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Global Network Cooperation Catalysed by
a Small Prosocial Migrant Clique

Steve Miller! and Joshua Knowles?

1 School of Computer Science, University of Manchester, Manchester, UK
2 School of Computer Science, University of Birmingham, Birmingham, UK
stevemiller.gm@gmail.com

Abstract. Much research has been carried out to understand the emer-
gence of cooperation in simulated social networks of competing individ-
uals. Such research typically implements a population as a single con-
nected network. Here we adopt a more realistic premise; namely that pop-
ulations consist of multiple networks, whose members migrate from one
to another. Specifically, we isolate the key elements of the scenario where
a minority of members from a cooperative network migrate to a network
populated by defectors. Using the public goods game to model group-
wise cooperation, we find that under certain circumstances, the concerted
actions of a trivial number of such migrants will catalyse widespread be-
havioural change throughout an entire population. Such results support
a wider argument: that the general presence of some form of disruption
contributes to the emergence of cooperation in social networks, and con-
sequently that simpler models may encode a determinism that precludes
the emergence of cooperation.

Keywords: Evolution of cooperation - Evolutionary game theory - Pub-
lic goods game - Complex networks

1 Introduction

A considerable amount of scientific work has been undertaken to explain the
apparently paradoxical existence of cooperative behaviour in a world defined by
the competitive basis of natural selection [I]. The question of how cooperation
may emerge within a competitive environment is, by definition, predicated on
cooperation being originally absent from the population. On such a basis, the
original appearance of cooperation occurs as a random event, more specifically,
a mutant behaviour in (rare) individual(s). We then consider whether such a
mutation will be extinguished, or will achieve fixation throughout a population.
Within investigations of network-reciprocated cooperation [2I3], models which
abstract social networks to test mechanisms for the emergence of cooperation
broadly follow approaches (implicitly) of this nature (see [4] for a review of such
investigations).

The overwhelming majority of research studies in this field have considered
a population to be one single connected network. However in the real world,



multiple (relatively) discrete dynamic networks exist within populations, and
at times, members of one social network may migrate to another. This is an
aspect of cooperation in real-world scenarios which requires understanding, yet
has thus far received little attention. In the work that follows, we isolate the
key elements of such a scenario: namely, we have a primary network of interest,
predicated on defector behaviour, and we consider the arrival of a very small
group of connected individuals that have emigrated from a cooperative network.

Our investigations here also derive from a second motivating principle. In
earlier work [5], we have described how population size fluctuation has a positive
impact, in promoting the emergence of cooperation in networks. Commenting on
this (ibid.), we suggested the possibility that the observed effect may be viewed
as a generalised response to perturbation of networks, and that population size
fluctuation may be only one way, amongst several, of perturbing a network to
thus yield similar results. This notion hints at a potential issue: that models
of cooperation which are overly deterministic, or lacking in noise, may preclude
the cooperative phenomena we seek to investigate. In the work that follows we
consider whether our findings add further support to this thinking.

2 Background

Here we highlight a few key elements of game theory relevant to this work. We
then briefly consider existing research forming the basis for our investigations.

Within the context of evolutionary game theory, a variety of games are used
to model social behaviours. A model of particular interest for investigating co-
operation is the public goods game (PGQ), otherwise referred to as the tragedy
of the commons [6] or the n-person prisoner’s dilemma. This game, being based
on group-wise rather than pair-wise behaviour, is arguably more analogous to
the complexity of real-world social interactions, than the standard prisoner’s
dilemma (PD), which only models interactions between paired individuals [7].

In the PGG, each participant can choose to contribute, or not, a fixed amount
to a central ‘pot’. This pot is then increased by a multiplier and redistributed
amongst all participants, regardless of whether they contributed. The rational
analysis of this game demonstrates that the selfish choice (defection), is the op-
tion which maximises an individual’s payoff, however if all individuals exercise
the same rationality, none will contribute and the public good will be minimised,
hence we have a ‘social dilemma’. Whilst the rational analysis predicts tragedy,
real-world examples of cooperation (contributing to the public good) are abun-
dant. It is this discrepancy between game theoretic predictions and empirical
findings which research attempts to redress.

