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Background & Aims:Mucosal-Associated Invariant T (MAIT)
cells are innate-like T cells characterised by the invariant TCR-
chain, Va7.2-Ja33, and are restricted by MR1, which presents
bacterial vitamin B metabolites. They are important for antibacte-
rial immunity at mucosal sites; however, detailed characteristics
of liver-infiltrating MAIT (LI-MAIT) and their role in biliary
immune surveillance remain unexplored.
Methods: The phenotype and intrahepatic localisation of human
LI-MAIT cells was examined in diseased and normal livers. MAIT
cell activation in response to E. coli-exposed macrophages, biliary
epithelial cells (BEC) and liver B cells was assessed with/without
anti-MR1.
Results: Intrahepatic MAIT cells predominantly localised to bile
ducts in the portal tracts. Consistent with this distribution, they
expressed biliary tropic chemokine receptors CCR6, CXCR6, and
integrin aEb7. LI-MAIT cells were also present in the hepatic
sinusoids and possessed tissue-homing chemokine receptor
CXCR3 and integrins LFA-1 and VLA-4, suggesting their recruit-
ment via hepatic sinusoids. LI-MAIT cells were enriched in the
parenchyma of acute liver failure livers compared to chronic dis-
eased livers. LI-MAIT cells had an activated, effector memory phe-
notype, expressed a4b7 and receptors for IL-12, IL-18, and IL-23.
Importantly, in response to E. coli-exposed macrophages, liver B
cells and BEC, MAIT cells upregulated IFN-c and CD40 Ligand
and degranulated in an MR1-dependent, cytokine-independent
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Keywords: Human liver; Mucosal-associated invariant T cells; Biliary epithelium;
E. coli; Immune response; Biliary firewall.
Received 21 May 2015; received in revised form 17 December 2015; accepted 20
December 2015; available online 29 December 2015
qDOI of original article: http://dx.doi.org/10.1016/j.jhep.2016.02.003.
⇑ Corresponding author. Address: Centre for Liver Research and National Institute
of Health Research Birmingham Biomedical Research Unit, University of Birm-
ingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK. Tel.: +44 121 415
8700; fax: +44 121 415 8701.
E-mail address: y.h.oo@bham.ac.uk (Y.H. Oo).

y These contributed equally as joint first authors.
� These authors share senior authorship.
manner. In addition, diseased liver MAIT cells expressed T-bet
and RORct and the cytokines IFN-c, TNF-a, and IL-17.
Conclusions: Our findings provide the first evidence of an
immune surveillance effector response for MAIT cells towards
BEC in human liver; thus they could be manipulated for treat-
ment of biliary disease in the future.
� 2016 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

Mucosal-associated invariant T (MAIT) cells are a recently identi-
fied subset of T cells with an evolutionarily conserved invariant T
cell antigen receptor (TCR) a-chain, composed of the invariant a-
chain Va7.2-Ja33/Ja20/Ja12 in humans and Va19-Ja33 in mice
[1,2]. They are restricted to the CD161++ population and are abun-
dant in human blood, the intestinalmucosa andmesenteric lymph
nodes [3–5].MAIT cells respond to antigen presented on the highly
phylogenetically conserved major histocompatibility complex
(MHC) class I-related molecule, MR1, which possesses a unique
antigen-binding cleft for vitamin B metabolites from pathogenic
and/or commensal bacteria, and distinguishes MAIT cells from
peptide- or lipid-recognizing ab T cells [1,6,7]. MAIT cells can be
activated by a wide variety of bacterial strains in vitro, and impor-
tantly they are crucial in mucosal immune defence in bacterial
infection [8–10]. They respond in an MR1-dependent manner to
antigen presenting cells (APC) cultured with bacteria and can also
be activated via IL-12 and IL-18 in a TCR-independent manner
[11,12]. MAIT cell frequencies have been reported to be lower in
bacterially-infected patients’ blood [10,13].

