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Fluctuational susceptibility of ultracold bosons in the vicinity of condensation in the
presence of an artificial magnetic field

A. J. Kingl, D. M. Gangardt, and I. V. Lerner
School of Physics and Astronomy, University of Birmingham,

Edgbaston, Birmingham, B15 2TT, United Kingdom

We study the behavior of ultracold bosonic gases in the critical region above the Bose-Einstein
condensation in the presence of an artificial magnetic field, Bart. We show that the condensate
fluctuations above the critical temperature Tc cause the fluctuational susceptibility, χfl, of a uni-
form gas to have a stronger power-law divergence than in an analogous superconducting system.
Measuring such a divergence opens new ways of exploring critical properties of ultracold gases and
an opportunity of an accurate determination of Tc. We describe a method of measuring χfl which
requires a constant gradient in Bart and suggest a way of creating such a field in experiment.

PACS numbers: 74.40.-n, 67.85.-d, 03.75.Hh

Amongst intensive simulation of condensed-matter ef-
fects in cold atomic gases (see [1–3] for reviews), con-
siderable attention was focused both on similarities and
on striking differences in properties of superconducting
systems on the one hand and ultra-cold Bose systems on
the other (see [4] for review). Yet, the impact of fluctua-
tions of the condensate order parameter above a critical
temperature Tc remains to be observed in atomic gases.

In the vicinity of Tc, i.e. for |τ | � 1 where τ ≡ T/Tc−1
is a reduced temperature, superconductivity can be de-
scribed within the Ginzburg-Landau mean-field (MF)
theory [5]. Its tremendous success for conventional clean
superconductors is based on irrelevancy of the fluctua-
tions for all achievable temperatures due the smallness
of the Ginzburg number, Gi ∼ 10−12÷10−14. Here the
Ginzburg number Gi defines the temperature interval,
|τ | . Gi, where fluctuational effects dominate [6]. How-
ever, Gi is much larger in dirty superconductors so that
temperatures τ ∼ Gi become attainable. In the tem-
perature interval Gi . τ � 1 the MF results still domi-
nate but fluctuational corrections become observable and
lead to a sharp power-law τ -dependence of conductivity
[7] and magnetic response [8] above Tc. The observa-
tions made in Refs. [7, 8] were in excellent agreement
with perturbative predictions by Aslamazov and Larkin,
Maki, and Thompson [9, 10].

No similar observations exist for gases of cold bosons
where analogs of the magnetic susceptibility and conduc-
tivity are not readily available for measurements. On the
other hand, the Ginzburg number Gi & 1 for a typical
dilute cold bosonic gas: although it is proportional to a
small gas parameter, the numerical coefficient is large,
see Eq. (6) below. This makes the order-parameter fluc-
tuations above Tc strong and their effects potentially ob-
servable.

In this Letter we analyze the fluctuational contribu-
tion, χfl, to the susceptibility of a cold bosonic cloud
in an artificial magnetic field, Bart, and suggest how to
measure it. Up to now experimental studies of proper-
ties of the BEC phase transition were mostly aimed at

the divergent correlation length [11, 12]. Studying exper-
imentally the critical susceptibility would allow one to
measure another critical exponent thus building a more
comprehensive picture of the phase transition.

We show that the dependence of χfl on the reduced
temperature τ is much sharper than in superconductiv-
ity for the gas in a uniform trap, like that in Ref. [13].
We argue that a realistic measuring scheme can be based
on using field Bart with a constant gradient in space, and
suggest a setup for creating such a field, see Fig. 1. An
implementation of such a scheme would expand the re-
search in rotating condensates [14] and artificial gauge
fields in general [15–17], which was mainly focused on in-
creasing the flux densities to reach exotic states of matter,
such as the quantum Hall regime [18].

An artificial magnetic field Bart is created by imprint-
ing an angular momentum and thus rotation on a cloud
of neutral atoms. Neglecting interatomic interactions in
the dilute cloud above Tc, the corresponding change in
the free energy of the cloud of radius R containing N
atoms is F0 = − 1

4mR
2Nω2

0 , which is equivalent to the
free energy of rotation with frequency ω0 = ωB/2 where
ωB ≡ Bart/m is the analogue of the cyclotron frequency
[19]. This looks like a rigid body rotation since the ran-
dom thermal motion of atoms is averaged out. The sus-
ceptibility per particle in natural units,

χ0 = − 1

N

∂2F0

∂ω2
B

=
1

8
mR2, (1)

is proportional to the average moment of inertia per par-
ticle, which is reduced below Tc as the Bose-condensed
part of the cloud does not contribute to it. The con-
densate fluctuations above Tc result in such a reduction,
which we parameterize as fluctuational corrections to the
susceptibility: χ = χ0 + χfl.

A detection of such a change in χ requires measuring
the ratio of angular momentum to angular velocity with a
high precision. We suggest a scheme that removes the ne-
cessity of difficult (if at all possible) direct measurements
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FIG. 1. The proposed setup of creating a nonuniform artificial
field, Bart. Top panel – the generalized Λ-scheme: torque is
imprinted on the cloud by difference in angular momenta of
three laser beams that couple sublevels of the ground state,
|g1,2〉 with exited state |e〉. Detunings of the beams coupling
|g2〉 and |e〉 change across the cloud due to a space-dependent
Zeeman shift. Bottom panel – varying detunings results in
different parts of a bosonic cloud acquiring different torques,
which provides a gradient in the torque equivalent to ∇Bart.

by creating an artificial magnetic field with a constant
gradient in the direction of the field, Fig. 1.