The PGG can be implemented within evolving social networks [§], using an
approach where each member of the network in turn, initiates a PGG within a
group which consists of the individuals it is directly connected to—its ‘neigh-
bourhood’. Any given individual in the network will be a neighbour of several
other nodes, hence in addition to the PGG that a particular node initiates itself,
it will also be a participant in PGGs initiated by others. It is this participa-



tion of an individual in multiple games with multiple opponents, i.e. group-wise
interaction, which differentiates the PGG from its cousin in game theory—the
prisoner’s dilemma (PD). In the PD, an individual is able to retaliate or recipro-
cate in response to their partner’s behaviour. In the PGG however, participants
are not able to effectively target retaliation directly against defectors, since such
retaliation (i.e. not contributing to the public good) harms cooperator and de-
fector neighbours equally. The classical result for the PGG is that cooperation
becomes less likely as neighbourhood size increases. This result can be appreci-
ated intuitively, by considering that the more the neighbourhood size increases,
(i.e. the closer it gets to having all members of the network participating), the
more the game approximates the mean field scenario, where defection is the Nash
equilibrium [9].

The above approach has been extended to demonstrate the emergence of co-
operation, amongst evolving populations of individuals playing PGG, in dynamic
randomly growing networks [I0]. This development differs from earlier work in
its use of two evolutionary elements, rather than one. The two elements are:

1. Strategy updating: This is the primary evolutionary mechanism, present in [§]
and common to the majority of evolutionary game theoretic models used to
investigate cooperation in networks. It represents intrinsic effects within the
population, specifically, direct competition between two competing neigh-
bours. This mechanism’s effect is directly responsible for the spread of those
strategies which confer greater fitness upon individuals. It does not however,
in any way, affect the network topology.

2. Population size fluctuation: This secondary evolutionary mechanism [TT] rep-
resents widespread ‘environmental’ effects that are explicitly extrinsic to the
population. In the real world, examples might be disease, predation, food
shortages, drought, many of which may be seasonal. Here a proportion of
the less fit members of a society are periodically ‘killed off’. Specifically,
in the case of our implementation, individuals are removed from the pop-
ulation, along with the positions they occupied within the network due to
their connections. This (fitness-based) process causes changes in the net-
work topology, but it does not implement the spread of behaviours from one
individual to another.

In the following, we investigate how a variety of network simulations, all pred-
icated on originally non-cooperative behaviour, are affected by the arrival of a
very small (n < 3) group of cooperative migrants. We initially describe, in de-
tail, the implementation of our models. We then provide ‘behaviour profiles’ for a
range of network scenarios and growth mechanisms, followed by deeper scrutiny
of phenomena within the actual simulations that are of particular interest.

3 Methods

Our work is based on methodology presented in [SII0IT2]. We here give a full
description of our approach for completeness.



Our model describes agents located at the nodes of networks. Each node
in the network has a ‘neighbourhood’; defined by the nodes its edges connect
to. A PGG occurs for each neighbourhood and hence a network of N nodes
will result in N PGGs. Each agent in the network has a behaviour encoded
by a ‘strategy’ variable: ‘cooperate’ or ‘defect’, which determines whether it
contributes to PGGs, or not, respectively.

The general outline of the evolutionary process, for one generation, is as
follows:

1. Play public goods games: In a round-robin fashion, each agent initiates a
PGG involving its neighbours. An agent’s fitness score is the sum of payoffs
from all the individual PGGs that it participates in.

2. Update strategies: Selection occurs. Agents with low scores will have their
strategies replaced, on a probabilistic basis, by comparison with the fitness
scores of randomly selected neighbours.

3. Remowve nodes: If the network has reached the nominal maximum size, it is
pruned by a tournament selection process that removes less fit agents.

4. Grow network: A specified number of new nodes are added to the network,
each connecting to m randomly selected distinct existing nodes via m edges.

In the following, we provide more detail on each of the four steps:

Play public goods games. Each node of the network, in turn, initiates a PGG.
Within a single PGG, all cooperator members of a neighbourhood contribute a
cost ¢ to ‘the pot’. The resulting collective investment I is multiplied by r, and
rI is then divided equally amongst all members of the neighbourhood, regardless
of strategy.

