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Abstract

Random mutagenesis has been used to identify the target DNA sites for the MalI

repressor at the divergent Escherichia coli K-12 malX-malI promoters. The malX

promoter is repressed by MalI binding to a DNA site located from position � 24 to

position � 9, upstream of the malX promoter transcript start. The malI promoter

is repressed by MalI binding from position 13 to position 118, downstream of the

malI transcript start. MalI binding at the malI promoter target is not required for

repression of the malX promoter. Similarly, MalI binding at the malX promoter

target is not required for repression of the malI. Although the malX and malI

promoters are regulated by a single DNA site for cyclic AMP receptor protein, they

function independently and each is repressed by MalI binding to a different

independent operator site.

Introduction

The Escherichia coli malX and malY genes encode proteins

for the transport and metabolism of an as yet unidentified

substrate (Zdych et al., 1995; Clausen et al., 2000). They are

cotranscribed from a single promoter (the malX promoter)

whose activity is completely dependent on binding of the

cyclic AMP receptor protein (CRP) to a single target centred

at position � 41.5, i.e. between base pairs � 41 and � 42,

upstream from the malXY transcript start (Reidl & Boos,

1991; Lloyd et al., 2008). Upstream of malX, the divergent

malI gene encodes a transcription repressor that represses

malXYexpression (Reidl et al., 1989). Expression of the malI

gene is dependent on a single promoter that controls

divergent transcription initiation from a location that is 85

base pairs upstream from the malX promoter transcription

startpoint (Lloyd et al., 2008). The malI promoter is factor-

independent, but can be activated �1.6-fold by CRP bind-

ing to its target at the malX promoter, which is centred at

position � 43.5 with respect to the malI promoter tran-

scription startpoint (Fig. 1).

Sequence analysis shows that MalI is a typical member of

the LacI family of transcription repressors (Reidl et al., 1989;

Weickert & Adhya, 1992). Most members of this family

function as dimers that bind to inverted repeats, and Reidl

et al. (1989) identified the sequence 50-GATAAAACGTTT

TATC-30 as a likely target for MalI-dependent repression of

the malX promoter. In this work, we describe a genetic

screen to prove that this sequence, located from position

� 24 to position � 9 at the malX promoter, and overlapping

the � 10 hexamer element, is indeed the binding target for

MalI. The malX-malI regulatory region contains a closely

related sequence, 50-GGTAAAACGTTTTATC-30, from posi-

tion 13 to position 118, downstream of the transcription

start of the malI promoter. We describe a similar genetic

screen to prove that this is the target for MalI-dependent

autoregulation of the malI promoter.

Materials and methods

The starting materials for this work were the EcoRI–HindIII

malX100 and malI100 fragments described by Lloyd et al.

(2008). These fragments were inserted into the polylinker of

the low copy number lac expression vector plasmid, pRW50,

encoding resistance to tetracycline (Lodge et al., 1992).

Recombinant pRW50 derivatives were propagated in the

Dlac E. coli K-12 strain, M182, or its Dcrp derivative, as in

Hollands et al. (2007). Inserts in pRW50 were manipulated
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after PCR using the flanking primers D10520 (50-CCCT

GCGGTGCCCCTCAAG-30) and D10527 (50-GCAGGTC

GTTGAACTGAGCCTGAAATTCAGG-30) described in

Lloyd et al. (2008). The shorter malX400 fragment was

generated from malX100 by PCR using primer D10527

together with D62262 (50-GACGAATTCCGTTGCGTA

ATGTG-30). Likewise, the shorter malI375 fragment was

generated from malI100 by PCR using primer D10527

together with D65378 (50-GGAATTCCAAATTTTAGTGA

GGCATAAATCAC-30). DNA sequences are numbered with

the respective transcription start sites labelled as 11 and

upstream and downstream sequences are assigned negative

and positive coordinates, respectively.

Plasmid pACYC184 was used as a vector for cloning of the

malI gene, together with the control empty derivative

pACYC-DHN (Mitchell et al., 2007). The malI gene, to-

gether with its promoter and flanking sequences, was

amplified by PCR using genomic DNA from E. coli K-12

strain MG1655 as a template and primers D63433 (50-CGA

TAAGCTTCAAAACGTTTTATCAAATTTTAGTG-30) and

D63434 (50-TGGTGCATGCGCAGATAAAGAGAGGATTAT

TTCGC-30). The product was restricted with HindIII and

SphI and cloned into plasmid pACYC184 to generate

plasmid pACYC-malI, which encodes malI and resistance

to chloramphenicol.

