Protein kinase A-dependent step(s) in hepatitis C virus entry and infectivity.
Farquhar, Michelle; Harris, Helen; Diskar, M; Jones, S; Mee, Christopher

DOI:
10.1128/JVI.00592-08

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?).
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Protein Kinase A-Dependent Step(s) in Hepatitis C Virus Entry and Infectivity

Michelle J. Farquhar,1 Helen J. Harris,1 Mandy Diskar,2 Sarah Jones,3 Christopher J. Mee,1 Søren U. Nielsen,4 Claire L. Brimacombe,1 Sonia Molina,5 Geoffrey L. Toms,4 Patrick Maurel,5 John Howl,3 Friedrich W. Herberg,2 Sven C. D. van IJzendoorn,6 Peter Balfe,1* and Jane A. McKeating1

Hepatitis C Research Group, Division of Immunity and Infection, University of Birmingham, Vincent Drive, Birmingham, United Kingdom1; University of Kassel, Department of Biochemistry, Heinrich Plett Str. 40, D-34132 Kassel, Germany2; Molecular Pharmacology Research Group, Research Institute in Healthcare Science, University of Wolverhampton, Wulfruna Street, Wolverhampton, United Kingdom3; Liver Research Group, School of Clinical Medical Sciences, The Medical School, Newcastle upon Tyne, United Kingdom4; Inserm U632, Hepatic Physiopathology, 191 Route de Mende, 34293 Montpellier Cedex 5, France5; and Department of Cell Biology/Membrane Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands6

Received 17 March 2008/Accepted 16 June 2008

Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced HCV entry into Huh-7.5 hepatoma cells. Bioluminescence resonance energy transfer methodology allowed us to investigate the PKA isoform specificity of the cAMP antagonists in Huh-7.5 cells, suggesting a role for PKA type II in HCV internalization. Since viral entry is dependent on the host cell expression of CD81, scavenger receptor BI, and claudin-1 (CLDN1), we studied the role of PKA in regulating viral receptor localization by confocal imaging and fluorescence resonance energy transfer (FRET) analysis. Inhibiting PKA activity in Huh-7.5 cells induced a reorganization of CLDN1 from the plasma membrane to an intracellular vesicular location(s) and disrupted FRET between CLDN1 and CD81, demonstrating the importance of CLDN1 expression at the plasma membrane for viral receptor activity. Inhibiting PKA activity in Huh-7.5 cells reduced the infectivity of extracellular virus without modulating the level of cell-free HCV RNA, suggesting that particle secretion was not affected but that specific infectivity was reduced. Viral particles released from H89-treated cells displayed the same range of buoyant densities as did those from control cells, suggesting that viral protein association with lipoproteins is not regulated by PKA. HCV infection of Huh-7.5 cells increased cAMP levels and phosphorylated PKA isoform specificity of the cAMP antagonists in Huh-7.5 cells, suggesting a role for PKA type II in HCV internalization and particle internalization (26, 59). Viral replication exploits intracellular signaling pathways; for example, herpes simplex virus expression is dependent on protein kinase A (PKA) (103), HIV transcription and replication are increased in response to the synergistic activation of PKA and protein kinase C (PKC) (85), and vaccinia virus replication requires the mitogen-activated protein kinase (MAPK) pathway (3). Signaling molecules that play important roles in the secretory pathway are utilized by viruses during particle assembly and release (76).

Recent advances in methods to study HCV entry have demonstrated the involvement of at least three host cell molecules: the tetraspan CD81 (82, 107), scavenger receptor class B member I (SR-BI) (8, 41, 88), and the tight-junction (TJ) protein claudin-1 (CLDN1) (34, 72, 104, 109). CD81 is a mem-

Hepatitis C virus (HCV) is an enveloped positive-stranded RNA virus and the sole member of the genus Hepacivirus within the Flaviviridae. Approximately 170 million individuals are infected with HCV worldwide, and the majority are at risk for developing serious progressive liver disease. The HCV RNA genome of approximately 9.6 kb encodes a polyprotein of around 3,000 amino acids, which is cleaved by viral and cellular proteases to generate the structural and nonstructural (NS) proteins. The amino terminus of the polyprotein sequence contains the structural proteins including the core, the envelope glycoproteins (GPs) E1 and E2, and p7. The NS proteins including NS2 through NS5 are located at the carboxy terminus of the polyprotein. Much of our current understanding of HCV replication has been gained through the use of genomic replicons (reviewed in reference 7). The recent development of an infectious system allowing the generation of HCV particles in cell culture (HCVcc) has enabled the complete viral life cycle to be explored (63, 99, 110).

Viruses utilize signaling pathways of their target cells to their advantage during multiple steps of their life cycle including entry, internalization, replication, and release (21, 24, 80, 87, 91). The lateral movement of human immunodeficiency virus type 1 (HIV-1) and coxsackie B viruses along the membrane of target cells prior to entry is dependent upon signaling pathways that modulate the cytoskeleton to facilitate receptor attachment and particle internalization (26, 59). Viral replication exploits intracellular signaling pathways; for example, herpes simplex virus expression is dependent on protein kinase A (PKA) (103), HIV transcription and replication are increased in response to the synergistic activation of PKA and protein kinase C (PKC) (85), and vaccinia virus replication requires the mitogen-activated protein kinase (MAPK) pathway (3). Signaling molecules that play important roles in the secretory pathway are utilized by viruses during particle assembly and release (76).
ber of the tetraspanin family of expressed membrane proteins that are reported to influence multiple cellular properties including adhesion, morphology, and proliferation (reviewed in reference 60). The intracellular domain of CD81 associates with the signaling enzymes phosphatidylinositol 4-kinase and PKC (9, 108). SR-BI expression within the liver is regulated by cyclic AMP (cAMP)-dependent PKA phosphorylation of PDZK1, and its transcytosis in polarized MDCK cells requires PKA (18, 77). Many cellular signaling proteins are involved in TJ formation, and the recently identified role of CLDN1 in HCV entry highlights a route by which the virus could modulate target cell signaling to its advantage (6, 57, 62).

In this study, we investigated a role for protein kinase signaling in HCV infection by examining the effect of kinase inhibitors and antagonists on viral entry, replication, and the release of infectious particles. Inhibition of PKA led to a redistribution of CLDN1 from the plasma membrane and a concomitant reduction in viral entry, confirming the importance of CLDN1 localization at the plasma membrane for viral receptor activity. In addition, we reveal a role for PKA in regulating the infectivity of cell-free virus particles. Finally, we demonstrate increased levels of cAMP and PKA substrates in HCV-infected cells, supporting a model where infection activates PKA in a cAMP-dependent manner as a mechanism to promote the infectivity of extracellular virus and to aid viral transmission.