Since an agent contributes a cost ¢ to each game they participate in, their
overall contribution, in one generation, is therefore c(k+1) where k is the number
of neighbours (degree). The single game individual payoffs of an agent x are
given by the following equations, for scenarios where x is a defector (Pp) and a
cooperator (P¢) respectively:

Pp=crn./(ks +1) (1)

Poc=Pp—c, (2)

where ¢ is the cost contributed by each cooperator, r is the reward multiplier,
n. is the number of cooperators in the neighbourhood based around z, and k,
is the degree of x.

Update strategies. Each node i selects a neighbour j at random. If the fitness
of node 4, f; is greater or equal to the neighbour’s fitness f;, then i’s strategy is
unchanged. If the fitness of node 7, f; is less than the neighbour’s fitness, f;, then
1’s strategy is replaced by a copy of the neighbour j’s strategy, according to a
probability proportional to the difference between their fitness values. Thus poor
scoring nodes have strategies displaced by those of more successful neighbours.



Hence, at generation ¢, if f;(t) < f;(t) then i’s strategy is replaced with that
of the neighbour j with the following probability:

i) = fi()
My, (t) = fd-max(k;(t), k;(t)

3)

where k; and k; are degrees of node 7 and its neighbour j respectively. The pur-
pose of the denominator is to normalise the difference between the two nodes,
with fd-max(k;(t), k;(t)) representing the largest achievable fitness difference
between the two nodes given their respective degrees. In the absence of a mathe-
matical approach to calculate this, we run simulations for all 4 combinations (of
the 2 strategy types at the 2 nodes), to establish maximum possible difference.

Grow network. We add 10 new nodes (7 on the first generation), with randomly
allocated strategies, per generation. Each new node uses m edges to connect to
existing nodes. Duplicate edges and self-edges are not allowed. The probabil-
ity I1(t) that an existing node i receives one of the m new edges is given by
the following equations, for random attachment (RA), degree-based preferen-
tial attachment (PA), and fitness-based evolutionary preferential attachment
(EPA) [12], respectively:

1

Hpa,(t) = N (4)

where N (t) is the number of nodes available to connect to at time ¢ in the existing
network. (Given that in our model each new node extends m = 2 new edges, and
multiple edges are not allowed, N is therefore sampled without replacement.)
E;i(t)
N(t

X s (1)
where k;(t) is the degree of an existing node 4 and N(t) is the number of nodes
available to connect to at time ¢ in the existing network.

IIpy,(t) = ) (5)

B 1-— 6+€fi(t)
Mppa,(t) = SNO@ —etef;(1)

where f;(t) is the fitness of an existing node 7 and N (¢) is the number of nodes
available to connect to at time ¢ in the existing network. The parameter € € [0, 1)
is used to adjust selection pressure. (We used € = 0.99 for ‘strong’ EPA.)
Growth only occurs at times when the network is below a nominal maximum
size (we used N4 = 1000 nodes). For all added nodes, other than migrants,
we set m = 2.
Remove nodes (for fluctuation simulations). Whenever the network achieves
or exceeds the nominal maximum size, it is pruned by a percentage X. This is
achieved by tournament selection using a tournament size equivalent to 1% of
the network. Tournament members are selected randomly from the network. The
tournament member having the least fitness is the ‘winner’ and is added to a

(6)



short list of nodes to be deleted. Tournament selection continues until the short
list of X% nodes for deletion is fully populated.

The nodes on the short list (and all of their edges) are removed from the
network. Any nodes that become isolated from the network as a result of this
process are also deleted. (Failure to do this would result in small numbers of
single, disconnected, non-playing nodes, having static strategies and zero fitness
values.) When there are multiple nodes of equivalent low fitness value, oldest
nodes are deleted first. Where X = 0, no deletions occur; in this case, on reach-
ing maximum size, the network structure becomes static.

Migrant clique attachment. At generation 300, the migrant group connects
to the existing primary network. Our migrant groups are small complete net-
works i.e. cliques, consisting of between 1 to 3 nodes (specific details in results
section), all having cooperator strategies. Initial connection to the primary net-
work is via only one of the nodes in the clique. This node extends either 1 or
2 edges (specific details in results section) to existing network nodes chosen at
random. Once connected, the migrants are treated as a part of the primary net-
work and are exposed to all elements of the evolutionary process described above.