Error-prone PCR, using the flanking D10520 and D10527

primers and Taq DNA polymerase, was used to generate

libraries of random mutations in the malX400 or malI375

promoter fragments, with the respective fragments cloned in

pRW50 as the starting templates, using the conditions

described by Barne et al. (1997). For each promoter, the

products of four PCR reactions were restricted with EcoRI

and HindIII, purified separately, and cloned into pRW50.

After transformation into E. coli strain M182 carrying

pACYC-malI, colonies carrying recombinants were screened

on MacConkey lactose indicator plates containing

35 mg mL�1 tetracycline and 25 mg mL�1 chloramphenicol.

Lac1 candidates were selected and purified, and for each

candidate, the entire EcoRI–HindIII insert was sequenced.

Mutations are denoted by their location with respect to the

corresponding transcript start and the substituted base on

the coding nontemplate strand. Activities of different malX

and malI promoters cloned in pRW50 were deduced from

measurements of b-galactosidase expression in M182 or its

Dcrp derivative, carrying plasmid pACYC-malI or the con-

trol empty pACYC-DHN plasmid.

Results and discussion

Identification of the functional MalI-binding
target at the malX promoter

Figure 1 shows a diagram illustrating the malX-malI inter-

genic region with the transcription start sites for the malX

and malI promoters, the corresponding � 10 elements, and

the DNA site for CRP that is located at position � 41.5 with

respect to the malX transcription start and position � 43.5

with respect to the malI transcription start. Figure 1 also

shows the locations of two 16 base pair elements, suggested

to be the operator targets for the MalI repressor. The aim of

the work described here was to investigate this suggestion

and to determine the functional operator(s) for each pro-

moter.

In a previous work, Lloyd et al. (2008) described how the

malX promoter could be assayed by cloning the malX100

fragment into the lac expression vector plasmid, pRW50.

Measurements of b-galactosidase expression in M182 or its

Dcrp derivative showed the malX promoter to be a typical

Class II CRP-dependent promoter, which is consistent with

the location of the DNA site for CRP (West et al., 1993).

Lloyd et al. (2008) also reported that expression of the malX

promoter<lac fusion carried by pRW50 is unaffected by the

introduction of a multicopy plasmid carrying the malX-

malI intergenic region, suggesting that the level of chromo-

somally encoded MalI is insufficient to repress the malX

promoter significantly. Thus, to set up a system to measure

CRP site
malX+1

–16.5 –10–41.5
…………

mall+1
–10+10.5 –43.5

malX100

…………

malX400

malI100

malI375

Fig. 1. Organization of the malX-malI intergenic region. The top line of the figure illustrates the divergent malX and malI transcription startpoints, the

corresponding � 10 hexamer elements (rectangles shaded black), the shared DNA site for CRP (rectangles shaded grey), and the two 16 base pair

elements, suggested to be targets for the MalI repressor (unshaded white rectangles). Coordinates above and below the diagram are numbered from

the malX and malI transcription startpoints, respectively. The lower four lines of the figure illustrate the extent of the malX100, malX400, malI100, and

malI375 promoter fragments that are flanked by EcoRI and HindIII sites. The horizontal arrow heads indicate the HindIII sites and the direction of the

malX promoter (in the case of the malX100 and malX400 fragments) and the malI promoter (in the case of the malI100 and malI375 fragments).
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MalI-dependent repression of the malX promoter, we

cloned the malI gene into plasmid pACYC184 to generate

pACYC-malI. Measurements of b-galactosidase expression

in M182 cells carrying pRW50 with the malX100 promoter

show that the presence of pACYC-malI causes an �30-fold

reduction in expression, compared with the control with the

empty pACYC-DHN plasmid (Table 1, upper panel). The

experiment was then repeated with M182 cells carrying

pRW50 with the malX400 promoter fragment, in which the

malX promoter sequence upstream of the DNA site for CRP

had been removed (illustrated in Fig. 1). The data in Table 1

(upper panel) show that neither malX promoter activity nor

repression by MalI is substantially affected by the deletion,

and thus sequences upstream of the DNA site for CRP must

play little or no role.

