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ABSTRACT 

By the end of this century, much of the climate space of western Canada’s boreal forest is 
expected to shift northwards and be replaced by climates that are currently associated with 
aspen forest, parkland, and grassland ecosystems.  In this study we review the various 
processes that will mediate ecological responses to these projected changes in climate.  We 
conclude that ecological transitions are unlikely to involve a gradual wave-like shift in ecotonal 
boundaries.  Instead, we predict that ecological changes will lag substantially behind changes in 
climate and that individual ecosystem components will respond at different rates.  In particular, 
if precipitation inputs are maintained as expected, then peatlands should exhibit considerable 
resilience to climate change and remain a dominant feature on the landscape in 2100.  Because 
peatlands retain large amounts of water on the landscape their continued presence may in turn 
slow the rate of forest loss, especially the aspen component.  Thus, ecological response to 
climate change in the western boreal region may involve a transition to a novel ecosystem that 
includes peatlands and aspen as dominant features — unlike anything that exists today.  
Moreover, this interim stage may remain in place well into the next century, potentially 
providing additional time for forest-dependent species to adapt.   
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INTRODUCTION 

In recent years there has been a growing interest in understanding how regional ecosystems 
will respond to global warming (Price et al., 2013; Iverson et al., 2015).  A common approach 
involves the use of bioclimatic envelope models (BEMs), which statistically characterize the 
climate space, or “envelope”, of individual ecosystems based on current eco-climatic 
associations (Pearson and Dawson, 2003; Hamann and Wang, 2006).  Future ecosystem 
distributions can be predicted by using BEMs in conjunction with climate projections from 
General Circulation Models (GCMs).  The working assumption is that ecosystems will track their 
climate envelopes as the envelopes shift across the landscape in coming decades. 
 
BEM projections represent long-term equilibrium outcomes, and do not take into account the 
time it will take for ecosystems to respond to climatic change, or the processes involved.  
Ecological lags are expected to occur, and are an important consideration in the context of 
adaptation (Gray and Hamann, 2013).  If the ecological transitions are rapid the intrinsic 
capacity of species for adapting to change may be exceeded (Malcolm et al., 2002; Loarie et al., 
2009).  This in turn is likely to influence the nature of management responses (Loarie et al., 
2009; Hamann and Aitken, 2013).   For example, under a scenario of rapid change, assisted 
migration may be needed to ensure that species with low intrinsic mobility are able keep pace 
with shifts in their preferred environmental conditions (Hewitt et al., 2011). 
 
In boreal forest systems, much of the research into climate-related ecological transitions and 
lag effects has been compartmentalized, focusing on either the upland forest or peatland 
component.  In upland forests, natural disturbances such as fire and insect outbreaks have been 
identified as critical factors influencing the rate of change (Malmstrom and Raffa, 2000; Dale et 
al., 2001; Woods et al., 2010).  In peatlands, negative feedback processes that minimize water 
losses during dry conditions have been highlighted (Kettridge and Waddington, 2014; 
Waddington et al., 2015).  In this study we explore how these processes may work in concert to 
modify the predicted state of the boreal ecosystem in 2100 relative to baseline BEM 
projections.  More generally, we hope to illustrate the need for future collaboration among 
terrestrial and peatland research groups in order to fully understand boreal responses to 
climate change. 
 

BIOCLIMATIC ENVELOPE MODELLING 

 
Our study area is limited to the plains of Alberta, Canada, from the Dry Grassland ecosystem in 
the south to the Boreal Plain ecosystem in the north (Fig. 1).  Level to gently undulating plains 
are the dominant landforms across the study area, with a minor inclusion of hummocky 
landscapes.  Surficial geology is primarily glacial in origin, including clay-rich till, fine-grained 
lacustrine deposits, and coarse-grained glaciofluvial and glaciolacustrine deposits (Fenton et al., 
1994).   
 