The suggested scheme is based on modifying the stan-
dard Λ-scheme [16, 17]. There the electronic ground state
of an atom is Zeeman-split into two close sublevels, |g1,2〉
with energies ε1≈ε2 coupled to a single excited state, |e〉,
of energy εe by two laser beams, with the second being
detuned by frequency δ from the resonance (εe − ε2)/~.
Angular momenta `1,2 are imprinted (e.g., with holo-
graphic masks as in Ref. [17]) on each beam so that their
cross-sections have a Gaussian–Laguerre form with the
Rabi frequencies adiabatically dependent on the atomic
position, Ω1,2(r) = |Ω1,2|(ρ/ρ0)`1,2e−ρ

2/2ρ20ei`1,2φ. We
put |Ω1|≈|Ω2|≡ Ω, and `2≡` > 0 while `1 =0. Then the
coefficients of the internal atomic wave function, |ψ〉 =
b1(t)e−iε1t/~ |g1〉+ b2(t)e−iε2t/~ |g2〉+ be(t)e

−iεet/~ |e〉, in
the rotating wave approximation obey the equations

iḃ1,2(t) = Ω1,2be(t) , iḃe(t) = Ω∗1b1(t) + Ω∗2b2(t) . (2)

In a steady state regime, each atom finds itself in the
dark state [20], |d(r)〉 = (Ω1(r) |g1〉−Ω2(r) |g2〉)/(Ω

√
2),

which is not directly coupled to the laser fields. Two
other internal states orthogonal to |d(r)〉 are separated
by a large gap and become redundant. A one-component
wavefunction describing motion in the laser fields obeys

a one-particle Schrödinger equation [16] in a vector po-
tential Aart = i~ 〈d|∇d〉, corresponding to the artificial
magnetic field in z-direction [21]

Bart = |∇×Aart| =
2~`2

ρ2
0

(ρ/ρ0)2(`−1)

[1 + (ρ/ρ0)2`]2
f(δ/Ω) . (3)

Function f(δ/Ω) describes the field sensitivity to detun-
ing; it equals [1 + δ2/2Ω2]−1 for |δ| � Ω and 2Ω2/δ2 for
|δ| � Ω while its exact form is not relevant.

To create a gradient in Bart, we suggest to modify the
standard scheme by coupling |g2〉 and |e〉 with two, in-
stead of one, laser beams carrying different angular mo-
menta, `a,b and detuned by δa,b from the resonance, see
top panel in Fig. 1. The gradient arises from linearly
varying the Zeeman split (with a weak real magnetic
field gradient in the z-direction) between |g1,2〉 and thus
the ratio δa/δb, resulting in a different angular momenta
transfer to different cross-sections along the beams.

A rigorous description of the modified scheme amounts
to replacing Ω2 in Eq. (2) by Ω2(t) = Ωae

iδat + Ωbe
iδbt,

where Ωa,b(r) have the Gaussian–Laguerre form charac-
terized by `a,b. One cannot eliminate time dependence
from thus modified Eqs. (2). However, we can demon-
strate without exactly solving Eqs. (2) that an almost
constant gradient of Bart emerges with a proper choice
of the parameters, as illustrated in Fig. 2. Such a gradi-
ent results from setting the detunings in such a way that
(i) δa = 0 and |δb| ∼ Ω in the middle of the cloud and
(ii) similar transverse profiles for Ωa and Ωb are selected
by choosing `a > `b > 1 (see Fig. ). In the Supplemen-
tal Material, we illustrate that the values chosen for this
figure are optimal for making this constant gradient ro-
bust with respect to small changes in the applied real
magnetic field and laser frequencies.

Now we describe a response of the bosonic cloud with

FIG. 2. (color online) The artificial magnetic field Bart along
the light-propagation axis z. The field is measured in units
of B0 = ~/ρ2

0; the detuning is chosen so that δa = 0 at z = 0,
δb = 0 at z = 1 and δa−δb = Ω (z is in arbitrary units). Each
line represents a different combination of angular momenta:
solid (red) is for `a = 2 and `b = 3; dash-dotted (green) is for
`a = 2 and `b = 4; dashed (blue) is for `a = 3 and `b = 4.
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FIG. 3. (color online) The radial dependence, Bart(ρ) of
Eq. (3), for Ωb = 0 and zero detuning at different values
of `a: solid (red): `a = 2; dashed (blue): `a = 3; dash-dotted
(green): `a = 4.

interatomic interactions to Bart created in the above
scheme. As the interactions are typically too weak to ex-
cite atoms from the dark state |d〉 [22], an effective field
theory can be formulated in terms of the one-component
complex field Ψ corresponding to |d〉. The action in the
vicinity of Tc is obtained from the full imaginary time
action by retaining only the zeroth Matsubara-frequency
component, Ψ = Ψ(r, ωn = 0), as higher frequencies do
not contribute to singularities in τ [23]. Thus results in
[23, 24] the universal classical action

S[Ψ] =
1

T

∫
dr

(
~2|∇Ψ|2

2m
− δµ|Ψ|2 +

g

2
|Ψ|4

)
. (4)

Here δµ = µ− 2gn, µ is the chemical potential, n is the
particle density at the center of the trap, g = 4π~2a/m,
and a is the scattering length. We assume weak in-
teractions, an1/3 � 1. The coupling constant g is
practically unaffected by the Λ–scheme, which results
only in changing the action by the minimal substitution,
∇→∇− iAart, to include Bart [21].