General simulation conditions. In networks grown from founder members,
initial nodes were populated with defector strategies. In ‘pre-existing’ networks,
all nodes were populated with defectors. Strategy types of subsequently added
nodes were allocated independently, uniformly at random (cooperators and de-
fectors with equal probability). All networks had an overall average degree of
approximately & = 4, hence an average neighbourhood size of g = 5 (since
neighbourhood includes self). Simulations were run until 20,000 generations. Fi-
nal ‘fraction of cooperators’ values we use are means, averaged over the last 20
generations of each simulation. Each simulation consisted of 25 replicates. We
used a shrinkage value of X = 2.5% for all fluctuation simulations. Simulation
data is recorded after step 2 (Update strategies).

4 Results and Discussion

We initially present our results using an approach common for investigations in
this field. We aggregate data from multiple differing sets of simulations, plotting
final fraction of cooperators against the variable, 1, which is the PGG reward
multiplier normalised with respect to the average neighbourhood size in the
network. In Fig. we present such ‘behaviour profiles’ for results from the
‘simplified scenario’ of pre-existing networks. These networks have initially ran-
dom graph topology [13] and are initialised entirely with defectors. Figure ,
illustrates the ‘more realistic’ scenario where we consider networks grown from
their origins, in this case from 3 founder defector members. In both network
scenarios we provide profiles for the three attachment mechanisms of RA, PA
and EPA.
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Fig. 1. Behaviour profile plots illustrating the impact of a migrant cooperator clique
on the emergence of cooperation for three different attachment mechanisms: RA; PA
and EPA. a) shows pre-existing networks having initially random graph topology and
initialised entirely with defectors. b) shows networks grown from 3 defector founders.
Final fraction of cooperators present is plotted against 1 (the PGG reward multiplier r
normalised with respect to average neighbourhood size, g = 5). Migrant cliques consist
of 3 connected cooperators, one of which attaches to the existing network randomly by
2 nodes. Green lines with circle markers are simulations featuring migrants. Black lines
with square markers are controls (no migrants). Solid lines represent simulations that
are fixed in their network topology. (In the case of b, topology becomes fixed upon
population achieving maximum size.) Dashed lines represent fluctuating simulations.

For the simpler scenario of pre-existing networks, initialised with all defectors
(Fig. [Th) and having a fixed network size, we naturally observe zero cooperation
(solid black lines) for all attachment mechanisms. In comparison, the migrant
scenario (solid green line) precipitates cooperation once the temptation of the
reward achieves a particular threshold (n > 0.7). In the case of fluctuating
network size, we see that the migrants promote higher levels of cooperation than
those seen in their absence (compare green dashed with black dashed lines),
except in the case of EPA, where levels of cooperation have already been elevated
by the increased network heterogeneity associated with this mechanism (see [14]
for detailed information on the role of network heterogeneity in cooperation).

When we consider the more complex scenario of networks grown from founders
(Fig.[Ip), we see that our earlier findings still hold. Again, above a reward thresh-
old (n > 0.6), the arrival of the migrants promotes widespread cooperation. We
see this effect for networks that become static on reaching specified maximum
size and also in those that fluctuate in size thereafter. We note that in the case
of fluctuating models, we see little difference in final outcomes when comparing



pre-existing networks with those grown from founders (compare corresponding
coloured dashed lines in Figs. [l and b). As described in earlier research [I1], the
fluctuation mechanism, by deleting low fitness nodes from within the network,
can overcome the limitations of ‘fossilised’ (zero-fitness, defector-dominated) re-
gions of the network in a manner that is not achievable by strategy updating
between neighbours. Importantly, cooperation can be supported by a fluctuat-
ing population size, without the requirement for highly heterogeneous network
topology: the fluctuation mechanism drives networks to a topology that has only
moderately heterogeneous connectivity (in the form of a compressed exponential
degree distribution) [10].