Our primary interest is the Boreal Plain ecosystem (~168,000 km2), and the potential changes in 
composition that may result from climate change (Fig. 1; Boreal Plain is synonymous with the 
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Boreal Central Mixedwood Natural Subregion in the provincial ecosystem classification).  
Upland areas, comprising 52% of the Boreal Plain, are characterized by a mosaic of pure and 
mixed stands of aspen, white spruce, and jack pine (Natural Regions Committee, 2006).  
Extensive wetlands, primarily fen and bog peatlands, are found in the poorly drained areas that 
comprise 45% of the region.  A variable woody cover of black spruce and/or tamarack is 
common within the peatlands. Open water accounts for the remaining 3%.  Wildfire is the 
dominant form of natural disturbance, burning approximately 0.5 percent of the Boreal Plain 
per year, on average over the last 50 years.1  Linear disturbances, including roads, seismic lines, 
and pipelines, are found in moderate to high densities across much of the region (Schneider et 
al., 2003).  
 
Our approach to bioclimatic envelope modelling was based on methodology developed by 
Hamann et al. (2006) and extended in subsequent studies (Schneider et al., 2009; Mbogga et 
al., 2010; Roberts and Hamann, 2012).  We obtained the historical climate data for construction 
of the BEM, downscaled to a 1 km2 resolution, from the ClimateWNA model, for the 1961-1990 
period (Wang et al., 2012).  The available climate variables included mean annual temperature, 
mean annual precipitation, mean warmest monthly temperature, mean coldest monthly 
temperature, seasonality, growing degree-days above 5 °C, and a measure of available 
moisture.  Of these variables, available moisture has the greatest effect on determining current 
vegetation patterns (Hogg, 1994; Hogg and Bernier, 2005).   
 
We statistically associated the climate variables with the following ordered set of ecosystem 
types (i.e., the dependent variables in our model), using an ordinal regression model in the R 
programming language (R Core Team, 2012): Dry Grassland → Fescue Grassland → Parkland → 
Aspen Forest → Boreal Plain.  Ordinal regression was used because in western Canada, boreal 
forest, parkland, and grassland ecosystems constitute an ecocline that is responding to a 
climate gradient (Hogg, 1994; Hogg and Hurdle, 1995). The ecosystem types and their spatial 
distribution were derived from the provincial Natural Subregion classification, with some 
lumping of smaller units (Fig. 1; ecosystem names are simplified from the original to improve 
readability).   
 
To predict equilibrium ecosystem distributions in future periods we used our BEM in 
combination with climate projections from the GCMs and CO2 emission scenarios in the 
Intergovernmental Panel on Climate Change Fifth Assessment (Van Vuuren et al., 2011).  These 
data were again obtained from the ClimateWNA model at a 1 km2 resolution (Wang et al., 
2012).  The projected increase in mean annual temperature for the Boreal Plain in the 2080s, 
averaged across all GCMs, is 3.7 °C.  The mean change in annual precipitation over the same 
period, across all GCMs, is an increase of 6.7%.  We present here, as a representative example, 
the BEM projections for the ensemble mean of all available GCMs running a median (RCP 4.5) 
CO2 emission scenario (Van Vuuren et al., 2011; Wang et al., 2012).  BEM projections for 
individual GCMs are available in Schneider (2013). 
 

                                                      
1
 Based on data in the Alberta Historical Wildfire Database: www.wildfire.alberta.ca 
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The 2080s BEM projection for the GCM ensemble mean indicates that virtually all of the climate 
space currently occupied by the Boreal Plain will be replaced by climates currently associated 
with Parkland and Fescue Grassland ecosystems (Fig. 2).  The Boreal Plain climate envelope will 
in turn move upslope, into the boreal hill system, and northwards.  Alberta’s Boreal Plain is 
predisposed to this transition because it is near the climatic tipping point that separates 
forested from non-forested systems (Hogg, 1994; Hogg and Hurdle, 1995, Iverson et al., 2015).  
Precipitation inputs are relatively low — similar to those in the Aspen Forest and Parkland — so 
it is only the low temperature and associated low rate of evapotranspiration of the Boreal Plain 
that accounts for its forested status.  This is supported by paleontological evidence of boreal to 
parkland transitions during the warm Hypsithermal period, approximately 6,000 years ago 
(Strong and Hills, 2005; Williams et al., 2009).  In addition, it was not until after the 
Hypsithermal that climatic conditions became suitable for peatland initiation in the southern 
portion of our study area (Zoltai and Vitt, 1990). 
 