Both hepatic sinusoids and biliary epithelial cells (BEC) are cru-
cial in first-line defence towards pathogens in both the steady and
disease state as the human liver is continuously exposed to
intestinally-derived antigens from portal venous blood and biliary
reflux [14]. A recent study suggested that immune cells in the
16 vol. 64 j 1118–1127
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hepatic sinusoids function as a firewall to prevent the systemic
spread of gut-derived pathogens that evade the mesenteric
immune system [15]. The presence ofMAIT cells has been reported
in healthy human liver sinusoidal fluids [16], however, their role in
mucosa defence at the bile ducts, which are continuous with the
gut lumen and its microbes, and form the first-line protection
against biliary pathogens, is still unexplored [17,18]. BEC are
known to express antigen presenting molecules and can activate
lymphocytes [19]. A recent report indicated that MAIT cells could
efficiently lyse epithelial cells of the HeLa cell line that are infected
with bacteria [20]. Taken together, these findings indicate that
MAIT cells are likely to be important contributors to the mainte-
nance of steady state immunity and the pathogenesis of inflamma-
tory and biliary liver diseases, especially in response to bacterial
exposure. Thus, in the current study, we used primary human liver
tissues, obtained fromboth normal and diseased explanted human
livers, to investigate the localisation and phenotype of intrahepa
tic/liver-infiltrating MAIT (LI-MAIT) cells, as well as their func-
tional response to bacterially-exposed biliary epithelial surfaces
in inflammatory biliary liver diseases.
Materials and methods

Isolation of liver-infiltrating lymphocytes (LIL), peripheral blood lymphocytes (PBL),
and BEC

Venous blood, collected in EDTA, was obtained from healthy donors, and patients
with inflammatory and autoimmune liver diseases (primary sclerosing cholangi-
tis (PSC), primary biliary cirrhosis (PBC)) and alcoholic liver disease (ALD).
Explanted diseased liver tissue was obtained from patients who underwent liver
transplantation for end-stage liver diseases including PSC, PBC, ALD, and non-
alcoholic steatohepatitis (NASH) or for acute liver failure from seronegative
(NonA NonB (NANB)) hepatitis. Non-diseased liver tissues were obtained from
unused donor liver tissues. All samples were collected with appropriate patient
consent and local research ethics committee approval (LREC ref. CA/5192,
06/Q2708/11). Human LIL, PBL, and BEC cells were isolated from fresh liver tissue
and peripheral blood as described previously [21].
Localisation of TCR Va7.2-expressing cells

Human liver tissues were stained with purified anti-TCR Va7.2 (50 lg/ml, 3C10,
BioLegend) or IgG1 isotype control to detect the localisation of Va7.2+ cells. See
Supplementary material.

Phenotyping of intrahepatic and peripheral blood MAIT cells

Liver-infiltrating and blood MAIT cells were phenotyped directly ex vivo for the
expression of surface markers, transcription factors and intracellular cytokines.
See Supplementary material.
MAIT cell response to E. coli-exposed antigen presenting cells

APCs: blood monocyte-derived macrophages, THP1, liver B cells or BEC were
incubated overnight with paraformaldehyde-fixed Escherichia coli (E. coli)
(DH5a, Invitrogen) at 25, 20, 1000, or 1000 bacteria per cell respectively. CD8+

T cells isolated from blood using CD8 Microbeads (Miltenyi Biotec) or CD3+ T cells
isolated from liver by flow sorting were cultured with the E. coli-exposed APCs, in
the presence of anti-CD107a (Pe or PeCy5) and blocking antibodies against IL-
12p40/70 (5 lg/ml, C8.6, eBioscience), IL-18 (5 lg/ml, 125-2H, MBL International,
USA) and MR1 (10 lg/ml) [22] as indicated. In some assays, anti-CD40 Ligand
(CD40L)-PeCy7 was added. MAIT cell intracellular and surface markers were
stained and data were acquired on a MACSQuant (Miltenyi Biotec) or CyAN
(Dako) flow cytometer and analyzed using FlowJo (Tree Star Inc.). Autologous
liver-infiltrating B cells and T cells were cell sorted by a Moflo Astrios cell sorter
(Beckman Coulter). Cells were labeled with anti-CD3-PeCy7 and anti-CD19-
APCVio770 to identify CD3+ T cells and CD19+ B cells respectively. Blood
Journal of Hepatology 2016
macrophages were generated by culturing CD14+ monocytes, isolated from blood
using CD14 microbeads (Mlltenyi Biotec), with 100 ng/ml M-CSF (R and D Sys-
tems) for 7–9 days.

