The prevalence of traumatic brain injury among young offenders in custody
Hughes, Nathan; Williams, W. H.; Chitsabesan, Prathiba; Walesby, Rebecca C.; Mounce, Luke T A; Clasby, Betony

DOI: 10.1097/HTR.0000000000000124
License: None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
The Prevalence of Traumatic Brain Injury Among Young Offenders in Custody: A Systematic Review

Nathan Hughes, PhD\textsuperscript{1,2,3}, W.H. Williams, PhD\textsuperscript{4} Prathiba Chitsabesan, MRCPsych\textsuperscript{5,6} Rebecca C. Walesby, PhD\textsuperscript{4} Luke T.A. Mounce, PhD\textsuperscript{4} Betony Clasby\textsuperscript{4}

1. Murdoch Childrens Research Institute, Melbourne, Australia
2. University of Birmingham, UK
3. University of Melbourne, Australia
4. University of Exeter, UK
5. University of Manchester, UK
6. Pennine Care NHS Foundation Trust, Manchester

Corresponding author:
Dr Nathan Hughes, Centre for Adolescent Health, Murdoch Childrens Research Institute,
Flemington Road, Parkville, Melbourne, Victoria, 3052, Australia.
Email: nathan.hughes@mcri.edu.au; Tel: +613 8341 6385

Conflicts of Interest and Source of Funding:
No competing financial interest exists. This work was funded through research grants awarded by the Office of the Children’s Commissioner for England, the European Commission and the University of Exeter.
Abstract

Objectives: To examine the prevalence of traumatic brain injury among young people in custody and to compare this to estimates within the general youth population.

Design: Systematic review of research from various national contexts. Included studies were assessed for the relevance of the definition of traumatic brain injury and the research population, and the quality of the study design.

Results: Ten studies were identified for inclusion in the review. Four of these studies included control groups. No studies examining co-morbidity of TBI and other neurodevelopmental disorders among incarcerated young people were identified.

Conclusion: Reported prevalence rates of brain injury among incarcerated youth range from 16.5% to 72.1%, with a rate of 100% reported among a sample of young people sentenced to death. This suggests considerable levels of need among incarcerated young people. Where control groups or directly comparable studies within the general population exist, there is strong and consistent evidence of a prevalence of traumatic brain injury among incarcerated youth that is substantially greater than that in the general population. This disparity is seemingly more pronounced as the severity of the injury increases.

Keywords:
Traumatic brain injury; prevalence; young offenders; crime; antisocial behaviour; custody; incarceration.
Introduction

In recent years there have been numerous calls for improvements in the provision of support to address the mental and physical health needs of prison populations. Addressing these needs is argued to be key to individual health and well-being, preventing reoffending, and reducing the costs of the criminal justice system. Brain injury is a major cause of death and disability in children and working age adults. Nonetheless insufficient attention is given to brain injury in addressing the needs of prison populations.

A traumatic brain injury (TBI) is a disruption to the normal function of the brain resulting from a direct blow to the head, penetration of the skull, or a force that causes the brain to move around inside the skull. The Centers for Disease Control and Prevention report that the most common causes of TBI are falls (approximately 40% of reported instances), road traffic accidents (20%), ‘being struck by/against’ an object (19%), and assaults (11%). Falls are the primary causes of TBI for younger children, while traffic accidents becomes the primary cause for young people aged 15-19.

The severity of TBI can be measured in different ways. Most commonly, consideration is given to whether loss of consciousness (LOC) is experienced, and if so its duration and depth, based upon the extent to which a patient is able to respond to stimuli. A common classification of experiences of LOC is the Glasgow Coma Scale which provides a standardised means to score its severity as ‘mild’, ‘moderate’ or ‘severe’. Alternatively severity may be graded by the duration of ‘Post-Traumatic Amnesia’; that is, the length of time after an injury that a person is alert but unable to take on new information.