On MacConkey lactose indicator plates, colonies of M182

carrying pRW50 with either the malX100 or malX400

promoter fragments, together with pACYC-malI, appear as

white Lac� colonies. In contrast, if pACYC-malI is replaced

with pACYC-DHN, colonies have a bright red, clear Lac1

appearance. Thus, to pinpoint the operator sequences

essential for repression of the malX promoter by MalI, we

used error-prone PCR to generate a library of random

mutations in the malX400 promoter fragment and screened

for mutations that resulted in pink or red colonies of cells

containing pACYC-malI. We reasoned that such colonies

Table 1. Measurement of malX promoter activities

Promoter fragment cloned in pRW50 Activity in M182 pACYC-DHN Activity in M182 pACYC-malI Repression ratio due to MalI

malX100 1622� 170 51� 4 31.8

malX400 1735� 49 57� 3 30.4

malX400� 24C 3657� 130 940� 50 3.9

malX400� 22C 3452� 123 881� 126 3.9

malX400� 18G 1131� 48 372� 12 3.0

malX400� 17T 8332� 37 4925� 71 1.7

malX400� 16A 2676� 7 1256� 10 2.1

malX400� 15C 2312� 59 1063� 11 2.2

malX400� 14A 6475� 52 2101� 82 3.1

malX400� 14C 1895� 32 1097� 22 1.7

Promoter fragment cloned in pRW50 Activity in M182 pACYC-DHN Activity in M182 pACYC-malI Repression ratio due to MalI

malI100 2118�63 138�4 15.3

malI375 1575�28 89�6 17.6

malI37515C 1728�78 472�14 3.7

malI37518G 1990�92 1137�35 1.8

malI37519G 1913�141 744�16 2.6

malI375111A 2649�191 1415�77 1.9

malI375112C 2277�149 1196�85 1.9

malI375113C 2340�54 1407�18 1.7

malI375116T 2923�71 345�17 8.5

malI375�49T 6023�406 956�25 6.3

Promoter fragment cloned in pRW50 Activity in M182Dcrp pACYC-DHN Activity in M182Dcrp pACYC-malI Repression ratio due to MalI

malI100 1230� 52 58� 4 21.2

malI375 869� 98 44� 4 19.7

malI37515C 1455� 72 237� 23 6.1

malI37518G 1167� 25 487� 32 2.3

malI37519G 1126� 23 300� 20 3.8

malI375111A 1399� 48 414� 43 3.4

malI375112C 1277� 38 397� 35 3.2

malI375113C 998� 81 389� 41 2.5

malI375116T 1574� 102 129� 19 12.2

malI375�49T 8798� 186 1239� 93 7.1

The second and third columns of the table list b-galactosidase activities (in Miller units) measured in the Dlac strain M182 or its Dcrp derivative carrying

pACYC-malI or control plasmid pACYC-DHN, together with different promoter<lacZ fusions cloned in pRW50. Cells were grown aerobically at 37 1C in

Luria–Bertani medium containing 35 mg mL�1 tetracycline and 25 mg mL�1 chloramphenicol to the exponential phase (OD65 nm�0.4). Each value is the

mean� 1 SD from at least three independent experiments. The upper section of the table lists the effects of different single mutations in the malX

promoter from position � 24 to � 14. The lower two parts of the table list the effects of different mutations on malI promoter activity. The fourth

column of the table lists the factor by which MalI represses expression in each case. Activity measurements were as in Lloyd et al. (2008).
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would contain pRW50 carrying the malX400 fragment with

mutations that interfered with MalI binding. After screening

over 2500 colonies, we identified eight different single-base

changes that are shown in Fig. 2. Strikingly, all these

substitutions fall in the 16 base pair sequence from position

� 24 to position � 9 that had been suggested to be a target

for MalI (Reidl et al., 1989). Our result argues strongly that

this sequence alone is necessary for MalI-dependent repres-

sion. The upper panel of Table 1 lists the effects of the

different point mutations on malX promoter activity and

MalI-dependent repression. Different mutations reduce

repression from �30-fold to 1.7- to 3.9-fold. Interestingly,

many of the base changes up- or downregulate the activity of

the malX promoter in the absence of MalI. This is consistent

with their location upstream of the � 10 hexamer element

(Fig. 2). Recall that many E. coli promoters carry weakly

conserved promoter elements in this region that contribute

to the overall promoter activity (Mitchell et al., 2003).