Essentially, S[Ψ] in Eq. (4) is the standard Ginzburg-
Landau functional [25]. However, for weakly interacting
bosons in a homogeneous trap a τ -dependence of fluc-
tuations is sharper than in the superconducting second
order phase transition. Below Tc the chemical potential
is fully governed by the interaction: δµ = −(3/p)gnτ ,
where p = 2, 1 for a 3D gas in a homogeneous/harmonic
trap. On the contrary, δµ above Tc [26] is essentially the
same as for the ideal gas:

δµ =

{
−c1Tcτ, trapped gas;
−c2Tcτ

2, uniform gas.
(5)

where c1 ≈ 2.2 and c2 ≈ 1.2 [27]. The interaction correc-
tion to this is parametrically small for the harmonically
trapped gas where gnτ/|δµ| ∼ an1/3 � 1, and numeri-
cally small in the region of interest for the uniform gas
where gnτ/|δµ| < gn/(TcGi) ∼ 0.1, see Eq. (6) below.

To show this, we rescale r → λr and Ψ → bΨ to
make the coefficients attached to all the three terms in
the GL functional (4) equal 1. The fluctuational weight

e−S[Ψ]/Tc becomes e−κS̃ where S̃ is dimensionless and
κ = (2

√
|δµ|/gTc)(~2/2m)3/2. The Ginzburg criterion

for suppression of the fluctuations [6] becomes κ & 1.
Substituting δµ and Tc, we find κ ≡ (τ/Gi)p/2. Thus for
the most interesting case of the 3D gas in a homogeneous
trap (p = 2) the Ginzburg criterion can be written as

1� |τ | & Gi ≈ 30an1/3. (6)

This coincides up to a numerical prefactor with the condi-
tion earlier formulated in the cold-atom context [11, 28].

The gas parameter an1/3 is not small enough in typ-
ical dilute gases to overcome the prefactor in Eq. (6).
For example, for a typical density of trapped Rb atoms,
1012÷ 1013cm−3 [2], an1/3 is a few hundredths and Gi is
just under 1. However, fine tuning the scattering length
near a Feshbach resonance would allow one to reduce Gi
by at least an order of magnitude [29], thus making the
window (6) available for observations.

We consider cold atoms trapped in an optical lattice
forming a stack of Nl layers, where fluctuational effects
are stronger than in the bulk. We assume that the laser
beams and thus Bart are normal to the layers. Then the
minimal substitution affects only in-layer components of
the gradient term in Eq. (4), ~∇‖ → ~∇‖ − iAart, while
the normal component is replaced by J |Ψj − Ψj+1|2,
where j enumerates layers separated by a distance d and
J is a weak inter-layer coupling. After integrating e−S

over the fields Ψ, one finds [10, 21] the fluctuation con-
tribution to free energy at τ�1 as follows

Ffl =
ΦTc

Φ0

∑
n,kz

ln
πTc

δµ(T ) + ~ωB(n+ 1
2 ) + 4Jsin2(kzd2 )

.

Here Φ is the total flux of Bart through the layer, Φ0 =
2π~ plays the role of the elementary flux, n = 0, 1, 2, . . .
labels the effective Landau levels in the field Bart and kz
is a quasi-momentum in the normal direction. The corre-
sponding susceptibility per particle, χfl = − 1

N ∂
2F/∂ω2

B ,
is found in the weak-field limit [30] similarly to that for
superconductivity [10, 21, 31]:

χfl/χ0 = −(2cp/3N‖)[τ
p(τp+ηp)]

− 1
2 . (7)

For the gas in a homogeneous trap (p = 2) the τ de-
pendence much sharper than in superconductivity results
from the τ2-dependence of δµ. Here N‖ ≡ N‖(ρ0) =
πndρ2

0 is the number of particles in a magnetized part of
a single layer and η1,2 = 4J/(c1,2Tc) is the anisotropy pa-
rameter. Since the inter-layer coupling J is independent
of other parameters, both the regimes η < Gi or η > Gi
are possible. In the latter case a crossover between 2D
and 3D behavior (τ > η or τ < η) lies in the region of
the MF applicability, Eq. (6).
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The fluctuations susceptibility in Eq. (7) is negative.
Since the classical susceptibility χ0 is proportional to the
moment of inertia, a reduction of the overall suscepti-
bility in the critical region above Tc is a fluctuational
precursor of the nonclassical rotational inertia below Tc

(the Hess–Fairbanks effect, [19]). Similarly to supercon-
ductivity, where the reduced magnetic susceptibility is
a fluctuational precursor of the Meissner effect, such a
reduction reflects the divergence of the size of the fluctu-
ational superfluid droplets at Tc. A similar reduction of χ
due to onset of superfluidity has recently been proposed
[32] for measuring the superfluid fraction below Tc.