MATERIALS AND METHODS

Cell lines, antibodies, and reagents. Huh-7.5 cells (provided by Charles Rice, The Rockefeller University, New York, NY (14), Huh-7 cells (provided by Frank Chisari, Scripps Research Institute), Hep3B, and 293T cells (purchased from the American Type Culture Collection) were propagated in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% nonessential amino acids (Invitrogen, CA). 293T cells transduced to express CLDN1 (43) were propagated in 10% FBS–DMEM. Primary human hepatocytes were isolated and cultured as previously reported (81). All cells were grown in a humidified atmosphere at 37°C in 5% CO₂.

The primary antibodies used were anti-CLDN1 JAY.8 (Invitrogen, CA), anti-CLDN1 1C5-D9 (Novus, CO), anti-CD81 M38 (Fedor Berdichevsky, University of Birmingham, Birmingham, United Kingdom), anti-SR-BI 25 (BD Biosciences, CA), anti-NS5A 9E10 (C. Rice, Rockefeller University), anti-SR-BI 25 (BD Biosciences, CA), anti-NS5A 9E10 (C. Rice, Rockefeller University), and anti-phospho-Ser/Thr PKA substrate (p-PKAs) (Cell Signaling Technology, Inc., MA). Secondary labeled antibodies were obtained from Invitrogen: Alexa Fluor 488 goat anti-mouse immunoglobulin G (IgG) Alexa Fluor 488 goat anti-rabbit IgG, and Alexa Fluor 633 goat anti-mouse IgG. Horseradish peroxidase (HRP)-conjugated sheep anti-mouse and donkey anti-rabbit secondary antibodies were obtained from GE Healthcare.

Kinase inhibitor and antagonists were obtained from the following sources: Ro-31-8220 and H89 from Calbiochem; Rp-cAMPS (adenosine 3′,5′-cyclic phosphorothioate) and Rp-8-BrcAMPS (adenosine 3′,5′-cyclic phosphorothioate) and Rp-8-Br-cAMPS (Janet Lord, University of Birmingham, Birmingham, United Kingdom) from BioLog; myristoylated protein kinase I (14–22) amide (myrPKI) from Biomol International; and forskolin (FK), mito- gen-activated protein kinase I (MEK1), PD98059, U0126, and SB203580 from Sigma. Green fluorescent protein (GFP)–A-kinase anchoring partner (AKAP) in silico (AKAP-IS)–V5 (His), and GFP-Scrambled-V5 (His) were kindly donated by John Scott (Howard Hughes Medical Center).

Genus of viruses and infections. Cell culture-derived virus particles, J6/JFH and JFH-1, were generated as previously described (63). Briefly, using the Megascript T7 kit (Ambion, Austin, TX), RNA was transcribed in vitro from full-length genomes and electroporated into Huh-7.5 cells. High-titer stocks were generated by serial passage through naïve Huh-7.5 cells (34). Supernatants were collected at 72 and 96 h postinfection, pooled, and stored at −80°C. Infected cells were detected by methanol fixation and staining for NS5A using the anti-NS5A 9E10 antibody; bound antibody was detected with an Alexa 488-conjugated anti-mouse IgG and quantified by flow cytometry.

Pseudoviruses expressing luciferase or enhanced GFP (eGFP) reporters were generated by the following protocols. 293T cells were transfected with a 1:1 ratio of plasmids encoding HIV provirus expressing luciferase and HCV strain H77 E1E2 envelope GPs (HCVpp-H77), MLV GP (MLVpp), or empty vector (Envpp), as previously described (49). Alternatively, 293T cells were cotransfected with plasmids encoding HIV provirus expressing eGFP (CSGW) (11), HIV Gag-Pol, and HCV strain JFH GPs or empty vector in a 1:1:4 ratio as previously described (36). Supernatants were harvested 48 h posttransfection, pooled, and filtered. Infection was quantified by measuring cellular eGFP expression by flow cytometry or luciferase activity in a luminometer (Berthold Centro LB 960). Specific infectivity was calculated by subtracting the mean Env pp signal from the HCVpp or MLVpp signal. Relative infectivity was calculated as a percentage of untreated cells and presented as the standard error of the mean, where the mean infective value of replicate untreated cell wells was defined as 100%.

Effect of kinase inhibitor/activators on HCV entry. Various target cells were seeded at 1.5 × 10⁵ cells/cm², subjected to 3-h serum starvation the following day, and incubated with inhibitors (biotin diluted in serum-free DMEM) and transduced with 0.2 μg of plasmids encoding PKA type I (PKAI) (GFP2-C3-hCα [Perkin Elmer, Massachusetts] [83] and Rennila luciferase [RiLuc-N2-hRLu]) and PKAII (GFP2-C3-hCα and RLuc-N2-hRLu) sensors the following day. At 48 h posttransfection, the cells were washed with phosphate-buffered saline (PBS) and incubated with antagonists for 1 h. Subsequently, the cells were stimulated with agonists in the presence of either 50 μM FK (Sigma, United Kingdom) and 500 μM 3-isobutyl-1-methylxanthine (IBMX; Sigma, United Kingdom) or FK and antagonists at 48 h posttransfection for 30 min in the continued presence of modulators of PKA for 1 h. Cells were washed extensively, and cell-free medium was collected for the quantification of infectious virus or HCV RNA. To quantify extracellular virus infectivity, the collected medium was allowed to infect naïve Huh-7.5 target cells at various dilutions for 1 h at 37°C. Intracellular virus was released by three rapid freeze-thaw cycles of infected cells, and the clarified lysate was used to infect Huh-7.5 cells. Viral infection was detected after 48 h by staining for NS5A and antigen-positive cells were enumerated on a Nikon TE2000 apparatus. Infectivity is defined as the number of infected cells or units per ml (IU/ml) and expressed relative to control untreated cells as described above.