Statistical analysis

GraphPad Prism 5.0 software (GraphPad software, San Diego, CA, USA) was used
for statistical analysis. Comparisons of two populations were by the Mann-
Whitney U test or t test. Comparisons of more than one population were by Fried-
man’s test with Dunn’s Multiple Comparison post-hoc test or by one-way ANOVA
with Bonferroni’s multiple comparison post hoc test as indicated in the figure
legend. Statistical significance was defined as p value <0.05. Error bars on graphs
are presented as median ± interquartile range or mean ± SEM. Values in text are
given as median and overall range (in brackets).
Results

Intrahepatic MAIT cells preferentially reside in peri-biliary areas of
portal tracts

We examined the localisation of LI-MAIT cells in normal and dis-
eased human livers by immunohistochemistry staining for TCR
Va7.2. Most Va7.2+ cells resided around bile ducts in portal tracts
with few detected in the parenchyma (Fig. 1A, B; Supplementary
Fig. 2). The distribution was similar in normal, autoimmune, and
non-autoimmune diseased livers (Fig. 1C; Supplementary Fig. 2)
similar to other immune subsets (Supplementary Fig. 1). Interest-
ingly, in acute, seronegative liver failure, increased infiltration of
Va7.2+ cells to the parenchyma was noted (Fig. 1A iii, vi, 1C; Sup-
plementary Fig. 3) when compared to normal livers or any of the
chronic liver diseases studied (Fig. 1A i, iv). The overall frequency
of Va7.2+ cells appeared increased in PSC compared to the other
liver diseases (Fig. 1C). By flow cytometry, we showed that the
majority of Va7.2+ lymphocytes in normal livers (63.6% (24.4–
93.2%)) and over one-third in diseased (40.5% (11.6–75.2%)) were
CD3+CD161++ MAIT cells (Supplementary Fig. 4). We confirmed
the predominant localisation of CD3+ CD161+ Va7.2+ MAIT cells
in peri-biliary regions of portal tracts by both immunohistochem-
istry (Fig. 1Aii, v; 1C) and confocal microscopy (Fig. 2).

Frequencies of MAIT cells are reduced in liver diseases, with an
increase in the CD4+ MAIT cells

Next, using flow cytometry we compared frequencies of CD3+

CD161++ Va7.2+ MAIT cells in intrahepatic liver infiltrates and
in blood from normal and diseased tissues. Increased frequency
of MAIT cells in liver compared to blood was observed in both
normal and diseased states (Fig. 3A, B). The frequency of liver
and blood MAIT cells in total CD3+ T cells was decreased in
chronic liver diseases (Fig. 3A, B). In liver as in blood, CD8+ cells
represented the major MAIT cell subset (Fig. 3C, D). However,
in disease, the proportion of CD4+ MAIT cells was significantly
increased in both the blood and liver, which in liver, was com-
pensated for by a significant reduction in the CD8+ MAIT cell fre-
quency (Fig. 3C, D). MAIT cells were unique among the T cell
subsets that we examined in showing a reduced frequency with
disease (Fig. 3E). We observed a negative correlation between
total MAIT cells and total CD4+ T cells in normal livers but found
no sign of this correlation in disease. Conversely there was a
trend towards a positive correlation of MAIT cells with CD8+ T
cells in normal livers. In non-autoimmune livers we noticed a
positive correlation with CD161+ T cells. No relationships were
vol. 64 j 1118–1127 1119
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Fig. 1. Peri-biliary localisation of Va7.2+ cells in chronic liver diseases. (A)
Representative staining for Va7.2 on frozen liver sections viewed at 10� (i and iii)
or 40� (ii, iv, v, and vi) magnification. Distribution of Va7.2+ cells in the
parenchyma (i and iv) and portal tract (i, ii, and v) in PSC and in the parenchyma
(iii and vi) in seronegative acute liver failure. (B) Densities of Va7.2+ cells in
parenchyma and portal tracts of normal and chronically diseased livers
(⁄⁄p <0.01; ⁄⁄⁄p <0.0001 by Mann-Whitney U test). (C) Va7.2+ cell density data
according to diseases. Data are median ± interquartile range.