Although the prefactor in Eq. (7) is small, a very sharp
τ dependence, especially in the case of the uniform gas,
χfl ∝ τ−2 at τ � η (which is much sharper than in super-
conductivity), makes the fluctuational effects observable.
Such a sharp τ dependence should be even more pro-
nounced outside region (6), i.e. for τ < Gi, where analyt-
ical expression (7) is no longer valid but one still expects
a critical behavior of χ. In this case the appropriate crit-
ical exponent can be in principle calculated numerically,
as in the case of the critical correlation length [33] where
it turned out to be in an excellent agreement with the
experiment [11].

The next step is expressing χfl via observable quan-
tities. To increase the weight of χfl in Eq. (7), N‖
and thus the laser beams aperture ρ0 should be rela-
tively small. On the other hand, to ensure the linear
response regime w.r.t. Bart it should be large enough,
ρ0n

1/3 � 1, i.e. ~ωB ∼ ~2/mρ2
0 � Tc, or equivalently

ωBρ0 � (Tc/m)1/2 ∼ vT . Taking n ≈ 2.3× 1013cm−3 as
in measurements of the critical correlation length of a Rb
cloud [11], one can choose ρ0 ≈ 10n−1/3 ≈ 3µm, (corre-
sponding to ωB ≈ 30Hz) to satisfy both the conditions.

In a steady state the central part of each layer rotates
(after averaging out atomic thermal motion) with its
own angular velocity ω0 = ωB/2, which linearly changes
from layer to layer due to the gradient of Bart. After
switching Bart off, it is necessary to allow some time for
the equilibration within each layer, i.e. for redistributing
the angular momentum from the central, “magnetized”
part across the layer by thermal collisions between par-
ticles. The collision time, τcol ≈ (a2nvT )−1, can be ex-
pressed via Tc and Gi, Eq. (6), so that in uniform gas
τcol ≈ (~/Tc)(30/Gi)2. This is about 30s if the scattering
length a is tuned so that Gi ≈ 0.1. So one should use the
Feshbach resonance again to temporarily increase a in
order to facilitate the angular momentum redistribution.

Expressing the angular momentum of the central part
of the layer in terms of ωB using Eqs. (1) and (7), we find
the angular velocity of each layer proportional to the field
Bart in this layer as follows

ω(τ) =
N‖(ρ0)χ(ρ0)

N‖(R)χ(R)

ωB
2

=
ρ4

0

R4

[
1 +

χfl(ρ0, τ)

χ0(ρ0)

]
ωB
2
,

where the fluctuational corrections are included only in

χ(ρ0) as their relative contribution is much smaller in
χ(R). Noticing that χfl is negligible at τ ∼ 1 and ωB is
T -independent, we find that in each layer

ω(τ)/ω(1) = 1 + χfl(ρ0, τ)/χ0(ρ0) (8)

To extract χfl one needs to measure ω with a high preci-
sion, while keeping ωB under control. Having a constant
gradient in Bart, which makes each layer to rotate at dif-
ferent frequencies, achieves precisely that.

To detect and measure such a differential rotation one
can apply a short laser pulse to make each layer elon-
gated, as in the superfluid case [34]. This elongation is
preserved if the dephasing time due to atomic collisions
is much longer than the rotation period. Restoring the
scattering length to the value corresponding to Gi ≈ 0.1
gives τcol ≈ 30s that would preserve the shape for hun-
dreds of rotations with ωB ≈ 30Hz as above. Then after
rotating for time t0 ∼ π/∆ω0, where ∆ω0 is a difference
in angular velocities of the two outer layers, the orien-
tations of all layers will be uniformly distributed over
all angles and the projection of the entire cloud along
the symmetry axis will change from the elongated to the
round one. The T -dependence t0(τ) can be found by re-
peated measurements of optical density along the z axis
at different temperatures in the vicinity of Tc. Then, in-
verting Eq. (8), one expresses the fluctuations suscepti-
bility in terms of directly measurable dephasing times as
χfl/χ0 = 1− t0(τ)/t0(1), which should reveal the critical
temperature dependence (7). An additional experimen-
tal control may be achieved by measuring the revival time
Nlt0 when all the elongated layers are aligned again.

In conclusion, we have shown that an impact of the
order parameter fluctuations on properties of ultracold
bosonic systems at the onset of the BEC could be exper-
imentally accessible. In contrast to superconductivity,
the fluctuational susceptibility is fully described [25] by
the GL functional (4) if the Ginzburg number (6) is small
enough. Thus measuring χfl will provide a new way of
studying bosons critical behavior near the condensation
transition, complementing recent studies of the critical
correlation length [11, 12]. Although χfl can be detected
for an ultracold gas in a usual harmonic trap [30], the
most striking effect is expected for the gas in a uniform
trap like the one recently implemented in Ref. [13], which
is the most suitable platform for studying the BEC phase
transition [12]. In this case we have found the unusually
sharp critical dependence of χfl on T−Tc, Eq. (7) with the
corresponding critical exponent γ equal 2 for τ & η. Such
a sharp criticality near the transition can provide another
way to accurately determine Tc. Finally, we hope that
creating artificial magnetic fields with a constant gradi-
ent will find other applications in ultracold systems.