BRET assay to investigate PKAI and PKAII dynamics in living cells. Bioluminescence resonance energy transfer (BRET) experiments were performed as previously described (29, 83). In brief, 1.5 × 10⁵ Huh-7.5 cells were seeded per well of a white 96-well microtiter plate (Vinc, Thermo Fisher, Denmark) and transfected with 0.2 μg of plasmids encoding PKA type I (PKAI) (GFP2-C3-hCα [Perkin Elmer, Massachusetts] [83] and Rennila luciferase [RiLuc-N2-hRLu]) and PKAII (GFP2-C3-hCα and RLuc-N2-hRLu) sensors the following day. At 48 h posttransfection, the medium was removed, 50 μl of substrate (DeepBlueC in PBS) was added per well, and RLuc/GFP2 light emission was detected using a Fusion-Pro microplate reader (Perkin-Elmer) (84). The light output was measured consecutively (read time, 1 s; gain, 25) using filters at a 410-nm wavelength (±80-nm bandwidth) for the donor and at a 515-nm wavelength (±30-nm bandwidth) for the acceptor. The emission from nontransfected (NT) cells was subtracted, and the BRET signal was calculated as follows:

\[
\text{BRET signal} = \frac{\text{emission (410 nm)} - \text{emission (515 nm)}}{\text{emission (415 nm)} - \text{emission (515 nm)}}
\]

Control measurements with cells expressing RLuc were included in each experiment to determine the background BRET signal. Statistical analyses were performed with GraphPad Prism, version 4 (GraphPad Software, San Diego, CA).

Imaging of CD81, CLDN1, SR-BI, and PKA substrate(s). naïve and JFH-1-infected Huh-7.5 cells were seeded onto borosilicate glass coverslips at a density of 1.5 × 10⁵ cells/cm². The following day, cells were serum starved for 3 h, incubated with H89 or FK for 1 h, and, dependent on the antibody to be used, fixed in 1% paraformaldehyde (M38) or methanol (remaining antibodies). Cells were permeabilized for 30 min in 0.1% saponin–1% bovine serum albumin (BSA) in PBS and incubated with antibodies specific for CD81 (M38), SR-BI (anti-Clai), CLDN1 (1C5-D9), phospho-Ser/Thr PKA substrate (p-PKAs), or NS5A (9E10). Cells were washed three times in PBS-saponin-BSA before the addition of the relevant secondary Alexa Fluor-conjugated antibodies in PBS-saponin-BSA for 1 h at room temperature. Cells were washed three times in PBS-saponin-BSA before counterstaining with 4,6-diamidino-2-phenylindole (DAPI) (Invitrogen) in PBS for 5 min. Coverslips were mounted onto glass slides (ProLong Gold antifade; Invitrogen, CA), and images were analyzed by laser scanning confocal microscopy (Zeiss LSM510) with a 63× water immersion objective.
FRET to quantify CLDN1-CD81 association. Huh-7.5 cells were transduced with TRIP viruses encoding AcGFP,CD81 and DsRed,CLDN1 (43) and grown on 22-mm-diameter borosilicate glass coverslips. Images were collected using a Meta Head laser scanning confocal microscope (Zeiss, model LSM510), and areas of protein colocalization (defined as 100% pixel overlap) were identified using the colocalization finder plugin (42) and Image J software (W. S. Rasband, U.S. National Institutes of Health, Bethesda, MD). Proteins within regions of interest were assessed for fluorescence resonance energy transfer (FRET) as described previously (43). Briefly, the percentage of fields where FRET occurs is an indicator of the frequency of protein-protein associations. The efficiency of FRET was obtained by measuring the fluorescence intensities of the donor fluorophore before and after photobleaching of the acceptor fluorophore (10, 105). To minimize spectral bleedthrough, we utilized the Meta Head function of the microscope at the following wavelengths: excitation wavelength of 488 nm and emission wavelength of 561 nm and emission wavelength of 600 nm for AcGFP. Statistical analyses were performed using Fisher’s exact test with correction for multiple sampling where appropriate.

Immunoprecipitation and Western blotting. Huh-7.5 cells (seeded the preceding day at 1.5 × 10^6 cells/cm²) were harvested by lysis buffer (PBS, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% sodium dodecyl sulfate [SDS]) containing protease (Complete; Roche, United Kingdom) and phosphatase (PhoStop; Roche, United Kingdom) inhibitors. Cell lysates were clarified by centrifugation (20,000 × g for 30 min), and the protein concentration was determined using protein assay reagent (Pierce, IL) according to the manufacturer’s instructions. Quantified protein lysates (100 µg) were incubated for 4 h with 1 µg/ml anti-CLDN1 (Jastery) or phospho-Ser/Thr PKA substrate antibodies (1 µg/ml) in a single-tube RT-PCR mixture. Upon cAMP binding to the R subunits, the holoenzyme dissociates and releases the (C) subunits. Upon cAMP binding to the (C) subunits, the holoenzyme dissociates and releases the (C) subunits, which phosphorylate substrate proteins in the cytosol and nucleus. PKA-C in HCV infection. (C) subunits. Upon cAMP binding to the (C) subunits, which phosphorylate substrate proteins in the cytosol and nucleus. PKA-C in HCV infection. (C) subunits. Upon cAMP binding to the (C) subunits, which phosphorylate substrate proteins in the cytosol and nucleus. PKA-C in HCV infection. (C) subunits. Upon cAMP binding to the (C) subunits, which phosphorylate substrate proteins in the cytosol and nucleus. PKA-C in HCV infection. (C) subunits. Upon cAMP binding to the (C) subunits, which phosphorylate substrate proteins in the cytosol and nucleus. PKA-C in HCV infection. (C) subunits. Upon cAMP binding to the (C) subunits, which phosphorylate substrate proteins in the cytosol and nucleus. PKA-C in HCV infection.
presented are from a single experiment and are representative of three independent experiments.

Infection by myrPKI inhibition of PKA. Huh-7.5 cells were incubated for 1 h with increasing concentrations of H89 and infected with J6/JFH (□) or JFH-1 (△). (C) Dose-dependent reduction of HCV infection by myrPKI inhibition of PKA. Huh-7.5 cells were incubated for 1 h with increasing concentrations of myrPKI and infected with J6/JFH (□) or JFH-1 (△). Infectedness is expressed relative to untreated control cells and represents the mean of three replicate infections. The data presented are from a single experiment and are representative of three independent experiments.

described. H89 inhibited HCVpp infection of all cell types tested, including primary human hepatocytes (Fig. 2C), with no discernible effect on MLVpp infectivity (data not shown). Since HCVpp allow us to study GP-dependent entry independent of downstream replication and translation events, we can conclude that PKA has a role in HCV entry.

Inhibition of PKA can also be achieved by cAMP antagonists, which bind to the R subunit(s) and prevent holoenzyme dissociation and activation. PKA exists as two isoforms defined by their respective regulatory subunits, types I and II. Rp-8-Br-cAMPS has been reported to preferentially inhibit PKAI (30, 39, 66), whereas Rp-cAMPS inhibits both isoforms. To discriminate a role for PKAI and PKAII, we studied the effect of Rp-8-Br-cAMPS and Rp-cAMPS on the ability of Huh-7.5 cells to support HCV infection. Rp-cAMPS reduced J6/JFH and JFH-1 infectivity, whereas Rp-8-Br-cAMPS had no effect (Fig. 3A), suggesting a role for PKAII in HCV infection. To ascertain whether the cAMP antagonists have differential effects on PKAI and PKAII in Huh-7.5 cells, we used BRET to study the PKA subunit interaction(s) with isoform-specific PKA sensors. R and C subunits of PKA were tagged with Rluc as a bioluminescent donor or GFP as a fluorescent acceptor, respectively, allowing the quantitative comparison of PKAI and PKAII regulation (83). Following PKA activation, the holoenzyme dissociates, leading to a reduced BRET signal. FK activates PKA by stimulating cAMP levels, causing the phosphorylation of substrates including phosphodiesterases (PDEs), which degrade cAMP and thereby reduce PKA activity.