Identification of the functional MalI-binding
target at the malI promoter

Measurements of b-galactosidase expression in M182 cells

carrying pRW50 with the malI100 promoter show that the

presence of pACYC-malI causes a sharp reduction in expres-

sion, compared with the control with the empty pACYC-

DHN plasmid (Table 1, middle panel). To check whether the

DNA site for MalI at the malX promoter plays any role in

this repression, the experiment was repeated with pRW50

carrying the malI375 promoter fragment, in which the malI

promoter sequence upstream of the DNA site for CRP had

been removed (illustrated in Fig. 1). The data in Table 1

show that the absence of the DNA site for MalI at the malX

promoter does not compromise MalI-dependent repression

of the malI promoter. However, malI promoter activity in

the shorter malI375 fragment is reduced by�25% compared

with the malI100 fragment. This was expected as we

reported previously that upstream sequences are essential

for optimal expression from the malI promoter (Lloyd et al.,

2008).

On MacConkey lactose indicator plates, colonies of M182

carrying pRW50 with either the malI100 or the malI375

promoter fragments together with pACYC-malI appear as

white Lac� colonies. In contrast, if pACYC-malI is replaced

with pACYC-DHN, colonies have a bright red clear Lac1

appearance. Thus, we used error-prone PCR to generate a

library of random mutations in the malI375 promoter

fragment and screened for mutations that resulted in pink

or red colonies of cells containing pACYC-malI. After

screening over 2500 colonies, we identified eight different

single base changes shown in Fig. 2. Seven of the eight

substitutions fall in the sequence from position 13 to

position 118, which resembles the operator for MalI at the

malX promoter, while the eighth is located at position � 49.

–50        –40        -30                   -10        +1       +10        +20

malX400
C

C C   GTACA

. . . . . . .
GAATTCCGTTGCGTAATGTGATTTATGCCTCACTAAAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTACTGAATCCAGATTGT

+30        +40        +50
. . .

TCTCTACGAGGAGTCGTTTTATGACGGCGAAAAAAGCTT

malI375

T C  GG ACC  T  
–60       -50        -40        -30        -20        -10         +1                  +20
. . . . . . . .

GAATTCCAAATTTTAGTGAGGCATAAATCACATTACGCAACGATAATAGCGGGTATAAGATAAATAAAAGGTAAAACGTTTTATCTGTCACATAA  

+30       +40        +50        +60        +70
. . . . . . . . .
TCAGGGAGTAGGTCATCTGCATGGCTACCGCCAAAAAAATAACCATTCATGATGTTGCGCTGGCTGCGGGCGTGTCGGTAAGTAAAGCTT

Fig. 2. Base sequence of malX400 and malI375 promoter fragments. The figure shows the sequence of the coding nontemplate strand of the malX400

promoter fragment (upper part of the figure) and the malI375 promoter fragment (lower part of the figure), from the upstream EcoRI site to the

downstream HindIII site (both underlined). Each sequence is numbered from the respective transcript startpoint, which is boxed and marked 11. The

shared DNA site for CRP is doubly underlined. The location and nature of each of the point mutations that reduced MalI-dependent repression is

indicated and the two 16 base pair MalI-binding elements are highlighted by a box.
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The middle panel of Table 1 lists the effects of the

different point mutations on malI promoter activity and

MalI-dependent repression. Different mutations reduce

repression from �17.5-fold to 1.7- to 8.5-fold. Strikingly,

with the control pACYC-DHN plasmid, the 15C, 18G,

19G, 111A, 112C, 113C, and 116T mutations all

cause small increases in b-galactosidase expression,

while the � 49T mutation causes a fourfold increase. The

simplest explanation for these observations is that the

� 49T mutation considerably increases the intrinsic activity

of the malI promoter, and that the reduction in MalI-

dependent repression is a secondary consequence of the

promoter being substantially stronger. In contrast, we

suggest that the primary effect of the other seven substitu-

tions is to interfere with MalI-dependent repression of the

malI promoter, but that these changes also produce second-

ary effects, possibly by altering the structure at the 50 end of

the malI transcript.