PEATLAND DYNAMICS 

 
Moving from south to north in Alberta, there is a gradual increase in the proportion of 
wetlands, reflecting lower temperatures, lower rates of evapotranspiration, and a small 
increase in precipitation (Fig. 3).  Transitioning to the Boreal Plain, climate variables continue 
their linear trend, but there is an abrupt threefold increase in the occurrence of wetlands (Fig. 
3).  This nonlinear pattern of change can be attributed to the special properties and feedback 
processes exhibited by peatlands, which comprise most of the wetlands in the Boreal Plain 
(Larson, 1995; Devito et al., 2012; Waddington et al., 2015).  Thus, predicting boreal wetland 
responses to climate change, including the potential for ecological lag effects, requires an 
understanding of the special nature of peatland dynamics. 
 
Within peatlands the rate of production normally exceeds the rate of decomposition, resulting 
in the slow accumulation of biomass over time (Bauer et al., 2003).  The large accumulated 
mass of peat acts like a sponge, storing water accumulated from melting snow and summer 
rains.  Water movement within the compressed lower layers of slowly decomposing peat is very 
low, limiting the loss of water into the underlying ground (Devito et al., 2005; Waddington et 
al., 2015).  In addition, under dry conditions, the surface layer of peat desiccates, and functions 
like a layer of mulch to reduce water losses from evapotranspiration (Price et al., 2009; 
Kettridge and Waddington, 2014; Waddington et al., 2015).  As a result of these negative 
feedback processes peatlands retain large volumes of water on the landscape, and they are 
inherently resilient to climatic fluctuations (Devito et al., 2012; Waddington et al., 2015).    
 
The effect that rising temperatures will have on peatlands in coming decades will depend in 
large part on their level of water saturation.  If the local water table declines for a prolonged 
period, oxygen is introduced into the upper layers of peat, permitting efficient aerobic 
decomposition to occur in place of the slow anaerobic process that normally predominates 
(Bhatti et al., 2006; Sulman et al., 2009; Fenner and Freeman, 2011).  Furthermore, the 
combination of drought and high temperatures can result in reduced productivity or mortality 
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of the upper living layer of moss, limiting the replacement of peat lost to decomposition 
(Gignac et al., 2000; Bragazza, 2008).  Conversely, if a peatland remains well hydrated, then any 
increase in the rate of decomposition resulting from higher temperatures is likely to be offset 
by an increase in the rate of production (Moore, 2002; Charman et al., 2012; Loisel and Yu, 
2013).  Furthermore, several studies have concluded that decomposition within deeper layers 
of peat is limited by the accumulation of phenolic breakdown products, not necessarily low 
temperature (Beer and Blodau, 2007; Beer et al., 2008; Morris and Waddington, 2011).   
 
Rising temperatures are also expected to result in an increased rate of fire in the Boreal Plain 
(Balshi et al., 2009; de Groot et al., 2013).  The impact on peatlands that remain well hydrated 
may be limited, because fires typically consume only the top few centimetres of peat under 
such conditions (Zoltai et al., 1998; Benscoter et al., 2011).  Moreover, cumulative losses will be 
offset, to a degree, by vegetation regrowth over the fire cycle (Wieder et al., 2009; Thompson 
and Waddington, 2013).  In contrast, deep drying of peat can result in substantial losses from 
wildfire, because smouldering combustion is capable of consuming all of the peat layers that 
are not fully saturated (Zoltai et al., 1998; Benscoter et al., 2011; Turetsky et al., 2011).  Metre-
deep fires under such conditions have been reported anecdotally, especially in small isolated 
peatlands systems (Zoltai et al., 1998; Lukenbach et al., 2015).  
 