Whilst the behaviour profile plots above allow us to neatly characterise and
compare different experimental simulations, they describe derived data which
for the most part is of limited interest, whilst potentially masking more inter-
esting phenomena. More specifically, as the value of the reward variable (n) is
maximised /minimised, the dilemma becomes diminished and the dominant be-
haviour of populations becomes consistent and highly predictable. We suggest
that in presenting abstracted representations of real-world scenarios, such regions
of the behaviour profiles are of limited relevance.

It is the mid-range values of the reward variable that represent the social
dilemma in its strongest form. We suggest that these regions are of particular
importance in investigating the emergence of cooperation, since they represent
the much more realistic challenge faced in nature by individuals attempting
to balance cost versus reward, and in addition, where noise may likely be a
confounding or contributory factor. Where we see transitions in population be-
haviour, where a mixture of competing behaviours exists, where the choice of
cooperate or defect is not clear cut, and where noise may be present—these are
the areas we are interested in.

‘We now explore the behaviour of our populations, in these regions of interest,
by focusing on the behaviour of replicate simulations as they transition from
defection to cooperation. From Figs. [Th and b, we see the widest variety of
outcomes in the region approximately around where = 0.8. Figure 2] illustrates
individual time plots of simulations based on this value, for the simplified case
of pre-existing networks initialised with defectors. The plots show simulations
with the effects of fluctuation and immigration enabled, disabled, and acting in
concert. We summarise from inspection of these plots that:

i The fluctuation mechanism on its own enables a majority of replicates to
transition to cooperation. Similar levels of cooperation are achieved by all
of those replicates that transition. Transition times however remain variable
with some replicates failing to transition over the time period studied.

ii The isolated effect of migrant arrival drives higher levels of cooperation
amongst replicates. In the case of this effect though (in contrast to our previ-
ous observation), it is the levels of cooperation achieved which are variable.

iii The combined impact of migrants together with fluctuating population size,
results in all replicates transitioning to cooperation with consistency in both



final levels of cooperation achieved, and also in transition times (all replicates
transition within 200 generations of the arrival of the migrants).
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Fig. 2. Simulation time plots (25 replicates) illustrating the effects of migrant clique
arrival and fluctuation, in pre-existing random networks initialised with defectors, with
1 = 0.8. Plots show number of cooperators over 20,000 generations. Migrant groups are
complete networks of 3 cooperator nodes, 1 of which connects to 2 randomly selected
existing network nodes. Network growth is by random attachment. All other details
are as described in Methods section. Number of replicates transitioned to cooperation
is shown in circle inset.

In Fig. 3] we illustrate similar time plots, in this case for the more com-
plex scenario featuring networks grown from founder populations of 3 defectors.
We observe that the findings seen earlier, for the simplified case of pre-existing
networks, still hold: fluctuation alone promotes consistent levels of increased
cooperation albeit with variable transition times; migrants alone promote co-
operation albeit to varying levels; the combination of cooperator migrants and



fluctuation brings consistency to both transition times and levels of cooperation
achieved.
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Fig. 3. Simulation time plots (25 replicates) illustrating the effects of migrant clique
arrival and fluctuation, for networks grown from 3 defector founders, with n = 0.8.
Plots show number of cooperators over 20,000 generations. Migrant groups are complete
networks of 3 cooperators nodes, 1 of which connects to 2 randomly selected existing
network nodes. Network growth is by random attachment. All other details are as
described in Methods section. Number of replicates transitioned to cooperation is shown
in circle inset.

These findings are also robust to attachment mechanisms. For both of the
network models illustrated above, in addition to random attachment (as repre-
sented in Figs. [2[and , the same observations also held when tested using both
degree-based attachment (PA), and fitness-based attachment (EPA).

The ability of the of the migrant clique to invade defector networks appears
to arise from benefits conferred on the connecting migrant by the ‘back-up’



provided from its fellow migrants. These back-up migrants are initially immune
to both strategy updating and the impact of defectors in reducing their payoff
values (being as they are initially not directly connected to the network). The
back-up migrants can boost the payoff (fitness) of a connecting migrant, so that
during strategy updating, it can thus readily convert the existing network node it
connects to, into a cooperator. Beyond initial possible payoff calculations, which
can be established analytically, it becomes harder to pin down the details of the
further spread of cooperation. However, it is clear from our investigations that
in the case of migrant-triggered cooperation, it is this back-up which is key.