To assess the antagonistic effect(s) of the Rp analogs on PKAII isoforms, we measured their ability to inhibit FK/IBMX-induced holoenzyme dissociation. IBMX is a general PDE inhibitor and is a prerequisite to observe effects on the PKAI BRET sensor (83). In the presence of FK and IBMX, Rp-8-Br-cAMPS and, to a lesser extent, Rp-cAMPS could inhibit the type I BRET sensor but not the type II sensor (Fig. 3B), suggesting specificity of Rp-8-Br-cAMPS for PKAI. This effect is probably due to the differential distribution of PKAI versus PKAII, where PKAII is clustered in subcellular compartments via AKAPs to the plasma membrane and can be stimulated by FK alone (96). Thus, the PK activation of PKA in the presence of PDE inhibitors prolongs the time period of PKA activity. In contrast, FK treatment failed to activate the PKAI BRET sensor (Fig. 3C). However, PKAII dissociation was promoted by endogenously elevated cAMP levels in response to FK alone; this effect was reversed with Rp-cAMPS but not Rp-8-Br-cAMPS, indicating PKA type II involvement (Fig. 3C).

To investigate whether stimulating PKA activity enhances HCV entry, Huh-7.5 cells were treated with FK for 1 h and tested for their ability to support HCVcc and HCVpp infection. FK treatment increased J6/JFH and JFH-1 infectivity by 72% and 165%, respectively (Fig. 4A). This increase in infectivity could be abrogated by prior treatment of cells with H89 (10 μM) (Fig. 4A), confirming the PKA dependency of the effect. In contrast, FK treatment had no effect on HCVpp-JFH-1 infectivity (Fig. 4B), suggesting that FK promotes HCV infection postentry. No significant differences in the effect(s) of FK treatment on HCV infection in the presence or absence of IBMX were noted (data not shown).

Inhibition of PKA activity induces a reorganization of CLDN1 in Huh-7.5 cells. HCV utilizes the cellular molecules CD81, SR-BI, and CLDN1 to enter target cells. To investigate whether the inhibitory activity of H89 involves these receptor molecules, we studied their expression and localization in control or H89- or FK-treated cells. Flow cytometry demonstrated that CD81, SR-BI, and CLDN1 expression levels were not altered by H89 treatment (data not shown). H89 induced an altered staining pattern of CLDN1, whereas CD81 localization was unchanged (Fig. 5A). In untreated cells, CLDN1 localized to the plasma membrane, predominantly at intercellular junctions, whereas a fragmented pattern of plasma membrane staining with intracellular CLDN1 was observed in H89-treated cells (Fig. 5A). FK treatment had no detectable effect on CLDN1 or CD81 localization. Rp-cAMPS induced a pattern of CLDN1 localization similar to that seen with H89 (Fig. 5A), whereas the Rp-8-Br-cAMPS had no effect (Fig. 5A).
Neither of the PKA-specific inhibitors had an effect on CD81 localization. Attempts to visualize SR-BI in control or treated cells with monoclonal and polyclonal antibodies specific for SR-BI were unsuccessful, probably reflecting the low level of SR-BI expression in Huh-7.5 cells. To investigate whether inhibiting PKA altered the localization of other TJ proteins, control and H89-treated cells were stained for zonula occludens type 1 (ZO-1) and occludin expression. H89 had no effect on ZO-1 or occludin localization in Huh-7.5 cells (Fig. 5B).

PKA can be targeted to sites of potential substrates by AKAPs, allowing the coordination of multiple signal transduction pathways. AKAP-IS is a potent and selective antagonist of PKAII (1, 100, 101). Huh-7.5 cells were transfected to express GFP-tagged AKAP-IS or a scrambled control peptide, and CLDN1 localization was assessed. Typical plasma membrane localization of CLDN1 was observed in cells expressing the scrambled peptide; however, CLDN1 demonstrated an intracellular localization in AKAP-IS-expressing cells (Fig. 5C). CD81 expression and localization were unaltered in AKAP-IS- or scrambled control peptide-expressing cells (data not shown). These data lend further support for a role of PKAII in CLDN1 localization and HCV entry.

Imaging techniques that take advantage of FRET between fluorescent proteins have been developed to study their association. We recently demonstrated FRET between DsRed-CLDN1 (r.CLDN1) and AcGFP-CD81 (g.CD81) at the plasma membrane, consistent with a subpopulation of molecules forming a coreceptor complex (43). To elucidate a role of PKA in the CLDN1 association with CD81, Huh-7.5 cells expressing g.CD81 (donor) and r.CLDN1 (acceptor) were treated with H89 or FK, and the frequency of proteins in close enough proximity (<10 nm) for FRET to occur was assessed (percent FRET). H89 significantly reduced the frequency of FRET between CD81 and CLDN1 (FRET of 50.0% for control cells and 20.8% for H89-treated cells [P < 0.05 by Fisher's exact test]), whereas FK treatment had no significant effect (35.0% [not significant]). These data suggest that the PKA-dependent localization of CLDN1 at the plasma membrane is important for CLDN1 association with CD81.