Childhood TBI can result in a number of potential neurocognitive impairments and developmental difficulties that subsequently impact upon aspects of functioning and behaviour. These include deficits in: cognitive and socio-cognitive skills; social or
pragmatic communication\(^{14-17}\); impulse control and regulation of aggressive responses to threat\(^{10,18-23}\); cognitive empathy\(^{21}\), and therefore the ability to respond appropriately to other’s emotions\(^{10,13,24}\). Such impairments have been frequently identified as ‘risk factors’ within criminological research\(^{25-27}\); that is, in population-based studies, the presence of these factors have been found to increase the risk of criminality. In particular, ‘neurocognitive impairments’ have been found to be strongly associated with ‘early onset’ and ‘life course persistent’ offending trajectories, and the number of times an individual has experienced LOC has been found to be significantly higher amongst persistent offenders\(^{28}\). A failure to address needs resulting from childhood TBI can lead to a range of poor social experiences and outcomes known to indirectly increase vulnerability to criminal behaviour. For example, TBI is associated with persistent problems in academic performance\(^{29-32}\), including at the point of transition to secondary school\(^{33-35}\) and susceptibility to negative peer influences\(^{36,37}\). In combination, this suggests young people may experience heightened vulnerability towards antisocial and criminal behaviour as a result of impairments caused by childhood TBI; an assertion that is supported by two population studies that establish a clear link between TBI and subsequent offending. A birth cohort study of 12,000 subjects in Finland identified a fourfold increased risk of adult offending with associated mental disorder following childhood TBI\(^{38}\). In Sweden, an analysis of hospital records across the entire population from 1973 to 2009 enabled comparison of outcomes for those who had experienced TBI in childhood to siblings who had not experienced such an injury, and suggested an association between TBI and subsequent violent crime\(^{39}\).

It is equally apparent that TBI may result from certain forms of risk taking behaviours, including those associated with offending\(^{4}\). This demonstrates the complexity in interpreting the correlation or causal relationship between TBI and criminality. Thus brain
injury may result from behaviour associated with criminality, or the risk of future criminality, and may instead be indicative of a pre-existing trajectory towards offending behaviour. In parallel to a heightened risk of offending behaviour, childhood TBI may also increase vulnerability to criminalisation through discrimination and disadvantage in experiences of the criminal justice system. For example, impairments in executive functioning are known to affect capacity to engage in forensic police interviewing and presentation in court, potentially resulting in a young person being perceived as non-compliant. Subsequent interventions that fail to recognise and address needs may result in the potential for disengagement and possible breach of a court order.

Articles 37 and 40 of the United Nations Convention on the Rights of the Child establish the rights of young people within the criminal justice system to be dealt with in ways that take account of their specific, individual developmental needs, providing interventions that promote care, guidance and support. Given the apparent heightened vulnerability to criminality and criminalisation, it is therefore imperative that criminal justice systems recognise and respond to needs resulting from childhood TBI, particularly amongst serious and persistent offenders. To this end, a growing number of studies have examined the prevalence of TBI amongst incarcerated young people in various populations and contexts. This article reports on a systematic review of this body of research in order to answer the primary research question: ‘What is the prevalence of traumatic brain injury amongst incarcerated young people?’ This in turn supports an answer to a secondary question: ‘Is the prevalence amongst incarcerated young people greater than the rate amongst the general youth population?’ Consideration is also given to sociodemographic variation in prevalence rates of TBI among young people in custody, including in relation to gender and ethnicity, as well as to the co-occurrence of TBI and other neurodevelopmental or mental health difficulties.
Methods

The review was completed in two distinct phases. The initial phase was undertaken as part of a broader examination of the prevalence of neurodevelopmental disorders amongst incarcerated young people, commissioned by the Office of the Children’s Commissioner for England in 2009. This was subsequently updated through a second phase of searches and analysis undertaken in 2014.

Both phases followed the same search strategy. A systematic review of academic journal articles was undertaken through a structured search of key bibliographical databases, chosen so as to provide extensive coverage of a variety of relevant academic disciplines. These included PubMed, PsychINFO and Applied Social Sciences Index and Abstracts. Search terms were developed through consideration to the synonyms of a number of key concepts, including ‘youth’, ‘crime’, ‘custody’ and ‘traumatic brain injury’, which were combined using Boolean terms. Consideration was given to variations in terminology over time and in different cultural contexts.