A

B

Fig. 2. CD3+CD161+Va7.2+ cells reside close to bile ducts in portal tracts.
Representative confocal immunofluorescence staining for CD3, CD161, and Va7.2
on frozen sections from explanted human livers diagnosed with Alcoholic liver
disease (A) and Primary Biliary Cirrhosis (B). DAPI nuclear stain reveals liver
architecture indicating sites of bile ducts. Images are representative of staining of
four different diseased livers, scale bar shows 100 lm.
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found between MAIT cells and CD4�CD8� double negative (DN) T
cells in either normal or diseased livers (Fig. 3F). In disease, the
proportion of CD4+ cells within the MAIT cell population was
approximately 2-fold greater than that occurring for total CD4+

cells within the total T cell population; however the frequency
of CD4+ MAIT cells among total T cells did not alter with disease,
rather the CD8+ and DN MAIT cell frequencies among total T cells
decreased significantly in disease, accounting for the rise in the
proportion of CD4+ cells within the MAIT cell population (Fig. 3E).

Tissue-homing chemokine receptor, integrin and cytokine receptor
expressions of intrahepatic MAIT cells

Chemokine receptors, CXCR6 and CCR6 and integrin aEb7 have
been implicated in lymphocyte recruitment to biliary epithelium
[21,23,24]. All three were expressed by LI-MAIT cells from both
diseased and normal livers [CXCR6: (normal: 29% (14–33%);
1120 Journal of Hepatology 2016
diseased: 22% (4–52%)), CCR6 (normal: 36% (12–72%); diseased:
53% (7–81%)), aEb7 (normal: 4% (4–12%); diseased: 16% (2–
37%))] (Fig. 4A).

Sinusoidal recruitment to inflamed tissue involves the che-
mokine receptor CXCR3, which responds to interferon-
dependent ligands, CXCL9/10/11 in inflamed tissues, and the
integrins LFA-1 and VLA-4 [25]. Almost all LI-MAIT cells
expressed LFA-1 (normal: 96% (92–98%); diseased: 91%
(81–93%)) and most expressed VLA-4 (normal: 57% (13–75%);
diseased: 58% (19–71%)) (Fig. 4B). LI-MAIT cells from diseased
livers showed significant upregulation of CXCR3 compared to
LI-MAIT cells from normal tissue (normal: 21% (17–31%); dis-
eased: 81% (42–89%), p <0.01) (Fig. 4B). Increased expression
of CX3CR1 and CCR5 was also noticed in disease (Fig. 4C). Since
MAIT cells are believed to expand in the gut in response to
bacterial antigens, we screened for expression of the
gut-homing chemokine receptor CCR9 and integrin a4b7 [26]
but detected little expression on LI-MAIT cells from either
normal or diseased tissue (Fig. 4C). Given the change in the
balance of CD4+/CD8+/DN+ MAIT cells in diseased livers we
vol. 64 j 1118–1127
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assessed whether there were any subset-specific differences in
homing receptor expression profile. We observed little differ-
ence in percentage and intensity of expression across subsets
in their expression of CCR6, CCR5 and CX3CR1. Interestingly,
however, higher frequencies of CD4+ MAIT expressed CXCR3
Journal of Hepatology 2016
compared to CD8+ or DN MAIT in normal livers, although the
intensity of expression did not differ across subsets. In disease,
frequencies of CD4+ and CD8+ CXCR3-expressing cells did not
differ but the intensity of expression on CD4+ cells was signifi-
cantly greater than on CD8+ or DN cells (Supplementary Fig. 5).
vol. 64 j 1118–1127 1121
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We also evaluated the expression of cytokine receptors whose
cognate cytokines are known to be secreted by liver-resident cells
and to mediate MAIT cell activation in vitro [12]. The pattern of
cytokine receptor expression was similar in diseased and non-
diseased liver tissue. IL-18R was highly expressed (normal: 97%
(93–99%); diseased: 83% (65–96%)). There was low-to-moderate
expression of IL-12R (normal: 7.5%; diseased: 15.7%) and IL-23R
(normal: 23%; diseased: 16%). IL-6R was not detected on
LI-MAIT cells (Fig. 4D).