PKA-dependent infectivity of extracellular HCV. In hepatocytes, cAMP/PKA activity was previously reported to be important for the trafficking of lipids and apical plasma membrane proteins (97, 100, 102, 106). We were interested to determine whether PKA has a role in the secretion and infectivity of extracellular HCV. J6/JFH- and JFH-1-infected cells (80% NS5A-) were treated with increasing concentrations of H89 for 1 h, the cells were washed extensively to remove inhibitor, and the amount of infectious virus released from control or treated cells was assessed. J6/JFH- and JFH-1-infected Huh-7.5 cells released 1.7 × 10⁴ and 6.8 × 10⁴ IU/ml, respectively. H89 treatment reduced the titers of infectious extracellular virus, with the highest dose (30 μM) reducing the infectivities of J6/JFH and JFH-1 by 90% and 75%, respectively (Fig. 6A). In contrast, H89 had no effect on the infectivity of intracellular virus (Fig. 6B). The effects of H89 were previously reported to be reversible (13), and we found that an 8-h “recovery period” following H89 treatment was sufficient to restore extracellular virus infectivity to levels observed in the untreated cultures (data not shown). Incubation of Huh-7.5 cells with myrPKI induced a dose-dependent decrease in ex-
FK-stimulated decrease in BRET signal compared to the control.
Rp-cAMPS had no significant effect on the BRET signal relative to the control. Preincubation of cells with Rp-8-Br-cAMPS did not inhibit the sensors were preincubated with Rp-cAMPS (500 μM) or Rp-8-Br-cAMPS (500 μM) for 1 h, followed by FK/IBMX (50 μM and 500 μM, respectively) stimulation for 30 min. The BRET signal was quantified using a Fusion FP microplate reader, and data are plotted relative to untreated control cells. The data were compiled from three independent experiments. (C) Huh-7.5 cells expressing PKAI sensors were preincubated with Rp-cAMPS (500 μM) or Rp-8-Br-cAMPS (500 μM) for 1 h, followed by FK (10 μM) stimulation for 30 min. The data presented are compiled from three independent experiments. Statistical analysis using a Newman-Keuls multiple-comparison test confirms that FK treatment significantly reduced the BRET signal compared to those of control untreated cells (P < 0.05), while pretreatment with Rp-cAMPS had no significant effect on the BRET signal relative to the control. Preincubation of cells with Rp-8-Br-cAMPS did not inhibit the FK-stimulated decrease in BRET signal compared to the control.

FIG. 3. Putative role for PKAI in HCV infection. (A) Huh-7.5 cells were incubated with the cAMP analogs Rp-cAMPS (500 μM) or Rp-8-Br-cAMPS (500 μM) and infected for 1 h with J6/JFH (white bars) or JFH-1 (black bars). HCVcc-infected cells were fixed after 48 h and stained for NS5A, and the mean number of infected cells per well was determined by flow cytometry. Infectivity is expressed relative to untreated control cells and represents the mean of data from three replicate infections. The data presented are from a single experiment and are representative of three independent experiments. (B) Huh-7.5 cells expressing PKAIα (white bars) or PKAIβ (black bars) sensors were preincubated with Rp-cAMPS (500 μM) or Rp-8-Br-cAMPS (500 μM) for 1 h, followed by FK/IBMX (50 μM and 500 μM, respectively) stimulation for 30 min. The BRET signal was quantified using a Fusion FP microplate reader, and data are plotted relative to untreated control cells. The data were compiled from three independent experiments. (C) Huh-7.5 cells expressing PKAIα (white bars) or PKAIβ (black bars) sensors were preincubated with Rp-cAMPS (500 μM) or Rp-8-Br-cAMPS (500 μM) for 1 h, followed by FK (10 μM) stimulation for 30 min. The data presented are compiled from three independent experiments. Statistical analysis using a Newman-Keuls multiple-comparison test confirms that FK treatment significantly reduced the BRET signal compared to those of control untreated cells (P < 0.05), while pretreatment with Rp-cAMPS had no significant effect on the BRET signal relative to the control. Preincubation of cells with Rp-8-Br-cAMPS did not inhibit the FK-stimulated decrease in BRET signal compared to the control.

tracellular J6/JFH and JFH-1 virus infectivity by 62% and 80%, respectively, at the highest dose (100 μM), confirming a specific role for PKA.

To further corroborate PKA specificity and to determine which isofrom modulates virus infectivity, infected cells were incubated for 1 h with Rp-cAMPS or Rp-8-Br-cAMPS, and cell-free virus infectivity was measured. Rp-cAMPS inhibited the level of infectious JFH-1 and J6/JFH cell-free virus, whereas Rp-8-Br-cAMPS did not, suggesting that PKA II modulates extracellular virus infectivity (Fig. 6D). To investigate whether FK stimulation of PKA modulates the infectivity of cell-free virus, infected cells were incubated with FK (10 μM) for 1 h, the inhibitor was removed, and the infectivity of cell-free virus was assessed. FK treatment increased the level of infectious J6/JFH and JFH-1 cell-free virus, and this effect could be inhibited by H89 (10 μM), demonstrating PKA dependency (Fig. 6E).

To determine whether H89 affects the release of virus particles or their infectivity, we measured viral RNA in the cell-free medium from control and treated cells (25, 28). The treatment of infected cells with H89 for 1 h or 24 h had no significant effect on the levels of cell-free viral RNA secreted from cells or on the intracellular levels of HCV RNA (Fig. 7A and B). Since the cAMP/PKA pathway has been implicated in the regulation of exocytosis in secretory cells (69, 90, 102), we investigated whether H89 treatment modulates Huh-7.5 secretion of albumin. The level(s) of albumin released from naive or HCV-infected cells was similar and not altered by H89 or FK treatments (Fig. 7C), suggesting that the general secretory pathway was not affected. These data demonstrate that inhibiting PKA activity decreases the infectivity of extracellular virus without inhibiting viral RNA replication or virus particle release, suggesting a PKA-dependent step in the infectivity or maturation of HCV particles.

Stability of extracellular HCV infectivity. We noted that extracellular J6/JFH and JFH-1 infectivity declined over time at 37°C (Fig. 8A); this loss in infectivity was not associated with a decline in HCV RNA levels (Fig. 8B). To investigate whether...
PKA modulates the stability of extracellular virus infectivity, JFH-1-infected cells were treated with H89 for 1 h, and the extracellular virus was harvested during the first hour following H89 removal and incubated at 37°C for 1 and 8 h. Virus released from control or H89-treated cells showed a similar loss of infectivity at 37°C over time, suggesting that PKA does not alter or modulate the temperature-dependent properties of extracellular virus infectivity (Fig. 8C).

Role of PKA in ApoB and ApoE secretion and buoyant density of cell-free HCV particles. HCV replicates in cytoplasmic membrane vesicles, which are enriched with ApoB, ApoE, and microsomal triglyceride transfer protein (MTP), proteins known to be required for the assembly of very-low-density lipoprotein (VLDL) (50). Recent reports demonstrated that the treatment of hepatoma cells with an MTP inhibitor and small interfering RNA silencing of ApoB and ApoE expression reduced the levels of VLDL and HCV in the extracellular medium, suggesting that viral secretion is dependent on VLDL assembly and/or release (19, 38, 50). To ascertain whether H89 treatment of Huh-7.5 cells alters lipoprotein secretion, we quantified ApoB and ApoE levels released from control and treated cells. H89 reduced ApoB secretion from naïve (data not shown) and HCV-infected cells but had a negligible effect on ApoE levels (Fig. 9A).