The review of academic journal articles was supplemented by a purposive search for relevant evidence published by key health, criminal justice and social policy organisations. However, no such sources were identified in relation to TBI. The bibliographies of included sources were also searched for further relevant evidence. In addition, the initial phase of the research was supported by an expert advisory group, drawn from a range of relevant academic and professional disciplines and able to provide insight into emerging and published research. The membership of the group is listed elsewhere. Specific searches identified the work of key authors, as identified by the expert advisory group.

The senior research team was multidisciplinary, including expertise in neuroscience, psychiatry, psychology, social policy and criminology. Searches were undertaken by two
research assistants in the first phase and one research assistant in the second phase. Each
research assistant had undertaken formal methods training regarding literature-based research
prior to their employment, and received weekly mentoring and supervision from a senior
member of the team throughout their involvement in the study.

The research protocol determined that studies were included if they provided a
prevalence rate for one or more neurodevelopmental disorder amongst a sample of young
people in custody. A broad definition of youth was applied so as to reflect the varying
classifications within different nation states, though all studies had to include young people
under 18 within their sample with a maximum upper age range of 21. The review was
inclusive of a wide range of definitions of particular neurodevelopmental disorders. In the
case of TBI, definitions used by particular studies needed, as an absolute minimum, to satisfy
that of the Centers for Disease Control and Prevention\(^5\), which defines TBI as ‘a bump, blow
or jolt to the head or a penetrating head injury that disrupts the normal function of the brain.’

Studies were excluded if no clear definition of the nature of the neurodevelopmental
disorder was provided, or specific prevalence rates for young people could not be extracted
from the data. No specific exclusion criteria were set regarding the year of publication or the
geographical location of the research, though the review was necessarily restricted to
publications in the English language. Three studies were rejected despite a focus on
incarcerated young people. Two studies reported on youth justice populations that also
include young people within community services and do not readily distinguish between
these distinct populations in the data provided\(^{46,47}\). A further study was rejected due to the
conflation of TBI and epilepsy in the construction of the sample\(^{48}\).

All decisions regarding inclusion were made by at least two researchers, including
one senior researcher. It was determined that, where there was disagreement between two
researchers that could not be resolved, a senior researcher would further review the source
and determine inclusion or exclusion. Titles and abstracts were initially considered for relevance. Full papers were reviewed when the abstract was deemed relevant or where relevance was unclear.

The majority of sources identified were published in peer-reviewed academic journals and therefore deemed to be of high quality. When it was unclear whether a source was peer reviewed, specific frameworks for assessing research quality were utilised according to the type of research study under consideration. These included the Maryland Scientific Methods Scale and the Global Assessment and Evaluation of Quality framework.

All sources selected for inclusion were read by at least two researchers, including at least one senior researcher. Key information was routinely extracted and recorded in a spreadsheet, including the national context, research population, sampling frame, data collection method, and definition of the neurodevelopmental disorder. All reported prevalence rates were recorded, including of any control groups and subsamples.

**Results**

The first phase of the review identified 156 sources for inclusion, of which 8 related to TBI. The second phase of the review subsequently identified a further 2 sources. A total of 10 sources are therefore included, as listed in Table 1. No studies examining co-morbidity of TBI and other neurodevelopmental disorders amongst incarcerated young people were identified for inclusion. All of the studies are based on populations in the US, UK or Australia. This may be a result of restriction in the review to sources written in English, or may reflect a lack of emphasis on TBI in other national contexts. In all three national contexts the age at which a young person is subject to the adult criminal justice system is 18, aiding the direct comparison of these studies. The age ranges of samples vary, with some studies focusing on a broad age range, such as 11 to 20, and others focused only on older young
people, such as 16 to 18 year olds. The samples for all but four studies are male only. In many cases this is reported as reflective of the populations of the institutions included in the study. Information on the ethnicity of study participants is less consistently provided. While variation might be assumed by study population, only three studies report the ethnicity of the sample and only two studies provide meaningful comparisons by ethnicity. Demographic variation in reported prevalence rates of TBI are reported in the Discussion section.

