A note on coherence of dcpos
Jia, Xiaodong; Jung, Achim; Li, Qingguo

DOI:
10.1016/j.topol.2016.06.011

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
A note on coherence of dcpos

Xiaodong Jiaa,*, Achim Junga, Qingguo Lib

aSchool of Computer Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
bCollege of Mathematics and Econometrics, Hunan University, Changsha, Hunan, 410082, China

Abstract

In this note, we prove that a well-filtered dcpo L is coherent in its Scott topology if and only if for every $x, y \in L$, $\uparrow x \cap \uparrow y$ is compact in the Scott topology. We use this result to prove that a well-filtered dcpo L is Lawson-compact if and only if it is patch-compact if and only if L is finitely generated and $\uparrow x \cap \uparrow y$ is compact in the Scott topology for every $x, y \in L$.

Keywords: coherence, well-filtered dcpo, Lawson compactness, patch topology

2000 MSC: 54B20, 06B35, 06F30

1. Introduction

In this paper, we investigate the coherence with respect to the Scott topology on directed-complete partial ordered sets (dcpos for short). Coherence, which states that the intersection of any two compact saturated sets is again compact, is an important property in domain theory [1, 3]. For instance, coherence is equivalent to Lawson compactness on pointed continuous domains [5]. This equivalence enabled the second author to characterise the Lawson compactness of continuous domains by the so-called “property M”, and use this element-level characterization to classify the category of continuous domains with respect to the cartesian closedness [5, 6].

In [9, 8], the equivalence between coherence and Lawson compactness was generalised to quasicontinuous domains. In Chapter 3 of [3], one even sees that on finitely generated quasicontinuous domains the compactness of $\uparrow x \cap \uparrow y$ for any $x, y \in L$, which seems much weaker than what coherence requires, already implies the Lawson compactness of L. In this note, we greatly generalize this result to well-filtered dcpos. Indeed, since every quasicontinuous domain is locally finitary compact and sober (see for example, [3]), our proof drops the locally finitary compact property and only uses well-filteredness, which is even strictly weaker than sobriety [7].

2. Preliminaries

We refer to [1, 5] for the standard definitions and notations of order theory and domain theory, and to [3] for topology.
A topological space is called well-filtered if, whenever an open set U contains a filtered intersection $\bigcap_{i \in I} Q_i$ of compact saturated subsets, then U contains Q_i for some $i \in I$. Any sober space is well-filtered (see [3, Theorem II-1.21]). We take coherence of a topological space to mean that the intersection of any two compact saturated subsets is compact. A stably compact space is a topological space which is compact, locally compact, well-filtered and coherent. We call a dcpo L well-filtered (respectively, compact, sober, coherent, locally compact, stably compact) if L with its Scott topology $\sigma(L)$ is a well-filtered (respectively, compact, sober, coherent, locally compact, stably compact) space. Without further reference, we always equip L with the Scott topology $\sigma(L)$. Finally, a dcpo L is said to be core-compact if its Scott topology $\sigma(L)$ is a continuous lattice in the inclusion order.

For a topological space X, we denote the set of all compact saturated sets of X by $Q(X)$. We consider the upper Vietoris topology v on $Q(X)$, generated by the sets

$$\square U = \{K \in Q(X) \mid K \subseteq U\},$$

where U ranges over the open subsets of X. We use $Q_v(X)$ to denote the resulting topological space. For a dcpo L, we use $Q_v(L)$ to denote $Q_v((L, \sigma(L)))$.

3. Main results

Lemma 3.1. Let L be a well-filtered dcpo. Then L is coherent if and only if $\uparrow x \cap \uparrow y$ is compact for all $x, y \in L$.

Proof. If L is coherent, it is obvious that $\uparrow x \cap \uparrow y$ is compact for all $x, y \in L$, since $\uparrow x, \uparrow y$ are compact saturated.

For the reverse, suppose $\uparrow x \cap \uparrow y$ is compact for all $x, y \in L$. We proceed to prove that for any compact saturated sets $A, B \subseteq L$, $A \cap B$ is compact in L. To this end, fix some element $a \in L$; we define a function f from L to $Q_v(L)$ by sending an element x to the compact saturated set $\uparrow x \cap \uparrow a$. We claim that f is continuous. Indeed, for every Scott open subset $U \subseteq L$, $f^{-1}(\square U) = \{x \mid \uparrow x \cap \uparrow a \subseteq U\}$ is obviously an upper set. Let $D \subseteq L$ be a directed subset with $\sup D \in f^{-1}(\square U)$, then one has $\uparrow (\sup D) \cap \uparrow a \subseteq U$, that is, $\bigcap_{d \in D} (\uparrow d \cap \uparrow a) \subseteq U$. Note that L is well-filtered and $\{\uparrow d \cap \uparrow a \mid d \in D\}$ is a filtered family of compact saturated sets by assumption, so we have some $d \in D$ such that $\uparrow d \cap \uparrow a \subseteq U$, i.e., $d \in f^{-1}(\square U)$. Hence f is continuous.