Climate change may also lead to a contraction of peatlands through peripheral ingress of 
terrestrial vegetation (Berg et al., 2009; Murphy et al., 2009).  Shrub invasion occurs when 
there is a drop in the water table, providing conditions suitable for the establishment of non-
aquatic species (Gignac and Vitt, 1994; Turetsky et al., 2011).  Increased evapotranspiration 
from these plants can result in a cycle of ever-faster peatland drying (Heijmans et al., 2013).  In 
cases where the drop in the water table is prolonged, the rate of change can be quite rapid — 
peatlands in Alaska’s Kenai Peninsula have contracted by up to 11% per decade as a result of 
shrub ingress since the 1950s (Berg et al., 2009).  In other cases, the ingress of shrubs may be 
disrupted by periodic flooding, because of the vulnerability of terrestrial vegetation to 
inundation.  
 
The black spruce trees that already exist within many peatlands also need to be considered.  
Under current conditions, the trees are generally stunted and usually provide less than 25% 
cover.  Moreover, low oxygen in the rooting zone tends to suppress photosynthesis and the 
transpiration rate of black spruce trees, such that they are a minor contributor to the water 
balance (Dang et al., 1991; Thompson et al., 2014).  The critical question is, as temperatures 
rise, will the aforementioned negative feedbacks within peatlands keep the water table high 
enough to maintain low transpiration in the black spruce?  Or will the water table drop enough 
that productivity and transpiration of black spruce increase, resulting in further drying and a 
strong positive feedback cycle (Dang and Lieffers, 1989; Choi et al., 2007)?  This, together with 
the future impact of fire within black spruce systems, remain key uncertainties at present. 
 
The dependence of the aforementioned processes on the state of peatland hydration implies 
that peatland responses to climate change will largely be mediated by changes in the water 
table (Turetsky et al., 2011; Gong et al., 2012; Sherwood et al., 2013; Kettridge et al., 2015).  
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The response may be rapid if the change in climate involves a direct reduction in precipitation, 
as has been the case in Alaska (Klein et al., 2005; Berg et al., 2009).  Substantially longer lag 
times can be expected in areas such as Alberta, where precipitation inputs are expected to 
remain stable or slightly increase, partially offsetting increased evapotranspiration from rising 
temperatures.   
 
In Alberta, changes in the water table are likely to be complex, reflecting both spatial and 
temporal variability in the net water balance.  The Boreal Plain is large, and precipitation inputs 
in the future will vary across the region, as they do now.  Furthermore, potential 
evapotranspiration varies among ecosystem components.  The high resistance to 
evapotranspiration losses exhibited by peatlands is not shared by upland forests or open water 
(Petrone et al.; 2007, Wang et al., 2014).  With warmer temperatures and a longer ice-free 
period, these areas will export increasing amounts of water into the atmosphere, depleting 
groundwater storage and, to a varying degree, drawing water from adjacent peatlands (Ferone 
and Devito, 2004; Petrone et al., 2008; Devito et al., 2012; Wang et al., 2014).  Within peatlands 
themselves, water table responses are also likely to vary with peatland type, amount of tree 
cover, surficial geology, and topographic location (Devito et al., 2005). 
 
Temporal variability also needs to be taken into account, especially with respect to 
precipitation.  Precipitation in the Boreal Plain is characterized by multi-year periods of below 
average precipitation interspersed with short periods of greatly increased precipitation (Mwale 
et al., 2009).  This interannual variability is expected to increase under global warming (Mladjic 
et al., 2011; Cohen et al., 2014).  Thus, in addition to a long-term trend of increased water loss 
from increased evapotranspiration, there exists the potential for multi-year droughts, some of 
which are likely to be severe (Michaelian et al., 2011; Wang et al., 2014).  Water table declines 
within peatlands could be substantial during prolonged droughts, resulting in substantial losses 
of peat through multiple mechanisms (Ise et al., 2008; Zhaojun et al., 2011).   
 

UPLAND FOREST DYNAMICS 

 
The dominant vegetation of Parkland and Fescue Grassland ecosystems includes aspen and 
various grass species.  The proportion of aspen is a function of available moisture, and varies 
from closed forests in moist areas to isolated groves in dry areas (Natural Regions Committee, 
2006).  White spruce is uncommon and is limited to moist sites, such as north-facing riparian 
slopes.  Jack pine can be found in areas with sandy soils, but is also generally uncommon.   
 