We are grateful to Peter Krüger and Mike Gunn for
useful discussions. One of us (I.V.L.) gratefully acknowl-
edges support from the Leverhulme Trust via the Grant
No. RPG-380.
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P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011).
[17] J. F. S. Brachmann, W. S. Bakr, J. Gillen, A. Peng, and

M. Greiner, Opt. Express 19, 12984 (2011).
[18] M. Hafezi, A. S. Sørensen, E. Demler, and M. D.

Lukin, Phys. Rev. A 76, 023613 (2007); N. Goldman,
A. Kubasiak, A. Bermudez, P. Gaspard, M. Lewenstein,
and M. A. Martin-Delgado, Phys. Rev. Lett. 103, 035301
(2009); T. D. Stanescu, V. Galitski, and S. Das Sarma,
Phys. Rev. A 82, 013608 (2010); M. Atala, M. Aidels-
burger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Dem-
ler, and I. Bloch, Nature Phys. 9, 795 (2013).

[19] A. J. Leggett, Quantum liquids: Bose condensation and
Cooper pairing in condensed-matter systems (Oxford

University Press, 2006).
[20] R. Dum and M. Olshanii, Phys. Rev. Lett. 76, 1788

(1996).
[21] See Supplemental Material for detail.
[22] The criterion is gn � Ω, which is equivalent to

(an1/3)Tc � Ω. For typical experimental conditions

Tc � Ω, while (an1/3) is a small gas parameter, so that
condition is fulfilled.

[23] G. Baym, J.-P. Blaizot, M. Holzmann, F. Laloë, and
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1 The chemical potential above Tc

We want to outline the reasoning that leads to the results in Eq. (6). Above the transition, nearly all the particles
are in the excited states. This number is, at least above the transition, practically temperature independent as
the number of particles in the ground state is vanishingly small. For a density of states of ρα(ε) = Cαε

α−1 one
finds

nth =
ˆ

dερ(ε)
(
eβ(ε−µ) − 1

)−1
= CαT

dΓ (α) Liα
(
e
µ
T

)
. (1)

We used the definition of the polylogarithm

Liα(x) = 1
Γ(α)

ˆ ∞

0

yα−1

ey/x− 1dy. (2)

At the critical temperature Tc, the chemical potential µ is 0. We have to demand that small changes in
temperature ∆T = Tcτ change µ in such a way as to leave the total particle number invariant. We use that
(Tc + ∆T )α ≈ Tc (1 + ατ) and the expansion of the polylogaritm[? ]

Liα (ex) = Γ(1− α) (−x)α−1 +
∑

k

ζ (α− k)
k! xk,

where ζ(r) =
∑∞
n=1

1
nr is the Riemann zeta function. This leads to

τ = − 1
α

Liα
(
e µT
)
− Liα(1)

Liα (1) .

Since µ is small, we can focus on the relevant orders in the polynomial and obtain

−Liα(1)ατ = Liα
(
e
µ
T

)
=Γ(1− α)

(−µ
Tc

)α−1
+ ζ (α− 1) µ

Tc
. (3)

For the trapped gas α = 3 and close enough to criticality the term quadratic in µ and logarithmic corrections
can be neglected, one finds

µ

Tc
= −3ζ(3)

ζ(2) τ = −C1 Tc τ (4)

Note: It appears as if the polylogarithm diverges for integer α in the Gamma term. However, this divergence
is exactly cancelled by the divergence of the ζ(1) term. A careful limiting procedure shows that for integer k
the limit limα→k+1 Γ(1− α)(−x)α−1 + ζ(α−k)

k! xk = xk

k!

(∑k
n=1

1
n − ln (−x)

)
.

For α = 3/2 (free uniform gas) and close to criticality, the linear in µ term can be neglected and one has

µ

Tc
= − 1

π

(
3ζ(3/2)

4

)2
τ2 = −C2 Tc τ

2. (5)
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2 The susceptibility in the uniform system
The following derivation is similar to the treatment of the subject in the context of superconductivity in [? ].
Starting from the action in Eq. (5) we modify it to contain the magnetic vector potential A = r×B

2 . In addition,
the anisotropic stacked system (with spacing d) is introduced by replacing the gradient in the z direction by
(∇zΨ)2 → J |Ψn+1 −Ψn|2 ,where n labels the layers. We work in the Gaussian approximation, so the quartic
term proportional g is neglected. To diagonalize, the Landau level representation is introduced

Ψ(r) =
∑

n.kz

Ψn,kzφn(r‖)eikzd,

where r‖ is the position vector within one layer and φn is the wavefunction of the nth Landau level (which
is degenerate with the factor AB/Φ0, A being the sample area and Φ0 = ~ is the flux quantum) and kz is
evaluated in the first Brillouin zone. Each state has the energy TcC2τ

2 + ~ωB (n+ 1/2) + 2J cos (kzd). The
parameter ωB = B/m is the cyclotron frequency, and C2 is just the constants calculated in (5). As a reminder,
the partition function Z =

´

DΨDΨ∗e−S[Ψ,Ψ∗] can be evaluated for a quadratic bosonic action by using the
standard relation

´

DΨDΨ∗e−Ψ∗AΨ = detA−1. Taking the logarithm yields the formula for the free energy,
F = −TclnZ, given by

F (τ, h) = AB

Φ0
Tc
∑

n,kz

ln
τeα + 4h (n+ 1/2) + 2J

TcCα
(1− cos (kzl))

π/cα
, (6)

where h is a reduced magnetic field 4h = ~B/mTcC2. Since the sum is divergent one should introduce an upper
cutoff nc ≈ Tc/~ωB ∼ 1/h and for convenience it is useful to introduce the notation τ̃ = τ2 + η