What is particularly interesting here, is just how small the migrant group can
be, whilst still being able to precipitate the emergence of cooperation through
the entire population. The previous simulations were based on migrant groups of
3 connected individuals, one of which extends 2 connections to random existing
members of the network. In additional work, we have reduced the size of the mi-
grant group to 2 individuals, of which one connects only 1 edge to an existing net-
work node. Tested at the same 7 (= 0.8), on pre-existing defector-populated ini-
tially random networks, and on networks grown from defector founders (growth
by RA in both cases), our previous findings still hold. (Time plots were highly
similar to those shown in Figures 2 and 3, with the only difference that a delay
in transition was observed infrequently, e.g. 1 or 2 replicates out of 25, for those
simulations combining both migration and fluctuation.) On further reduction to
1 node (extending either 1 or 2 edges), our general findings no longer hold. This
outcome is entirely expected, as this situation is now no different to the standard
attachment process by which all new individuals routinely connect—1 node, 2
edges, i.e. no back-up.

These findings based on adjustments to the migrant clique highlight a poten-
tial source of concern regarding models of cooperation in networks, namely that
widely differing outcomes may arise from seemingly small differences in simu-
lation parameters: We can reduce our migrant mechanism to a point where it
appears very similar (2 nodes, 1 edge) to the mechanism by which nodes rou-
tinely attach during network growth (1 node, 2 edges). Given such similarity,
and noting that the migrant effect happens only once in a simulation, whilst
new nodes are added repeatedly in the fluctuation model, we might be inclined
to therefore assume that results due to the migrant clique arrival would be triv-
ial relative to those arising from fluctuation. However, we see in our results that
the isolated, seemingly trivial, migrant event clearly brings about an additional
change to populations, which is not achieved in its absence. The small differ-
ence between these two very similar mechanisms results in markedly different
behavioural dynamics. Importantly, despite their apparent similarities, the at-
tachment mechanism used for routine network growth clearly cannot create the
additional opportunities for cooperation that the migrant clique’s arrival can
enable.

These results combined with findings of previous research, reinforce our belief
that fluctuations in the network, or migrant cliques, or alternative mechanisms
to perturb the system, bring an added dimension to models of cooperation in



networks that simpler mechanisms fail to provide: It is these noisy perturbations
of the network that disrupt the ‘status quo’ and catalyse the spread of coopera-
tion throughout the population. If this assumption is correct then there is a risk
that simpler, more deterministic models of cooperation in networks may lack the
disruptive elements that promote cooperation and may thus preclude or impede
its emergence.

5 Conclusion

Using various models of cooperation, based on the public goods game, we have
investigated a scenario where individuals migrate, from a cooperative network,
to join one that does not demonstrate cooperation. Under certain conditions,
notably around the region where the social dilemma is at its strongest, we
find quite striking results: The effect of a few concerted migrants catalyses a
marked behavioural change, precipitating the widespread emergence of coopera-
tion throughout the entire population. Of particular interest is our finding that
the migrant group size can be extremely small and needs only to form one initial
connection in order to initiate a marked response. The actions of a seemingly
trivial group of concerted cooperators initiate changes throughout a population
that is orders of magnitude larger than the migrant group.

We have hypothesised that perturbation, in the form of population size fluc-
tuation, and also in the form of invading migrants, can promote cooperation.
We have demonstrated this to be the case for both of these effects in isolation,
and to a greater extent, in concert. Clearly other methods, or combinations of
methods, for perturbing or disrupting networks exist that may yield similarly
interesting results.

Our results reinforce previous work proposing that perturbations of networks,
or possible alternative forms of disruption, are an important contributory feature
in the emergence of cooperation. Taken generally, such observations suggest the
potential for oversimplified or strictly deterministic models of cooperation in
social networks, to limit or exclude the phenomena they seek to investigate. We
highlight, in particular, that from a combination of two mechanisms studied here,
there emerged a consistency in outcome that is unlikely to have been anticipated
from studying simpler models of each mechanism in isolation.
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