Given these vegetation patterns, equilibration of Alberta’s Boreal Plain with a Parkland or 
Fescue Grassland climate would entail the loss of most of the white spruce component of 
upland forests (Hogg, 1994; Hogg and Hurdle, 1995).  Patches of grassland would also appear 
and enlarge over time, largely at the expense of aspen forest, with the amount of change 
depending on the degree of warming that occurs.  The ability of Jack pine to grow on xeric sites 
suggests that it might persist on sandy soils for an extended period.   
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As with peatlands, ecological transitions within upland forests are expected to lag behind 
changes in climate, though different processes are involved (Schneider et al., 2009; Gray and 
Hamann, 2013; Price et al., 2013).  In forests, resistance to change is largely a consequence of 
the intrinsic tolerance of mature trees to variability in climatic conditions (Hogg and Schwarz, 
1997; Lieffers et al., 2001; Gray and Hamann, 2013).  Disturbances that result in widespread 
mortality of mature trees, such as wildfire, are therefore a key factor influencing the rate of 
ecological transition (Hogg and Wein, 2005; Schneider et al., 2009).  The high spatial and 
temporal variability in the distribution of large fires and other natural disturbances implies that 
ecological transitions will be patchy in nature, rather than occurring as a progressive wave of 
change (Schneider et al., 2009). 
 
In white spruce, vulnerability to transition is highest during the regeneration phase because hot 
and dry conditions can result in poor seed germination and high seedling mortality (Nilsson and 
Orlander, 1995; Hogg and Schwarz, 1997; Hogg and Wein, 2005).  Also, if the rate of fire is very 
high, spruce trees may not be able to mature fast enough to produce cones before being killed 
in a subsequent event.   
 
Aspen is less vulnerable than spruce to stand transitions following fire because the root system 
generally remains viable and is capable of regenerating the stand through suckering, even when 
climatic conditions are suboptimal (Lieffers et al., 2001).  Transitions within aspen stands are 
therefore more likely to occur as result of clonal death from drought, augmented by attack 
from insects and disease (Frey et al., 2004; Hogg et al., 2008; Michaelian et al., 2011).   
 
The spread of grasses in the Boreal Plain will require little more than reduced competition from 
trees.  Small natural grasslands are already present along the Peace River lowlands, from west-
central Alberta all the way to Wood Buffalo National Park in the northeast (Moss, 1952; 
Schwarz and Wein, 1997).  In addition, grass (often agronomic species) has been planted along 
the thousands of kilometres of roadsides, pipeline right-of-ways, and seismic lines that 
permeate the Boreal Plain (Schneider et al., 2003).  These grasses have been unable to invade 
intact forest stands under current conditions, but grass expansion is expected once climatic 
conditions tip the competitive balance in their favour (Sumners and Archibold, 2007; Thorpe, 
2011). 
 

ALBERTA’S BOREAL FOREST IN 2100: A NOVEL ECOSYSTEM 

 
A limitation of BEMs is that ecosystems must be treated as discrete units.  This means that 
ecological responses to climate change are portrayed simply as spatial shifts in ecotone 
boundaries.  For example, the leading edge of the Aspen Forest ecosystem is projected to move 
like a wave across the entire Boreal Plain, followed by a second wave of change involving the 
Parkland ecosystem (Fig. 2).    
 
Our review of ecosystem dynamics and transitional processes suggests that ecosystem 
responses to climate warming will be far more complex than the simple ‘wave’ model 
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portrayed by BEMs.  In particular, we expect that ecological responses will lag significantly 
behind climatic changes and that individual ecosystem components will respond to warming in 
different ways and at different rates.  As a result, Alberta’s Boreal Plain in 2100 is unlikely to be 
comprised of a mosaic of Parkland, Aspen Forest, and remnant Boreal Plain ecosystems, as 
might be expected on the basis of BEM projections.  Rather, most of the region is likely to be 
represented by a novel ecosystem displaying a combination of individual ecological elements 
not found in any existing ecosystem. 
 