2 (1− cos (kzd)),
where η = 4J

TcC2
is the anisotropy parameter. Exchanging the sum and logarithm and using [? ]

Γ (z) = lim
nc→∞

nc!nz−1
c

z (z + 1) (z + 2) · · · (z + nc − 1) , (7)

one obtains the approximation

F ∼
∑

kz

ncln
[(

π

4hcα

)]
+ ln [Γ (1/2 + τ̃ /4h)]− ln

[
nc!nτ̃/4h−1/2

c

]
. (8)

Expanding to second order in h and converting the sum over the momenta into an integral and keeping only
the contribution ∼ h2 leaves

δF = ANTc
πξ2

0

ˆ π/l

−π/l

ldkz
2π

1
3
h2

τ̃
= ANTh2

3πξ2
0

ˆ π

−π

dθ

2π

(
τ2 + η

2 (1− cos (θ))
)−1

. (9)

Performing the integration
ˆ π

0

dθ

2π

(
τ2 + η

2 (1− cos (θ))
)−1

=
(
τ2 (τ2 + η

))−1/2
. (10)

With V = ANl this gives for the free energy density

f (τ) = F (τ)
V

= Th2

3πlξ2
0

1√
τ2 (τ2 + η)

= −χ2B
2, (11)

From which the susceptibility in Eq. (8) of the paper can be read off.
It is however helpful to rewrite everything in units of the energetic susceptibility per particle

χ̃ = 1
NV

∂2F

∂ (~ωB)2 = m2χfl
~2 = 1

Tc

√
η√

τ2 (τ2 + η)

where we used that Tc ∼ ~2

ml2xy

√
η describes the suppression of the critical temperature due to the anisotropy, lxy

being the interparticle distance within the layer. The above formula for the susceptibility interpolates between
the strongly anisotropic(≈ single layer for τ � η) and for the quasi three dimensional case (τ � η ). Note that
the result differs from the similar result in superconductivity, namely here the divergence of the susceptibility
is stronger. However, a system with an additional trapping in the x − y direction behaves different. In the
center of the trap where fluctuations are not influenced by the finite trap size, the correct susceptibility can be
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recovered by letting τ2 → τ . However, this really holds only in the center of the trap and for not too small τ .
In the thermodynamic limit the fluctuational behaviour is suppressed, as we will demonstrate elsewhere.

One could speculate whether the Ginzburg criterion in the anisotropic system might considerably deviate
from Eq. (7) of the paper. However, a similar rescaling as for the isotropic uniform system results in

Gi ≈ 35
(
mJd2

~2

)1/6

an1/3.

Because of the small exponent, the Ginzburg criterion deviates only slightly for all values of practical interest.
At this point it should be mentioned that in a real system the confinement may influence the effective scattering
length.

3 Gauge potentials for multilevel systems
The following outline follows the review by ? ].
In the conventional time-independent Λ scheme, as exemplified by eq. (1) in the main text, the Hamiltonian H
can be written as

H =
(
P 2

2m + V (r)
)
⊗ 1̂ + U,

where V (r) is the trapping potential and U is the spatially dependent matrix,

U = ~
2




0 Ω∗1 0
Ω1 0 Ω2
0 Ω∗2 0


 ,

that describes the coupling of the internal states
∣∣g1/2

〉
, |e〉 via the light. The spatial dependence lies in the

Ωi(r). The matrix U can be locally diagonalized by the states |d(r)〉 , |b±(r)〉 , with

|d(r)〉 = 1
Ω (Ω2 |g1〉 − Ω1 |g2〉) ,

∣∣b±(r)
〉

= 1√
2

(
Ω∗1
Ω |g1〉+ Ω∗2

Ω |g2〉 ± |e〉
)
.

The energy scale is given by Ω =
√
|Ω1|2 + |Ω2|2 and the descriptions dark state for |d〉 and bright states for

|b±〉 are derived from the coupling properties of the states to the light and the excited state

U = ~Ω
2
(∣∣b+

〉 〈
b+
∣∣−
∣∣b−
〉 〈
b−
∣∣) .

The crucial point is that, after the preparation into one of the eigenstates, the atom moves only slowly in
the light field. Then the internal state follows adiabatically the evolution of the state, say |d〉 , and does not
(appreciably) transit into any of the other two states, |±〉 . The full state can at any point be represented in the
spatially dependent basis |d〉 , |±〉

|Ψ(r)〉 =
∑

χ=d,±
ψχ (r) |χ(r)〉 . (12)

Considering that
∇ (ψχ |χ〉) = (∇ψχ) |χ〉+ ψχ |∇χ〉 , (13)

one can determine the effective action of the momentum operator P . Projecting the Schrödinger equation onto
the state |d(r)〉, one obtains the effective equation for the amplitude ψd

i~
∂ψd
∂t

=
[

(P−Aart)2

2m + V +Wd

]
ψd.