As shown in Table 1, the reported lifetime prevalence rates of TBI amongst incarcerated youth range from 16.5% to 72.1%, with the exception of a study of 14 young people sentenced to death for crimes committed when aged under 18, all of whom reported having experienced some form of head injury in their childhood. There are many explanations for this variability. Table 1 illustrates the varying definitions of TBI applied in different studies, ranging from ‘any head injury’, including cuts, whiplash and blows to the head not resulting in LOC, to trauma resulting in LOC for a minimum of 20 minutes. It is clear therefore that these studies are measuring very different concepts. Nonetheless, as will be examined in the discussion that follows, even where definitions appear similar, reported prevalence rates still vary.

The variability in definition is reflected in the various measures, tools and methods used to assess prevalence rates, which include: analyses of medical records; self-administered surveys; semi-structured interviews; and the use of validated instruments or clinical tests. Methodologies also vary in whether the respondent is the young person or parent, and whether surveys are self-administered, or data is collected by a researcher or medical
professional. It is apparent that there is the potential for these varied approaches to lead to
different assessments of levels of prevalence. Comparisons are also made difficult by the variation in samples and populations on
which individual studies are focused. This includes variation in the age range considered,
which was typically dependent on the age of young people within a particular custodial
setting. The latter relates to a further, more significant challenge in drawing together studies
from various national contexts. The comparison of populations of incarcerated youth masks
considerable differences in the use of custodial interventions for young people in particular
country states. As illustrated by the study reporting a prevalence rate of 100%, variations in the
seriousness of offence committed may also influence findings.

Studies also vary in their intent. While some studies are designed in order to establish
a prevalence level within a custodial population, in other studies the reported rate is a by-
product of a broader focus on physical and/or mental health issues or criminal justice
experiences. In such studies data regarding TBI may result from one or two simple questions,
with little depth of discussion. This variation in purpose is reflected in the sampling frames
utilised within the studies, ranging from convenience or purposive samples, to those that
deliberately include an entire custodial population.

Given this heterogeneity in definition, methodology and population, it is not possible
to calculate a robust and meaningful overall estimate of the prevalence of TBI among
incarcerated youth. Instead the following sections provide a discussion of the various
definitions used, and the range of prevalence estimates reported accordingly.

Where provided, prevalence rates amongst control groups drawn from non-offenders
in the general youth population are provided in Table 1. To support such comparison, the
discussion below also utilizes studies of the general youth population in which similar
definitions of TBI are used. These studies were purposively selected following the initial
review and analysis so as to provide comparable definitions. In most cases however there
remain slight discrepancies in definition, method of data collection and/or population. To
enable comparison, information on these studies is provided in Table 2.

[ADD TABLE 2 AROUND HERE]

Though the degree of difference varies, regardless of definition, the four studies
inclusive of a control group within the general youth population consistently demonstrate a
prevalence of TBI amongst young offenders in custodial institutions that is greater than that
in the general population. Similarly, where comparisons are made to studies utilising similar
definitions in examining prevalence in the general population, the rate amongst incarcerated
youth is typically higher. In part this may be explained by the higher proportion of females in
general population samples and the apparent lower prevalence of TBI amongst young
females, as discussed further below. In the following discussion, these patterns are examined
in relation to the common categories of definition of TBI.

Discussion

Any head injury

In four studies a broad definition of head injury is used, incorporating a range of
injuries, such as cuts, and/or including blows to the head that do not result in loss of
consciousness. Three such studies directly compare samples of incarcerated youth to a
control group within school settings. Hux et al 54 asked parents a series of twenty-one
‘yes/no’ questions examining awareness of head injuries experienced by their child before the
age of 18. The study reports that 49.7% of the incarcerated sample had experienced a
concussion or cut to the scalp or forehead requiring stitches, compared to 42.1% of the control group.

Levine et al. compare 53 young people in custody to an ‘age-matched comparison group’ of 51 non-offenders from a community that is ‘demographically representative of the region under study’. Parental report suggests that 55% of the offender population had experienced a head injury significant enough to require medical attention, compared to 24% of the control group. A higher rate is reported by Davies et al. Following semi-structured interviews of young people in one custodial institution in the UK, they conclude that 72.1% had experienced a head injury causing them to be ‘knocked out and/or dazed and confused for a time’.