Phenotypic characterisation of liver-infiltrating MAIT cells

There was no overlap of the LI-MAIT cell population with cd T
cells (Supplementary Fig. 6A). Although LI-MAIT cells had
moderate expression of the Natural Killer (NK) cell marker
CD56, they had low expression of other NK cell phenotypic
markers such as NKG2D and NKp46 (Supplementary Fig. 6B).
LI-MAIT cells were mostly CD45RA�CCR7� effector memory
(Supplementary Fig. 7A) and expressed the activation marker
CD69 but lacked CD40L (Supplementary Fig. 7B). LI-MAIT cells
showed ubiquitous surface expression of CD95 (93%) but
1122 Journal of Hepatology 2016
lacked CD95L (Supplementary Fig. 7C). They were also found
to have constitutive expression of CD26 and to express the
adenosine-pathway receptors CD39, and CD73 (Supplementary
Fig. 8A).

Diseased liver-infiltrating MAIT cells produce IFN-c, TNF-a, IL-17,
and granzyme B

To determine possible effector functions of LI-MAIT cells, we
examined the cytokines and cytotoxic granzyme produced by
MAIT cells ex vivo. LI-MAIT cells showed high frequencies of
IFN-c (55%) and TNF-a expression (89%) and low frequencies of
IL-17 production (3.5%) but IL-22 and Th2-cytokines including
IL-4, IL-5, and IL-13 were barely detected (Fig. 5A, B). We noticed
that approximately 50% of IL-17-producing cells had a dual
Th1/Th17 phenotype, secreting IFN-c. Consistent with their
ability to produce both Th1 and Th17-type cytokines, LI-MAIT
cells expressed the transcription factors T-bet and RORc,
(Supplementary Fig. 8B). Examining ex vivo stores of cytotoxicity
factor, we found moderate frequencies of granzyme B-expressing
LI-MAIT cells (10% (5–25%)) (Fig. 5F).
vol. 64 j 1118–1127
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Activation of blood and liver-infiltrating MAIT cells by antigen
presenting cells in an MR1 dependent manner

MAIT cells can be activated in response to bacterial metabolites
in an MR1- and/or IL-12/IL-18-dependent manner by professional
and non-professional APC, such as HeLa cells, B cells and THP1
cells [20,27]. As a model to study activation by macrophages,
we exposed blood MAIT cells to monocyte-derived macrophages
that had been treated with or without E. coli and examined the
expression of the degranulation marker CD107a, IFN-c, and
CD40L. MAIT cells expressed CD107a and IFN-c in an MR1-
dependent manner. They also showed a tendency for CD40L
expression (Fig. 6A). These responses were MR1-dependent but
independent of IL-12 or IL-18. Both THP1 cells (Fig. 6B) and
liver-infiltrating B cells (Fig. 6C), pre-treated with E. coli, activated
LI-MAIT cells from diseased livers by inducing the expression of
CD107a, IFN-c and TNF-a in an MR1-dependent manner.

Bacterially-exposed primary human biliary epithelial cells activate
MAIT cells in an MR1-dependent, cytokine-independent manner

Since we observed LI-MAIT cells around bile ducts in the portal
tracts we proceeded to examine whether MAIT cells may respond
to bacterial infection associated with the biliary epithelium. We
Journal of Hepatology 2016
therefore co-cultured blood derived MAIT cells with primary
human BEC with or without E. coli and observed selective activa-
tion by the MAIT population in the presence of BEC presenting
E. coli. The Va7.2+CD161� cells within the same culture did not
respond (Fig. 7A). Increased expression of CD107a and IFN-c
was MR1-dependent, however, blocking the cytokines IL-12 and
IL-18 did not have any effect (Fig. 7B). CD40L upregulation was
significantly inhibited by blocking either MR1 or the cytokines
IL-12 and IL18 (Fig. 7B). We performed the same assay with T
cells isolated from diseased livers. LI-MAIT responded to BEC pre-
senting E. coli, upregulating CD107a, IFN-c and TNF-a in an MR1-
dependent manner (Fig. 7C).
Discussion