The particle evolution of ψd is described as the original equation of motion, but with an added vector potential
Aart = i~ 〈d|∇d〉 and the additional scalar potential W = ~2 |〈b+ + b−|∇d〉|2 /2m. In the following we assume
that the trapping is stronger than the scalar potential; or, in the case of a uniform trap, that an external
potential cancels its effect.
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4 Detuning of the artificial magnetic field
Whereas the previous section outlined in very general terms how an artificial magentic field is created, we want
to describe here the more generalized setup from Fig. (1) in the main text of paper from the point of view
of the dressed states of the atom. There are three internal states of the atom, two quasi-degenerate ground-
states |g1〉 , |g2〉 and one excited state |e〉 , each having respectively the energy ε1, ε2 and εe in the unperturbed
Hamiltonian. The spatially dependent light field couples |g1〉 with |e〉 with Rabi frequency Ω1(r)eiω1t, ω1 being
the frequency of the laser, whereas the second laser couples |g2〉 with |e〉. The second laser is supposed to be
a superposition of two light fields Ω2 = Ωa(r)eiωat + Ωb(r)eiωbt, with respective frequencies ωa and ωb. If we
denote by ωe1 = (εe − ε1) /~ and ωe2 = (εe − ε2) /~ the Bohr frequencies between the levels, we obtain from
the Schrödinger equation the set of equations for the b̃i of the state |ψ〉 = b̃1 |g1〉+ b̃2 |g2〉+ b̃e |e〉

i~
d

dt




b̃1
b̃e
b̃2


 = ~




ε1/~ Ω1
2 eiω1t 0

Ω∗
1

2 e−iω1t εe/~ Ω∗
a

2 e−iωat + Ω∗
b

2 e−iωbt
0 Ωa

2 eiωat + Ωb
2 eiωbt ε2/~






b̃1
b̃e
b̃2


 (14)

We are looking first at the case when there are only two lasers coupling the three levels, one can always find
a time-independent frame of reference. By introducing a slow moving variable b1, one can separate out the fast
moving component of the b̃i = e−iδit bi, the bi can be made to be time independent. The δi have to be chosen
appropriately. If the lasers are in resonance, ω1 = ωe1, ω2 = ωe2, then only δi = εi/~ allows for true stationarity.
The evolution of the bi can be described as the action of an effective Hamiltonian Heff . In the resonant case it
becomes

Heff = ~
2




0 Ω∗1 0
Ω1 0 Ω2
0 Ω∗2 0


 ., (15)

which is equivalent to the formulation of eq. (1).
With Ω =

√
|Ω1|2 + |Ω2|2 one finds the three eigenstates

|d〉 = 1
Ω (−Ω2 |g1〉+ Ω1 |g2〉) , |b±〉 = 1√

2Ω
(Ω1 |g1〉 ± Ω |e〉+ Ω2 |g2〉) .

The dark state |d〉 has eigenenergy 0, whereas the two bright states |b±〉 have energy ±~Ω/2. This is just a
reproduction of the situation in section 3.

Next we are trying to find the asymptotics for the artificial magnetic field for small and large values of δ/Ω.
If not all the laser are tuned to resonance, there is a certain freedom in choosing the individual δi to achieve

this. The physics are however not affected by such a choice.
For convenience we choose it to act as a perturbation to the Hamiltonian of the form

δV = δ



−1 0 0
0 0 0
0 0 +1


 .

Here δ is the small (with respect to Ω) detuning. Using standard perturbation theory, the dark state is changed
in leading order (for |Ω1| = |Ω2| = Ω/

√
2) to

|d〉δ =
(

1 + δ2

2Ω2

)−1/2(
|d〉+ δ (Ω1Ω∗2 + Ω∗1Ω2)√

2Ω3
(|b+〉 − |b−〉)

)
.

The resulting magnetic potential for a system prepared in the dark state that movies adiabatically in the Rabi
fields is given as (see [? ] ) Aart = i 〈d|∇d〉 . The light fields are supposed to be of the Gauss-Laguerre type
Ωi = Ω√

2

(
ρ
ρ0

)li
eiliφ, where ρ is the radial coordinate and φ the angular one. Especially, since we are interested

in the magnetic field in the z direction we are looking for Aart,φ =
〈
d| 1ρ∂φ|d

〉

It becomes clear, from the form of the bright states, that ∂φ |b+〉 = ∂φ |b−〉 , as the term in which the two
differ, ±Ω |e〉, is φ independent. Because both, |b±〉 perturb |d〉 with an opposite sign, their direct contribution
to the vector potential of the ground state cancels and the only change to the vector field comes from the lower
weight of the dark state, aka 1

ρ∂ρ |d〉δ =
(

1 + δ2

2Ω2

)−1/2
1
ρ∂ρ |d〉. Hence Bart(δ) ≈ 2Ω2

2Ω2+δ2B0,art, where B0,art is
the magnetic field of the dark state on resonance.
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In the opposite limit and for large detuning (δ/Ω� 1) the unperturbed Hamiltonian is

H0 = ~



−δ 0 0
0 δe 0
0 0 δ


 ,

where the eigenstates are just the original states |g1〉 , |g2〉 |e〉. Adding now a small coupling via the Rabi fields,
one obtains perturbations of the form

|e〉δ =
(

1 + 2Ω2

(δe + δ)2

)−1/2(
|e〉+ Ω1

δ − δe
|g1〉+ Ω2

δe − δ
|g2〉

)
.