Since f is continuous, for the given compact saturated subset $A \subseteq L$, $f(A) = \{\uparrow x \cap \uparrow a \mid x \in A\}$ is a compact subset of $Q_v(L)$. We now claim that the union of $f(A)$, which is just $A \cap \uparrow a$, is compact in L. Indeed, for any compact subset C of $Q_v(L)$, let $\{U_{\alpha}\}$ be a directed family of open sets of L covering $\bigcup C$. By compactness, every element K of C is already covered by one U_{α}; in other words, $K \subseteq \bigcap U_{\alpha}$. It follows that $\{\square U_{\alpha}\}$ is a directed family covering C, and now the compactness of C tells us that $C \subseteq \bigcup U_{\alpha}$ for some α. Hence $\bigcup C \subseteq U_{\alpha}$ for this α. (This argument is similar to the one employed by Andrea Schalk in [3, Chapter 7] for showing that $\bigcup Q_v((Q_v(X))) \rightarrow Q_v(X)$ is well-defined.)

Now for such A the above argument enables us to define another function g from L to $Q_v(L)$ as: $g(x) = \uparrow x \cap A$ for every $x \in L$. A similar deduction shows that g is continuous. So for the compact saturated subset B of L, $g(B)$ is compact in $Q_v(L)$, and again the union of $g(B)$, which is $A \cap B$, is compact in L. So L is coherent. \square
Corollary 3.2. Every well-filtered complete lattice L is coherent.

Proof. For every $x, y \in L$ the intersection of $\uparrow x$ and $\uparrow y$, which is $\uparrow (x \lor y)$, is always compact, so the statement follows from Lemma 3.1.

The following fact about core-compact complete lattices is essentially due to G. Gierz and K.H. Hofmann [2]; we collect it here as a corollary to the previous result.

Corollary 3.3. For a complete lattice L, the following statements are equivalent:

1. L is core-compact, i.e., $\sigma(L)$ is a continuous lattice;
2. $(L, \sigma(L))$ is stably compact.

Proof. The only interesting part is that 1 implies 2. Suppose L is a complete lattice and $\sigma(L)$ is continuous, then $(L, \sigma(L))$ is a locally compact sober space by [3, Proposition VII-4.1]. Since sober spaces are well-filtered, L is coherent by Corollary 3.2. Finally, L is obviously compact in its Scott topology since it has a least element.

We now come to a characterization of the compactness of Lawson and patch topologies on L. Recall that the patch topology on L arises by taking all Scott closed sets together with all compact saturated sets as a subbasis for the closed sets; whereas the (coarser) Lawson topology is generated by the Scott closed subsets and principal upper sets $\uparrow x$. The following theorem is a generalization of [3, Theorem III-5.8] which is stated for quasicontinuous domains.

Theorem 3.4. Let L be a well-filtered dcpo. Then the following statements are equivalent:

1. L is patch-compact, i.e., L is compact in the patch topology;
2. L is Lawson-compact;
3. L is compact and $\uparrow x \cap \uparrow y$ is compact for every $x, y \in L$;
4. L is finitely generated and $\uparrow x \cap \uparrow y$ is compact for every $x, y \in L$;
5. L is finitely generated and coherent.

Proof. (1\implies2): That 1 implies 2 is true for all dcpos since the patch topology is finer than the Lawson topology.

(2\implies3): It is obvious that L is compact since the Lawson topology is finer than the Scott topology. For every $x, y \in L$, $\uparrow x \cap \uparrow y$ is Lawson closed; therefore it is Lawson-compact, thus Scott compact.

(3\implies4): Since L is compact, by the Hausdorff Maximaliy Principle, every element is above some minimal element of L. Denote the set of all minimal elements of L by M. The set of all minimal elements of L by M; M must be finite. Otherwise, the family $\{M \setminus F \mid F \subseteq_{fin} M\}$ is a filtered set of non-empty Scott closed sets with an empty intersection, which contradicts compactness.

(4\implies5): This is from Lemma 3.1.

(5\implies1): This is a straightforward consequence of [3, Lemma VI-6.5].

4. Acknowledgments

We thank the anonymous referee for improving the presentation of the paper.

1This lemma works for sober dcpos in [3]. However, one can find that its proof only uses well-filteredness.
References