Although MAIT cells have recently been reported in normal
human liver perfusate, detailed characteristics of liver-
infiltrating MAIT cells in normal and diseased state, and their role
in biliary epithelial mucosa protection remained unexplored
[3,16,28,29]. The biliary epithelium is in continuity with the
intestinal gut flora and thus provides another potential portal
of pathogen entry from the gut to the liver. As such, resident
immune cells including MAIT cells that localised around bile
vol. 64 j 1118–1127 1123
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⁄p <0.05; ⁄⁄⁄p <0.001 by paired t test. UT = untreated.
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ducts in the portal tracts play an important role in protection
against invading bacteria. MAIT cells respond to microbial anti-
gens to provide protection at epithelial and mucosal surfaces.
The liver regulates tolerance to food antigens and at the same
time acts as a firewall to prevent intestinal microbes entering
the systemic circulation [15]. We observed the overall MAIT cell
frequency to be significantly higher in the normal liver compared
to diseased liver, which differed from conventional CD4+, CD8+, or
DN T cells. This suggests that MAIT cells are a major class of T cell
recruited to the normal liver in order to act as a firewall and
protect the biliary epithelium, therefore playing an important
role in immune surveillance and homeostasis at the biliary
mucosal barrier.
1124 Journal of Hepatology 2016
Immunohistochemical and confocal fluorescence staining of
human liver tissue demonstrated that intrahepatic MAIT cells
are present in the sinusoids. During an immune response to
invading infection (e.g. bacterial infection) or during an inflam-
matory reaction, lymphocytes are recruited to liver tissue in
response to combinations of locally expressed chemokines [14].
Hepatic inflammation leads to upregulation of IFN-inducible
chemokines CXCL9/10/11, ligands for CXCR3, along with
increased expression of the adhesion molecules ICAM-1 and
VCAM-1 on inflamed human liver sinusoids [25,30,31]. We
detected a significantly higher level of the chemokine receptor,
CXCR3, on intrahepatic MAIT cells in the diseased state, as well
as the presence of integrins LFA-1 and VLA-4. VLA-4 is essential
vol. 64 j 1118–1127
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JOURNAL OF HEPATOLOGY
in CD8+ MAIT cell infiltration to central nervous system in multi-
ple sclerosis [32]. Thus, these molecules are involved in MAIT cell
recruitment from blood. Intrahepatic Va7.2+ CD161++ MAIT cells
were highly enriched for IL-18Ra expression in the livers, which
would allow the cells to respond to high local levels of IL-18 in
the inflamed hepatic microenvironment [12,33] and to interact
with IL-18 secreted by Kupffer cells, which we observed to reside
in the hepatic sinusoid [15,34].

We observed enrichment of MAIT cells in the liver compared
to in blood by flow cytometry and also demonstrated by
immunohistochemistry and confocal microscopy that they were
concentrated preferentially in portal tracts, where the majority
of CD3+ CD161+ Va7.2+ cells localised in the peri-biliary regions,
often in close contact with bile ducts. BEC in their normal state
secrete the chemokine CCL20 and express the cell adhesion mole-
cule E-cadherin, both of which are enhanced in the diseased state
[21]. Intrahepatic MAIT cells in either normal or diseased state
expressed the chemokine receptors CCR6 and CXCR6, and the
Journal of Hepatology 2016
E-cadherin receptor, integrin aEb7, which would allow them to
migrate to the peri-biliary region in response to CCL20 and
CXCL16 secreted by BEC [21,23,35]. We propose that CCR6+,
CXCR6+ and aEb7-expressing intrahepatic MAIT cells are retained
close to the bile ducts in steady state to provide protection
against ascending bacterial infection from the gut [23,24,36,37].
VLA-4 on intrahepatic MAIT cells would also interact with
VCAM-1 on the bile ducts, an interaction known to provide sur-
vival signals for lymphocytes [38]. Thus, activated, effector mem-
ory MAIT cells in the human liver are ready to protect the biliary
mucosa in both the steady and diseased state [39,40].