The lower panel of Table 1 shows the results of an

experiment to measure MalI-dependent repression of the

malI promoter in a Dcrp background and the effects of the

different mutations. Recall that, unlike the malX promoter,

the malI promoter is active in the absence of CRP (Lloyd

et al., 2008). The results show that MalI-dependent repres-

sion is slightly greater in the absence of CRP, but each of the

different mutations has a similar effect.

Conclusions
Members of the LacI–GalR family of transcriptional repres-

sors are usually functional as dimers, although in some

cases, repression depends on the dimerization of dimers or

interactions with other proteins, such as CRP (Weickert &

Adhya, 1992; Valentin-Hansen et al., 1996). Such repressors

bind to inverted repeats at target sites and binding is

modulated by a ligand (Weickert & Adhya, 1992; Swint-

Kruse & Matthews, 2009). In the case of MalI, the ligand is

unknown, but it is assumed that it must be related to the

function of MalX and MalY, which, to date, is unknown.

Reidl et al. (1989), who first discovered the malI gene, and

the divergent malXY operon, identified two 16 base pair

sequences, each containing an inverted repeat, that were

both suggested to be targets for dimeric MalI. The aim of

this work was to investigate these sequences and to deter-

mine if repression of the malXYand malI transcription units

required one or both targets. In preliminary work, we

attempted a biochemical approach, but we were unable to

overexpress soluble functional MalI protein (G.S. Lloyd,

unpublished data). Hence, we turned to a genetic approach

by setting up an E. coli strain where MalI-dependent repres-

sion of the malX or malI promoter yielded a clear pheno-

type, which was then used to screen for mutations that

interfere with repression. Our results with the malX promo-

ter unambiguously identify the 16 base pair target from

malX sequences

K12 AAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTACTGAATCCAGATTGTTCTCTACGAGGAGTCGTTTTATGACGGCG
O157 AAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTACTGAATCCAGATTGTTCTCTACGAGGAGTCGTTTTATGACGGCG
APEC AAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTATTGAATCCAGATTGTTCTCTACGAGGAGTCGTTTTATGACGGCG
W3110 AAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTACTGAATCCAGATTGTTCTCTACGAGGAGTCGTTTTATGACGGCG
UTI89 AAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTATTGAATCCAGATTGTTCTCTACGAGGAGTCGTTTTATGACGGCG
CFT073 AAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTATTGAATCCAGATTGTTCTCTACGAGGAGTCGTTTTATGACGGCG
301 AAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTACTGAATCCAGATTGTTCTCTACGAGGAGTCGTTTTATGACGGCG
Sb227 AAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTACTGAATCCAGATTGTTCTCTACGAGGAGTCGTTTTATGACGGCG
8401 AAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTACTGAATCCAGATTGTTCTCTACGAGGAGTCGTTTTATGACGGCG
Sd197 AAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTACTGAATCCAGATTGTTCTCTACGAGGAGTCGTTTTATGACGGCG
Ss046 AAATTTGATAAAACGTTTTATCTTCTCGCGCAATTTACTGAATCCAGATTGTTCTCTACGAGGAGTCGTTTTATGACGGCG

malI sequences

K12  TATAAGATAAATAAAAGGTAAAACGTTTTATCTGTCACATAATCAGGGAGTAGGTCATCTGCATGGCTACC
0157  TATAAGATAAATAAAAGGTAAAACGTTTTATCTGTCACAAAATCAGGGAGTAGGTCATCTGCATGGCTACC
APEC  TATAAGATAAATAAAAGGTAAAACGTTTTATCTGTCACATAATCAGGGAGTAGGTCATCTGCATGGCTACC
W3110  TATAAGATAAATAAAAGGTAAAACGTTTTATCTGTCACATAATCAGGGAGTAGGTCATCTGCATGGCTACC
UTI89  TATAAGATAAATAAAAGGTAAAACGTTTTATCTGTCACATAATCAGGGAGTAGGTCATCTGCATGGCTACC
CFT073  TATAAGATAAATAAAAGGTAAAACGTTTTATCTGTCACATAATCAGGGAGTAGGTCATCTGCATGGCTACC
301  TATAAGATAAATAAAAGGTAAAACGTTTTATCTGTCACATAATCAGGGAGTAGGTCATCTGCATGGCTACC
Sb227   TATAAGATAAATAAAAGGTAAAACGTTTTATCTGTCACATAATCAGGGAGTAGGTCATCTGCATGGCTACC
8401  TATAAGATAAATAAAAGGTAAAACGTTTTATCTGTCACATAATCAGGGAGTAGGTCATCTGCATGGCTACC
Sd197  TATAAGATAAATAAAAGGTAAAACGTTTTATCTGTCACATAATCAGGGAGTAGGTCATCTGCATGGCTACC