We hypothesize that the dominant features of this novel ecosystem will be peatlands and 
aspen forest.  The rapid contraction of peatlands that has occurred in Alaska over the last 50 
years cannot be extrapolated to Alberta because the Alaska declines have largely been caused 
by a long-term reduction in precipitation (Klein et al., 2005; Berg et al., 2009).  Precipitation 
inputs in Alberta are expected to remain stable or increase, and under these conditions the 
feedback mechanisms intrinsic to peatlands will promote water retention and stability (Gong et 
al., 2012; Kettridge and Waddington, 2014; Waddington et al., 2015).  Furthermore, the legacy 
of several thousands of years of peat accumulation (Halsey et al., 1998), covering 45% of 
Alberta’s Boreal Plain, cannot quickly be unwound.  Nevertheless, some decline in their extent 
can be anticipated by 2100 because the ability of peatlands to resist change and remain 
isolated from the progressive drying of other ecosystem components is not absolute.   
 
The peatland changes that do occur will be concentrated where susceptibility is highest.  At the 
local scale, changes will likely be most pronounced at the peatland-forest interface, including 
swamp wetlands and ephemeral draws.  The conditions for maintaining peat are least 
favourable here, because peat thickness and water table depth are low relative to the centre of 
the peatland, and the potential for the ingress of terrestrial vegetation is high (Bhatti et al., 
2006; Berg et al., 2009).  Initially, these transitions may be periodically reset by cyclical wet 
periods, which can cause inundation and mortality of ingressing terrestrial vegetation.  
 
At the landscape scale, variability in susceptibility among wetland types is an important factor 
(Bauer et al., 2003; Devito et al., 2012).  Ponds and lakes without underlying peat are likely to 
contract relatively quickly as a result of rising evapotranspiration.  Fens dependent on 
groundwater inflow could also contract, and conversion to bogs may occur (Camill et al., 2009; 
Granath et al., 2010).  Location relative to local topography will also play a role; peatlands in 
perched or isolated basins will have greater susceptibility to drying than peatlands in 
depressions or those with the potential for external water inflows, even if only periodic (Devito 
et al., 2005).  At the regional scale, peatland transitions may be influenced by the distribution of 
future fires and droughts.  The high stochasticity of these events, especially the large ones, may 
result in a somewhat patchy and random pattern of change.  That said, overall cumulative risk 
of transition will be higher in areas of the Boreal Plain that experience a Parkland climate at an 
early stage, relative to areas that are affected later. 
 
Our expectation that aspen will also remain a dominant ecological feature of the Boreal Plain in 
2100 is based on the demonstrated tolerance of aspen for Parkland climates and the ability of 
aspen to regenerate through asexual suckering after fire (Lieffers et al., 2001).  The grassland 
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climatic conditions that would likely cause significant declines in aspen are not anticipated to 
occur until late in this century, and are unlikely to affect all parts of the Boreal Plain, at least 
under the median CO2 emission scenario we examined (Fig 2).  As with peatlands, spatial 
variability in susceptibility to transition can be expected, linked to site-specific factors such as 
slope, aspect, and soil type. 
 
Another factor promoting the retention of aspen is the interrelationship between aspen stands 
and peatlands.  If peatlands persist under a Parkland climate as expected they may serve to 
support aspen by providing supplemental water, particularly during periods of drought.  Aspen 
is a clonal species and exhibits a highly interconnected root system that permits the sharing of 
water and other resources (DesRochers and Lieffers, 2001; Snedden, 2013).  Devito et al. (2012) 
propose that this ‘root pipeline’ can move water from peatlands into aspen stands, sustaining 
the forest through climatic cycles.  The implication is that, under higher levels of warming, 
aspen stands adjacent to peatlands may persist, whereas stands in areas of low moisture, such 
as hilltops and south facing slopes, may decline and eventually convert to grass.  The stands 
that persist may come to serve as refugia for forest biota, warranting extra attention in the 
context of proactive conservation planning. 
 