Extracellular HCVcc particles have been reported to have a heterogeneous range of buoyant densities, with the lower-density forms representing VLDL-associated particles (38, 64, 78). To assess whether the effects of H89 on ApoB secretion and viral infectivity reflect an altered association of particles with lipoproteins and the concomitant change in particle buoyant density, we utilized iodixanol gradients to determine the buoyant density of cell-free virus (63, 64, 78).
supernatant from control and H89-treated cells was analyzed on an iodixanol gradient, and the density of HCV RNA-containing fractions was determined. The distributions of particle densities from control (Fig. 9B) or H89-treated cells (Fig. 9C) were comparable. HCV exhibited a bimodal distribution of buoyant density with peaks of HCV RNA at 1.155 and 1.087 g/ml for the control and at 1.152 and 1.086 g/ml for virus from H89-treated cells. This is consistent with data from previous reports (63, 64, 78) and suggests that the reduced infectivity is not due to an altered particle buoyant density.
HCV infection promotes cAMP levels and PKA activity. Given the effects of H89 and FK on HCV entry and extracellular virus infectivity, we were interested to investigate whether infection modulates cAMP levels and PKA activity. Increased cAMP levels were detected in J6/JFH- and JFH-1-infected Huh-7.5 cells 72 h postinfection compared to naive cells (Fig. 10A). As a control, naive Huh-7.5 cells were shown to be highly responsive to FK treatment, demonstrating a 78-fold increase in cAMP levels (Fig. 10A). Incubation of Huh-7.5 cells with HCVcc virus or E1E2 glycoproteins for 1 h had no detectable effect on cAMP levels (data not shown).

To assess whether the elevated cAMP levels observed in HCV-infected cells activates PKA, we measured the reactivity of an antibody specific for the phosphorylated PKA substrate consensus motif (p-PKA) with protein lysates from naive and HCV-infected cells 72 h following infection (17, 61, 79).

FIG. 7. Inhibition of PKA does not affect extracellular or intracellular HCV RNA. Extracellular (A) and intracellular (B) HCV RNA levels were quantified in control and H89 (10 μM)-treated JFH-1-infected Huh-7.5 cells. Cells were incubated with H89 for 1 h (white bars) or 24 h (black bars). HCV RNA was detected by RT-PCR and quantified relative to a GAPDH control. (C) Effect of H89 on Huh-7.5 secretion of albumin. Huh-7.5 cells were treated with a DMSO control or H89 (10 μM) for 1 h, and the levels of albumin in the extracellular medium were quantified by ELISA. Data are expressed relative to those for control untreated cells and represent values from the means of three replicate infections. The data presented are from a single experiment and are representative of two independent experiments.

FIG. 8. PKA does not regulate the stability of infectious extracellular virus. (A) The infectivities of extracellular J6/JFH (□) and JFH-1 (△) were assessed after incubation of the virus at 37°C for 0, 1, 2, 4, 8, and 24 h. (B) The HCV RNA content of extracellular J6/JFH was measured preincubation (white bars) and postincubation (black bars) of virus at 37°C for 24 h. HCV RNA was detected by RT-PCR and quantified relative to a GAPDH control. (C) Effect of H89 on the stability of extracellular JFH-1 infectivity. Extracellular virus was collected from control and H89 (10 μM)-treated JFH-1-infected Huh-7.5 cells and incubated at 37°C for 0 h (white bars), 1 h (gray bars), or 8 h (black bars), and infectivity was assessed. Data are expressed as relative infectivity compared to control untreated cells and represent the mean of data from three replicate infections. The data presented are from a single experiment and are representative of two independent experiments.

FIG. 9. Effects of PKA modulators on ApoB and ApoE secretion and HCV particle buoyant density. (A) Extracellular medium was collected from control and H89 (10 μM)-treated Huh-7.5 cells, and the levels of ApoB (white bars) and ApoE (black bars) were measured by capture ELISA. Data are expressed relative to those for control untreated cells and represent the mean of data for three replicate infections. The buoyant density (ϕ) of extracellular J6/JFH released from control (B) or H89-treated (C) Huh-7.5 cells was determined on iodixanol gradients. Individual bars show relative HCV RNA copy numbers in each fraction compared to the maximum peak.
expected, FK stimulation led to an increase in the number and intensity of bands representing phosphorylated PKA substrates compared to those of untreated cells (Fig. 10B). JFH-1 infection also increased the intensity and number of phosphorylated PKA substrates compared to those of uninfected cells (Fig. 10B). The molecular masses of PKA substrates observed in FK-treated and JFH-1-infected Huh-7.5 cells were comparable; however, a 22-kDa band corresponding to the molecular mass of CLDN1 was not detectable. To investigate whether CLDN1 is a direct substrate for PKA, CLDN1 and PKA substrates were immunoprecipitated from naïve and JFH-1-infected Huh-7.5 cell lysates, and the proteins were separated by SDS-PAGE. Immune precipitates were subjected to Western blotting, and reactivity with rabbit anti-CLDN1 was assessed by using specific antibodies (mouse anti-CLDN1, rabbit anti-CLDN1, and p-PKAs) and control antibodies (murine IgG and rabbit Ig). Laser scanning confocal microscopic images of single 1-μm z sections were obtained using a 63× 1.2-numerical-aperture objective (scale bar represents 10 μm).

FIG. 10. HCV infection increases cAMP levels and PKA activity. (A) cAMP levels were measured in uninfected and J6/JFH- and JFH-1-infected Huh-7.5 cells 72 h postinfection. As a control, Huh-7.5 cells were incubated with FK (10 μM), a compound known to activate adenylyl cyclase and increase cAMP levels. cAMP levels are shown relative to control untreated cells and represent data from the means of three replicate wells. (B) PKA activity was assessed by measuring the reactivity of an anti-PKA substrate-specific antibody (p-PKAs) with 10 μg of total protein separated by SDS-PAGE from control (lane 1), FK (10 μM)-stimulated (lane 2), and JFH-1-infected (72 h postinfection) (lane 3) Huh-7.5 cells. (C) CLDN1 and PKA substrates were immunoprecipitated from 100 μg of uninfected (UF) and JFH-1-infected (72 h postinfection) Huh-7.5 cell lysates with specific antibodies (mouse anti-CLDN1, rabbit anti-CLDN1, and p-PKAs) and control antibodies (murine IgG and rabbit Ig). Immune precipitates were subjected to SDS-PAGE, and reactivity with rabbit anti-CLDN1 was assessed by Western blotting. (D and E) Uninfected (D) and JFH-1-infected (E) (72 h postinfection) Huh-7.5 cells were incubated with FK or H89 for 1 h (H89 > FK indicates a 1-h preincubation with H89 prior to FK treatment), fixed, and stained with the PKA substrate-specific antibody (p-PKAs) (green). JFH-1-infected cells were visualized by staining for NS5A (red), and nuclei were counterstained with DAPI (blue). Laser scanning confocal microscopic images of single 1-μm z sections were obtained using a 63× 1.2-numerical-aperture objective (scale bar represents 10 μm).
SDS-PAGE and tested for reactivity with antibodies specific for CLDN1 and PKA substrate. Anti-CLDN1 antibodies readily precipitated CLDN1 from cell lysates; however, these proteins were not recognized by p-PKAs (Fig. 10C). We observed no evidence of CLDN1 phosphorylation by PKA in Huh-7.5 cells incubated for 1 h with either HCVcc or E1E2 (data not shown).