(a)

(b)

Fig. 3. Base sequences upstream of the malX and malI genes in different strains. The upper part (a) of the figure identifies the malX translation start

(doubly underlined) and shows the upstream sequences in bacterial genome sequences taken from the XBASE database (Chaudhuri et al., 2008).

Sequences are aligned to show the conservation of positioning of putative � 10 hexamer elements (shaded box) and 18 base pair DNA sites for MalI

binding (singly underlined). The lower part (b) of the figure similarly displays the malI translation start and upstream sequences. The listed sequences are

taken from the genome sequences of Escherichia coli K-12 (K12), E. coli O157:H7 EDL933 (O157), E. coli APEC O1 (APEC), E. coli W3110 (W3110),

E. coli UTI89 (UTI89), E. coli CFT073 (CFT073), Shigella flexneri 2a str.301 (301), Shigella boydii Sb227 (Sb227), S. flexneri 5 str.8401 (8401), Shigella

dysenteriae Sd197 (Sd197), and Shigella sonnei Ss046 (Ss046).
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position � 24 to position � 9 as the target for MalI binding

and show that the second 16 base pair element, which is

located upstream (Fig. 1), plays little or no role. In contrast,

this second element, which is located from position 13 to

position 118, downstream of the malI transcript start,

appears to be the key target for MalI-dependent repression of

the malI promoter, and the MalI operator site at the malX

promoter plays little or no role. This repression appears to be

independent of CRP. Indeed, repression in the absence of CRP

appears to be slightly stronger than in its presence (Table 1).

The divergent malX and malI promoters share a common

DNA site for CRP. As for other divergent bacterial promo-

ters that share an activator-binding site, activation in one

direction is largely independent of activation in the opposite

direction and this is likely to be due to the low frequency of

initiation at most promoters (El-Robh & Busby, 2002).

Although the malX and malI promoters share a DNA site

for CRP, each has a separate and independent DNA site for

MalI. The malX promoter MalI operator is located upstream

of the transcript start and overlaps the upstream end of the

� 10 hexamer, while the malI promoter MalI operator is

located downstream of the transcript start. This organiza-

tion is well conserved in the genomes of different strains of

E. coli and related Shigella. Figure 3 shows a comparison of

the base sequences upstream of the malX and malI transla-

tion start sites in these genomes, and the comparison

emphasizes how the precise locations of � 10 elements and

MalI operator sequences have been maintained. This pro-

vides yet another example of how efficient repression can

result from a repressor interacting at different locations at a

bacterial promoter (Rojo, 2001; Barnard et al., 2004).

Interestingly, repression is marginally greater at the malX

promoter than at the malI promoter, and this is consistent

with MalI action at the malI promoter being autoregulatory.

The E. coli K-12 malX-malI intergenic regulatory region

provides a simple example of ‘evolution and tinkering’

(Jacob, 1977). The malX promoter is an unremarkable

CRP-dependent promoter that resembles scores of Class II

promoters (Busby & Ebright, 1999) and it can be shut off by

MalI. In contrast, although the divergent malI promoter

resembles a Class II CRP-dependent promoter, it has

adapted to ensure that the MalI repressor is always made.

Thus, MalI-dependent repression is marginally less efficient

compared with the malX promoter, the dependence on CRP

is relaxed by the DNA site for CRP being located at position

� 43.5, and the promoter carries seven repeats of a 50-TAN8-30

motif, to facilitate RNA polymerase recruitment (Lloyd

et al., 2008).
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