shear-thinning and shear-thickening 
uids, respectively. This destabilis-

ing/stabilising nature is rea�rmed by our predictions for the onset of linear instability. We

�nd there is a near perfect linear relationship between the value of the 
uid index n, and

the critical Reynolds number Rc, see Figure 10. Interestingly, we note that in the cases
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FIG. 10. Variation of the critical Reynolds number Rc, with the 
uid index n, for 
uids with a

constitutive viscosity relationship governed by a modi�ed Carreau model.

when the lower-branch mode is destabilised, the upper branch is stabilised and vice-versa.

Our large Reynolds number solutions reveal that for all values of the 
uid index the familiar

kink in the upper branch mode, associated with location at which the critical layer emerges

from the viscous wall layer, is always apparent. This can be observed in Figure 6 for the

case when n = 0:5. Due to the truncation of the numerical solutions this is not observed

when n = 1:5 as, in this case, the transition occurs at a value of the Reynolds number

greater than R = 105. The asymptotic prediction that terms associated with the deriva-

tives of the viscosity functions have a minimal a�ect on the linear stability characteristics of

the parallel 
ow has been readily veri�ed by our Orr-Sommerfeld analysis. The prediction

that shear-thinning is a generally destabilising e�ect is rea�rmed by our eigenfunction and

growth rate results. We �nd that, for shear-thinning 
ows, the disturbance modes propagate

closer to the wall with larger relative magnitude whilst the width of the unstable regions

increases as does the value of the maximum growth rate. Opposing results are obtained for

shear-thickening 
ows. For brevity we have chosen to investigate only the case when k = 10.

However, additional computations performed with k = 1 and k = 100 reveal that reducing

the value of the dimensionless equivalent of the characteristic time constant has the e�ect
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of damping any shear-thinning or shear-thickening e�ects, whilst increasing the value of k

serves to enhance these e�ects.

In conclusion, we have demonstrated that the boundary-layer 
ow of a generalised New-

tonian 
uid over an impermeable, semi-in�nite, 
at plate is amenable to both asymptotic

and numerical linear stability analyses. Our results suggest that the onset of instability

is advanced for shear-thinning 
uids whilst it is delayed for shear-thickening 
uids. These

�ndings are consistent with those of Lashgari et al. 29 who considered the instability of the


ow past a circular cylinder using the Carreau 
uid model scaled by the zero-shear-rate

viscosity. The authors conclude that it is indeed the e�ect of shear-thinning that is destabil-

ising, noting that shear-thickening e�ects serve to dramatically stabilise the circular cylinder


ow. Although the geometry and base 
ow associated with the aforementioned problem are

clearly very di�erent to this investigation, the results do go some way in supporting our

claims.

In addition to extending the current asymptotic analysis to include non-parallel and

higher-order viscous e�ects there are a number of other natural extensions of this study.

Firstly, the upper-branch mode could be investigated asymptotically. It would be of par-

ticular interest to see how our large Reynolds number numerical predictions compare to an

equivalent, analytic description of the upper-branch neutral mode. The Newtonian studies

of Bodonyi and Smith 9 and Hultgren 11 may provide a useful basis for the development a

generalised Newtonian investigation such as this. Secondly, in an attempt to validate our

theoretical predictions, it would be advantageous to determine experimental results for a

range of the 
uid index n. It must be stated that in the absence of any experimental valida-

tion the results presented in this study must be considered as theoretical predictions only.

To the best of the authors’ knowledge no such experiments have yet taken place, suggesting

that this is an area that requires future investigation.
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TABLE III. Numerically calculated values of ~I.

n ~I

0.25 -0.0357

0.5 -1.0714

0.75 -1.9863

1 -2.7950

1.25 -3.5171

1.5 -4.1692

1.75 -4.7641
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Appendix A: The Finite Part of the Singular Integral ~I

As noted in IV the result for !2 is dependent on the �nite part of the singular integral ~I,

de�ned as such

~I =
Z 1

0
(f 0)�2 � (f 0)2 d�:

We �nd that for each n in the region of interest ~I is singular at the point � = 0. Therefore,

following Smith 8 , we compute only the (Hadamard) �nite part of the integral. The Newto-

nian study of Bodonyi and Smith 9 quote a value for ~I of �2:7950. We return exactly the

same result for the case when n = 1. Corresponding results for the cases when n 6= 1 are

tabulated above.

In order to numerically compute ~I we �rst expand the function f 0(�) about the point

� = 0, this yields

f 0(�) = f 00(0)� �
[f 00(0)]2�4

48�̂0
+

3[f 00(0)]2�̂00�5

240�̂2
0

+O(�6) as � ! 0:

27



Gri�ths et al.

Therefore

(f 0)�2 � (f 0)2 =
1

[f 00(0)]2�2 +
�

24f 00(0)�̂0
�

�̂00�2

40f 00(0)�̂2
0
� [f 00(0)]2�2 +O(�3) as � ! 0:

Thus for some positive non-zero constant c we have that

~I =
Z 1

0
(f 0)�2 � (f 0)2 d�

=
Z c

0

1
[f 00(0)]2�2 +

�
24f 00(0)�̂0

�
�̂00�2

40f 00(0)�̂2
0
� [f 00(0)]2�2 +O(�3) d�

+
Z 1

c
(f 0)�2 � (f 0)2 d� = ~I1 + ~I2 +O(�4):

We calculate ~I1 analytically using Hadamard regularisation, whilst ~I2 is computed numeri-

cally. For each n the value of c is chosen such that suitably converged solutions are achieved.
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