To study PKA activity at the cellular level, naïve and JFH-1-infected Huh-7.5 cells were incubated with FK (10 μM) or H89 (10 μM) for 1 h, fixed, and stained with p-PKAs and NS5A-specific Abs. FK-treated naïve cells demonstrated increased cytoplasmic staining with p-PKAs that was abrogated by prior treatment with H89, indicating a cytoplasmic localization of PKA substrates (Fig. 10D). JFH-1-infected cells displayed increased cytoplasmic staining with p-PKAs compared to uninfected cells, which was abrogated by treatment with H89 (Fig. 10E), while FK did not increase p-PKA cytoplasmic staining in infected cells. The intracellular PKA substrate staining did not colocalize with anti-CLDN1 (data not shown), further suggesting that CLDN1 is not a direct substrate for PKA. In summary, these data show that HCV infection of Huh-7.5 cells leads to an increase in cAMP levels, which in turn activates PKA to phosphorylate various cellular targets, which may promote the infectivity of extracellular virus and increase viral transmission within the culture.

DISCUSSION

Protein kinases have been implicated in the life cycle of many viruses including adenovirus, herpes simplex virus, and influenza virus (91, 93, 103). By screening a series of kinase inhibitors for their effect(s) on HCV infection, we identified PKA as having an important role both in HCV entry and in the genesis of infectious extracellular virus.

Treatment of Huh-7.5 cells with the general PKA-C inhibitor H89, the specific PKA-C inhibitor myrPKI, and cAMP antagonist Rp-cAMPS inhibited HCVcc and HCVpp infection (Fig. 1 to 3), demonstrating that HCV internalization is dependent on the target cell expression of active PKA. A similar level of inhibition of HCVpp entry was noted for other cell types, including primary human hepatocytes, demonstrating the generality of this observation. Since HCV entry is dependent on the host cell expression of CD81, SR-BI, and CLDN1, we investigated whether inhibition of PKA altered viral receptor expression and localization. H89 or Rp-cAMPS had no effect on total coreceptor expression levels when quantified by flow cytometry or Western blotting. However, confocal imaging of treated cells identified intracellular forms of CLDN1 with reduced levels of expression at the plasma membrane (Fig. 5A). CD81 localization was unchanged in H89-, Rp-cAMPS-, or FK-treated cells (Fig. 5A). There was no discernible effect of FK treatment on CLDN1 localization (Fig. 5A), consistent with the negligible effect on HCVpp infection. These data support a model where CLDN1 localization at the plasma membrane is dependent on PKA and is essential for viral receptor activity.

We (43) and others (104) previously reported that CLDN1 associates with CD81 at the plasma membrane of Huh-7 cells, suggesting that coreceptor complexes have a role to play in the viral entry process. The observation that H89 treatment reduced FRET between CLDN1 and CD81 lends further support for a PKA-dependent localization of CLDN1 at the plasma membrane.

The cellular localization of several members of the CLDN family is reported to be regulated by growth factors (92) and kinases: CLDN1 by MAPK (37), CLDN3 by PKA (31), CLDN4 by EphA2 (94) and PKC (32), and CLDN16 by PKA (51). The functional consequences of CLDN phosphorylation are specific for certain CLDN family members and are most likely dependent upon the cell type under study. CLDN1 contains several potential PKA phosphorylation sites located at amino acids S34 and S69 in the first extracellular loop, S173 in the first transmembrane domain, and T190 in the C-terminal cytoplasmic region. Evans and colleagues previously reported that amino acids I32 and E48 within extracellular loop 1 of CLDN1 are critical for coreceptor activity (34), with I32 forming part of the PKA phosphorylation consensus site. During the dynamic remodeling of tight junctions, claudins have been reported to internalize (70); indeed, we have observed intracellular forms of CLDN1 in Huh-7.5 cells (M. J. Farquhar, unpublished observations). Consequently, it is feasible that residues within the extracellular loops may be targets for PKA phosphorylation. The entire C-terminal CLDN1 tail is not required for HCV coreceptor activity in 293T embryonal kidney cells (34, 43), suggesting that this region is not the site for PKA phosphorylation. This is in contrast to recent reports demonstrating the importance of CLDN3 and CLDN16 C-terminal cytoplasmic tails in PKA phosphorylation (31, 51). However, we were unable to demonstrate CLDN1 recognition by a PKA substrate-specific antibody (Fig. 10B and C), suggesting that CLDN1 is not directly phosphorylated by PKA. It should be noted that CLDN1 is an integral membrane protein that associates with other intercellular junctional and associated cytosolic proteins that may be modulated by PKA (5, 57, 58).

PKA plays an important role in the regulation of protein trafficking along the constitutive secretory pathway and has been implicated in protein transport from the endoplasmic reticulum to the Golgi apparatus and from the Golgi apparatus and trans-Golgi network to the plasma membrane (18, 75). More recently, PKA has been reported to have a fundamental role in the polarized trafficking of apical proteins and lipids in the development of hepatic canalicular structures (52, 86, 98). H89, myrPKI, and Rp-cAMPS inhibition of PKA in HCV-infected Huh-7.5 cells reduced the infectivity of extracellular virus without modulating the level(s) of infectious virus or HCV RNA within the cell (Fig. 6B and 7B). H89 did not alter the amount of HCV RNA released from cells, suggesting that particle release is not affected. This is consistent with the observation that H89 treatment did not affect albumin secretion (Fig. 7C), suggesting that the general secretory pathway of the cells was not perturbed. Interestingly, FK treatment of HCV-infected cells in order to activate PKA (Fig. 10A) increased the infectivity of extracellular virus (Fig. 6E), suggesting that basal levels of PKA activity may limit extracellular virus infectivity.