Similar states appear for the perturbation of the other two states. The influence on the magnetic field can
be easiest seen in the case where only Ω2 is angular dependent. Then the strength of the magnetic vector
potential∼

〈
e| 1ρ∂φe

〉
will be dominated by the prefactor of |g2〉 state and the magnetic field will be of the order

Ω2/δ2 or Bart(r, δ) ∼ 2Ω2

δ2 B0,art(r), just as a naive extension of the weak detuning result would suggest.
These findings, namely that Bart(δ) ≈ 2Ω2

2Ω2+δ2B0,art for δ/Ω� 1; and Bart(r, δ) ∼ 2Ω2

δ2 B0,art(r) for δ/Ω� 1,
suggest that the magnetic field is an analytic function of δ/Ω and that the magnetic field can be written as

Bart(r, δ) = B0,art(r)f (δ/Ω) ,

as in eq, (4) of the paper.
Now we are looking at the case when the third laser is turned on Ωb 6= 0, but is also far detuned from the other

laser on the same transition δa − δb � Ω. The Hamiltonian becomes time-dependent when Ωb 6= 0, ωb 6= ωa.
The time dependance cannot be eliminated by a rotation of the states, one will always have a system that
oscillates with frequency ∆ = δa − δb. One can generalize the previous decomposition of the solution into b1, b2
and be. Apart from an overall phase evolution, each of the ci should be a periodic function of time, with period
given by T = 2π

∆ (Floquet theorem or Bloch theorem for a time dimension). Formally one can Fourier expand
the ci(t) to contain all the overtones, e.g. b1 |g1〉 →

∑
n b

(n)
1 ei∆nt |g1, n〉. Quite generally, the state of the atom

can be decomposed into a Floquet basis, |ψ〉 = eiεt
∑
n,i c

(n)
i ei∆nt |i〉, where n is an integer of the Floquet basis

and i is the index of the standard set of |g1〉 , |g2〉 and |e〉. For very large detuning, only the time-independent
n = 0 subspace is relevant. However by slowly decreasing the detuning, the other Floquet sectors come into
play. The stationary Schrödinger equation for the slow variables bni is (given Ωa in in resonance)

(ε+ n∆) b(n)
1 = Ω1b

(n)
e

(ε+ n∆) b(n)
2 = Ωab(n)

e + Ωbb(n−1)
e

(ε+ n∆) b(n)
e = Ω∗1b

(n)
1 + Ω∗ab

(n)
2 + Ω∗bb

(n+1)
2 .

The perturbation V =
∑
n Ωb |g2, n〉 〈e, n− 1| + Ω∗3 |e, n〉 〈g2, n+ 1| couples the different blocks indexed by

n, each with (large) offset n∆. Without the coupling, every block can be diagonalized into the same set of
eigenstates just as the time-independent problem without detuning. The coupling between different blocks is

Vn,n+1 =
∑

i,j

|i, n〉 〈i, n|V |n+ 1, j〉 〈n+ 1, j| = Ω∗b |e, n〉 〈g2, n+ 1| ,

Vn+1,n = Ωb |g2, n+ 1〉 〈e,n| .

It is notationally convenient to separate the two indices i.e. |i, n〉 → |i〉 |n〉, as we are interested in the
coupling between the n. If one starts with a single laser field Ωa in resonance and in a dark state (|d〉 |n = 0〉)
and introdces the second light field by adiabatically lowering the detuning ∆ =∞ to a finite (but large) ∆, one
obtains to lowest order in perturbation theory

∣∣φ1〉 ≈



−Ω∗

2
Ω

0
Ω∗

1
Ω


 |n = 0〉 − Ω∗b

∆2



|Ω1|2

Ω
∆Ω∗

1
Ω

Ω∗
1Ωa
Ω


 |n = −1〉 .

where we used that 1
∆2−Ω2

2
≈ 1

∆2 . The state obtains a small component that is oscillating but also carries the
spatial information necessary for an artificial magnetic field. The magnetic vector potential to leading order in
Ω∗
b

∆ can be obtained as before by calculating the overlap
〈
φ1|∇φ1〉 (after normalization). The perturbation adds

an additional term to the magnetic vector potential proportional to the angular momentum of the beam Ωbeilbφ
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and it is the same contribution as in the previous case of a single far-detuned laser, since Ω3 ≈ Ω. Therefore
this amounts to effectively adding the magnetic fields created by the two Rabi fields individually.

One can argue that this perturbative expansion breaks down for Ω/∆ ≈ 1. However, by choosing the angular
momenta of the beams sufficiently different, one can make the value of Ω/∆, for which the second derivative
of the magnetic field vanishes and the gradient is approximately constant over an intervall of order Ω as small
as wanted, thereby making sure that the perturbation theory stays valid at all times. If one of the fields is
in resonance, then the detuning has two effects. On the one hand the magnetic field created by the first field
weakens. On the other hand, the atom gets closer to resonance with the second field, which is stronger by the
factor

(
lb
la

)2
. In particular, the difference between δa and δb can be chosen such that downward curvature from

the detuning with the first laser is compensated by the opposite curvature of the second field, thereby creating
a steady gradient.

Simple plotting shows, that for ∆l = 1, the plateau of the gradient forms at Ω/∆ = 0.7, for ∆l = 2 at
Ω/∆ = 0.4 and for ∆l = 3 at ∆/Ω = 0.32.

Figure 1: The gradient of the magnetic field dB
dδ for different detunings ∆/Ω of two beams with ∆l = 2. In the

upper graph (blue) ∆/Ω ≈ 2.0. In the middle graph (red) ∆/Ω ≈ 2.5 and in the lower graph (green) ∆/Ω ≈ 2.8.
One can clearly see how the finetuning of ∆/Ω allows for the compensation of curvatures by creating a plateau
of width ∼ Ω.
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