A higher prevalence of intrahepatic MAIT cells around bile
ducts was apparent by immunohistochemistry in PSC compared
to other chronic liver diseases, including other biliary diseases
such as PBC. This is an interesting observation as PSC is a biliary
disease driven by mucosal T cells and associated with recurrent
ascending infections [41]. Surprisingly, although MAIT cells are
found in the gut and associated with inflammatory bowel disease
vol. 64 j 1118–1127 1125
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and colonic cancer [29,40], we detected very few cells that
expressed the gut-homing integrin a4b7 or chemokine receptor
CCR9, suggesting that hepatic MAIT cells are most likely not
derived from the gut.

Increased frequency of MAIT cells in the hepatic parenchyma
of patients with severe seronegative acute liver failure was also
noted with immunohistochemistry. Seronegative hepatitis is
characterised by a progressive, marked hepatocyte-necrosis lead-
ing to acute liver failure and is associated with bacterial translo-
cation [42]. Therefore, in this scenario, the effector functions of
MAIT cells might contribute to acute liver injury. Intrahepatic
cells not only expressed CD26 constitutively [39,43], but also
expressed CD39 and/or CD73, two ectoenzymes involved in
immune regulation via generation of immunosuppressive adeno-
sine [44]. Thus, hepatic MAIT cells include cells with both effector
and regulatory functions which may confer either proinflamma-
tory or immune-regulatory properties depending on the context
and timing of the hepatic inflammation.

There needs to be local protection against intestinal patho-
gens at the biliary epithelium due to its continuity with the gut
flora where both commensal and pathogenic bacteria reside
[45]. Our data suggest that MAIT cells could play an important
role in this. The recognition of antigen by MAIT cells is mediated
via the MR1 molecule, which can present microbial vitamin
B-derived compounds in its antigen-binding cleft [7]. MR1 is
expressed on APC such as B cells [27]. We noted close localisation
of B cells around bile ducts, and they mediated the activation of
diseased liver-infiltrating MAIT cells in the presence of E. coli.
Human BEC can also act as non-professional APC by expressing
MHC and co-stimulatory molecules under some circumstances
[19,46]. We found that indeed, both LI-MAIT and blood MAIT cells
co-cultured with BEC exposed to E. coli degranulated and secreted
IFN-c. Importantly, this mechanism was MR1-dependent but
independent of IL-12 and IL-18 cytokines, despite the presence
of these receptors on intrahepatic MAIT cells. This finding sug-
gests that MAIT cells will only be fully activated in the presence
of bacteria that have breached the epithelial barrier. Intrahepatic
MAIT cells also secreted IL-17 and therefore likely possess not
only an antibacterial function but also mucosa-regeneration
properties similar to other Th17 cells [21,47].

CD40L upregulation was also observed on MAIT cells in
response to bacterial presentation by BEC. CD40L on immune
cells such as lymphocytes and macrophages can induce BEC
apoptosis via epithelial CD40 [33,48,49]. CD40L upregulation
was mediated both by E. coli presented by MR1 as well as IL-12
and IL-18, providing a mechanism through which MAIT cells
could drive bile duct damage in inflammatory liver disease in
the absence of infection, in a non-specific manner. Intrahepatic
CD4+, CD8+, and DN MAIT cells also secreted TNF-a and IFN-c,
which would be expected to contribute to their proinflammatory
functional activity, and expressed granzyme B, which is crucial
for cytolytic activity [11,39,50,51].

Taken together, our findings provide the first evidence that
intrahepatic MAIT cells in the human liver can respond to bacte-
rial antigens presented by the biliary epithelium, B cells or
macrophages by expressing IFN-c, TNF-a, CD40L, and degranulat-
ing, and they have the capacity to secrete IL-17 upon activation.
This suggests that intrahepatic MAIT cells play an important part
in the biliary firewall that prevents bacteria from the gut entering
the normal liver and then the systemic circulation via the bile
ducts. We therefore propose that intrahepatic MAIT cells act as
1126 Journal of Hepatology 2016
guardians in biliary mucosa protection at steady normal state.
Whether they play a role in the pathogenesis of inflammatory
liver disease requires further study.
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