To address how PKA modulates extracellular virus infectivity, it is important to consider the processes underlying HCV particle assembly and release. Recent data have highlighted the critical role of lipoprotein assembly and secretion in the HCV life cycle. The HCV core protein is an essential compo-
nent of particles, and association with lipid droplets is critical for the genesis of infectious particles (16, 74). Furthermore, the efficient release of particles from infected cells is to be dependent on VLDL assembly and secretion (19, 38, 50). The inhibition of PKA in naïve and HCV-infected Huh-7.5 cells reduced ApoB secretion by approximately 50% but had no effect on ApoE levels (Fig. 9A). However, the buoyant densities of particles released from H89-treated cells were comparable to those from untreated cells, suggesting that HCV particle association with lipoproteins is not regulated by PKA (Fig. 9B and C). This conclusion is further supported by the negligible effect(s) of PKA inhibitors on extracellular HCV RNA levels (Fig. 7A), in contrast to the previously reported inhibitory effect(s) of MTP inhibitors on both VLDL and HCV particle secretion (19, 38, 50).

In mammalian cells, PKA exists as two major isoforms, type I and type II, where PKAI localizes predominantly in the cytoplasm and PKAII associates with cellular structures and organelles via AKAPs (89). Rp-cAMPS demonstrated a specific inhibition of HCV entry and infectious extracellular virus, whereas Rp-8-Br-cAMPS had no effect (Fig. 3A and 6D). To aid the interpretation of these results, we studied the PKA isoform specificity of the Rp analogs in Huh-7.5 cells using a recently developed BRET assay (29). Rp-8-Br-cAMPS specifically inhibited FK/IBMX-stimulated PKAI and not PKAII (Fig. 3B), suggesting a minimal involvement of PKAI in HCV infection.

FK treatment of Huh-7.5 cells stimulates PKAII but not PKAI (Fig. 3C), which may be attributable to their different subcellular locations. FK activates adenylyl cyclases at the plasma membrane and, in the absence of IBMX, PDEs will degrade cAMP before it reaches the intracellularly located PKAI. Rp-cAMPS had no effect on FK/IBMX-stimulated PKAII (Fig. 3B). However, treating cells with FK alone allowed us to demonstrate the specific inhibition of PKAII by Rp-cAMPS (Fig. 3C) and to confirm a role for PKAII in HCV infection.

PKAII is known to regulate diverse cellular functions due to its localization via AKAPs (22, 23, 100). GFP-AKAP-IS expression in Huh-7.5 cells was unstable, and we were unable to study HCV infection and viral protein trafficking in the transdominant-negative expressing cells. However, transient expression of AKAP-IS peptide, a specific AKAP disruptor of PKAII, in Huh-7.5 cells led to a relocalization of CLDN1 (Fig. 5C), confirming that PKA regulates CLDN1 targeting to the plasma membrane in an AKAP-dependent manner. Overall, our studies suggest a specific role for the PKAII isoform in the entry and infectivity of cell-free particles.

PKAII-AKAP interactions at the Golgi-centrosomal area (12, 101, 102) may coordinate lipid, cellular, and viral protein trafficking in Huh-7.5 cells. Thus, it is conceivable that inhibition of PKA may alter the passage of virus through the Golgi apparatus, resulting in the attenuation of its infectivity. HCV glycoproteins in the endoplasmic reticulum comprise high-mannose sugars, which are trimmed during their transit from the endoplasmic reticulum to the Golgi apparatus to complex type sugars (40). Experiments to determine the molecular weight and endoglycosidase sensitivity of extracellular particle-associated GPs yielded inconclusive data due to low viral yields. Helle and colleagues (45) reported that the neutralizing activity of anti-HCV antibodies was modulated by specific E2 glycans. Interestingly, cell-free virus released from control or H89-treated cells demonstrated sensitivities comparable to those obtained with neutralization by GP-specific monoclonal antibodies and patient IgG (data not shown), suggesting no major alteration(s) in the glycosylation status of particle-associated GPs released from treated cells.

We noted increased levels of cAMP and PKA substrates in infected cells (Fig. 10), supporting a model where HCV infection activates PKA in a cAMP-dependent manner as a mechanism to promote the infectivity of cell-free virus and viral transmission. Our evidence using HCVcc is in contrast to previous reports where the activity of PKA-C was inhibited with peptides corresponding to a sequence within the HCV NS3 region and recombinant NS3/NS4A (4, 15). Several examples exist, however, where viruses activate cAMP/PKA pathways, adenovirus activates PKA to enhance nuclear targeting via the microtubule network (94), and HIV infection is associated with increased levels of intracellular cAMP and constitutive PKA activation that are required for efficient proviral DNA synthesis (2, 47). Kim and colleagues reported that NS2 activated cAMP-dependent pathways in Huh-7 cells, supporting JFH-1 subgenomic replicons (55). Our data imaging PKA substrates in HCV-infected cells demonstrate colocalization with NS5A, suggesting that NS5A or other components of the viral replication complex may be substrates for PKA (Fig. 10E). Experiments to investigate whether HCV particle interactions with cell surface receptors promote cAMP levels were inconclusive and may reflect low viral titers that fail to saturate cell surface-expressed receptors. Alternatively, the virus may induce cAMP-independent activation of PKA by second messenger lipids such as sphingosine (68) or via cross talk between signaling pathways. In addition, there may be endogenous PKA activity within the particle, as reported previously for hepatitis B virus, which encapsidates PKC into its core particle (53). In summary, we demonstrate a role for PKAII both in the infectivity of extracellular virus and in viral entry, highlighting potential new targets for therapy.

ACKNOWLEDGMENTS

We thank T. Wakita for JFH-1; C. M. Rice for J6/JFH, Huh-7.5 cells, and anti-NS5A 9E10; Adrian Thrasher for CGSW; P. Bieniasz for Gag-Pol plasmid; J. Scott for AKAP-AS and scrambled expression constructs; J. Lord for Rp-cAMPS and Rp-8-Br-cAMPS; and F. Berditchevski for anti-CDB1 M38.

This work was supported by PHS grant AI50798, the MRC, and The Wellcome Trust. M.D. was supported by the Otto Braun Fond, and F.W.H. was supported by the European Union (LSHB-CT-2006-037189).

REFERENCES

specific secretory and non-secretory protein kinase C-β isoforms act as a co-ordinator of cellular AMP-dependent protein kinase A and protein kinase C-

63. Prinz, A., M. Diskar, and F. W. Herberg. 2006. Application of biolumines-
cence resonance energy transfer (BRET) for biomolecular interaction studies. J. Virol. 80:1616–1625.

64. Przybilla, B., L. Al-Harthi, M. Saifuddin, and K. A. Roebeek. 1998. The cAMP-dependent protein kinase A and protein kinase C-β pathways syn-