In contrast to aspen, we expect that white spruce will steadily decline once the Boreal Plain 
begins to experience a Parkland climate, largely as a consequence of vulnerabilities associated 
with regeneration (Nilsson and Orlander, 1995; Hogg and Schwarz, 1997; Hogg and Wein, 
2005).  Given the tolerance of mature spruce trees to climatic variability, the rate of white 
spruce decline will largely be a function of the rate of fire and other causes of adult mortality 
(Hogg and Wein, 2005; Schneider et al., 2009).  As a rough approximation, if we assume that 
the average rate of burning will double (Balshi et al., 2009) to 1% per year, and that white 
spruce transitions will only occur after exposure to a Parkland climate (as per our sequential 
BEM projections), then we could expect almost half of the existing spruce to be lost by 2100.2  
This may be an underestimation because mortality from insects, disease, and drought are not 
included in this calculation.  On the other hand, it is unlikely that regeneration will consistently 
fail under a Parkland climate, given natural interannual variability in precipitation patterns. 
 
The long-term trajectory of white spruce will also be affected by silvicultural activities.  Hand 
planting, and replanting when necessary, minimizes the vulnerability of spruce to regeneration 
failure.  Assisted migration of genetic stock from warmer regions may also facilitate persistence 
under warmer and drier conditions (Pedlar et al., 2011).  The problem is that the rate of 
artificial planting may not be sufficient to make much of a difference at the regional scale 
(Nelson et al., 2011; Zielke et al., 2012).  The infrastructure for providing planting stock is 
designed to provide a steady supply of seedlings at a rate matched to the local rate of forest 
harvesting.  The system is not designed to deal with replanting needs associated with massive 
fires, which occur only sporadically but account for most of the area burned.  Economic 
constraints may also become a limiting factor, if the business case underlying planting is 

                                                      
2
 Numerical calculation assuming that fires are random independent events; historical fire occurrence derived from 

the Alberta Historical Wildfire Database: www.wildfire.alberta.ca 
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jeopardized by an increased risk of fire, drought and insect damage (Johnston and Williamson, 
2005; Woods et al., 2010). 
 
In conclusion, our review of transitional processes suggests that the outcomes predicted by 
BEMs for Alberta’s Boreal Plain ecosystem are unlikely to be realized until well beyond 2100.  
Furthermore, rather than a gradual wave-like transition from Boreal Plain to 
Parkland/Grassland, we propose that a novel ecosystem (i.e., having no analogue among 
existing Natural Subregions) will develop as an interim stage and remain in place for an 
extended period (Hobbs et al., 2009).  Because peatlands retain large amounts of water on the 
landscape, and because they are resistant to change, peatlands may play an important role in 
slowing the rate of forest loss.  Nevertheless, the high structural and species diversity 
characteristic of Alberta’s boreal mixedwood forest (Stelfox et al., 1995) will inevitably decline 
as white spruce is progressively lost from the system.  A prolonged transition phase will at least 
provide forest-dependent species additional time to shift their ranges and otherwise adapt to 
changing climatic conditions.   
 
The state of Alberta’s Boreal Plain past 2100 is difficult to predict.  If CO2 emissions follow the 
median trajectory that we have explored in this report, then the eventual transition to a 
Parkland or Grassland system appears inevitable.  However, this fate is not sealed.  If ecological 
transitions are as slow as we anticipate, there may still be time to forestall major losses of 
forest through aggressive efforts to control CO2 emissions.  The fundamental question then is 
whether human society will respond to the effects global warming faster than the peatlands 
and forests of the Boreal Plain. 
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FIGURE CAPTIONS 

 
Fig. 1. Study area, showing the major ecosystem types used in the analysis.  Derived from the 
provincial Natural Subregion classification (Natural Regions Committee, 2006), with some 
categories combined and with simplified labels.  
 
Fig. 2. BEM projections for the Alberta plains based on the ensemble mean of all available 
GCMs running a median (RCP 4.5) CO2 emission scenario. Panel A =the 2050s; Panel B = the 
2080s. 
 
Fig. 3. Current wetland proportion (blue), mean annual temperature (red), and mean annual 
precipitation (black) for selected Alberta ecosystems arranged in a south to north orientation. 
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