The rates amongst incarcerated youth reported in these studies appear to be greater than those identified when comparable definitions are applied in studies of the general youth population. For example, comparable definitions utilised in studies of high school students in the US suggest a prevalence rate for any head injury of between 31% and 35%. One study runs counter to this trend. When surveying young offenders in custody in New South Wales, Australia, Kenny and Lennings suggest that 35.1% had experienced any kind of head injury, a rate in keeping with that of general population studies.

A different measure is employed by Forrest et al. who consider prevalence rates in the previous 12 months. In this study ‘head injury’ is one of a number of ‘acute major disorders’ measured within the Child Health and Illness Profile used to assess a wide range of health needs. Among incarcerated youth, 12.5% experienced a head injury in the last 12 months, a significantly higher rate than that of 5.8% within a control group of school children. The latter is comparable to a rate of 4.7% identified by Riley et al. utilising the same tool and measure on a population of adolescents, aged 11 to 17, in public schools in urban and rural Maryland.
TBI resulting in LOC

The disparity between prevalence rates within incarcerated and non-incarcerated populations appears increasingly pronounced as the severity of the reported TBI increases. This is apparent in the single study including a control group in which a range of severities of TBI are measured. In the study by Hux et al.\(^{54}\) the relative difference in prevalence rates between the two samples increases when respondents report concussion and LOC; 11.7% of the control group report some form of concussion, compared with 16.5% of the incarcerated young people, while 1.5% of the control group report ‘moderate’ or ‘severe’ concussion compared to 3.5% of the incarcerated young people. (A definition of the levels of severity is not provided, however.)

The increasing disparity in relation to more severe injuries is also evident when comparing reported rates in studies of incarcerated populations to studies of the general youth population. Three further studies in our review consider the prevalence of TBI with any LOC amongst incarcerated youth, with reported rates of 32%\(^ {60}\), 41%\(^ {52}\) and 49.7%\(^ {55}\). This compares to rates of between 5% and 24% identified by a review of studies of self-report surveys of college students in the US\(^ {48}\).

The lower of these prevalence rates defines TBI as trauma resulting in LOC of ‘greater than 20 minutes’. This definition is directly comparable to that of Perron and Howard\(^ {61}\) who report that 18.3% of their sample of incarcerated youth experienced such an injury. While limited to two studies, this suggests a near four times increase of such head injuries amongst the incarcerated sample.

Elsewhere ‘moderate’ or ‘severe’ TBI is defined as a LOC of more than 30 minutes, with an injury classified as ‘very severe’ if the LOC is greater than 60 minutes. Two studies utilise this definition in examining prevalence in custodial populations; both involving self-
report of experience of TBI by the young person, though one in the UK\textsuperscript{52} and one in Australia\textsuperscript{60}. The two studies report an identical prevalence rate of 8.2%.

\textit{Repeat incidence of TBI}

Two studies report on multiple experiences of TBI. Davies et al\textsuperscript{52} report that 45.8\% of their sample of incarcerated young people had experienced more than one head injury of any severity, including 22.9\% reporting four or more such injuries, while Moore et al\textsuperscript{60} suggest that around 13\% of their sample of incarcerated youth had experienced a LOC on two or more occasions. While these studies did not include a control group, a self-report questionnaire of high school students in the US\textsuperscript{65} found that 12\% had experienced multiple head injuries of any kind, and a birth cohort study in New Zealand\textsuperscript{63} with a sample size of 1265 reports that, by the age of 25, 9.2\% had experienced more than one TBI for which a diagnosis of concussion was given.

\textit{Sociodemographic variation in prevalence}

Four studies compare prevalence rates of TBI by gender amongst incarcerated youth with contradictory results. Two studies report a significantly higher rate of TBI amongst males than females. Perron and Howard\textsuperscript{61} report that 19.6\% of males and 9.6\% of females had experienced a TBI resulting in LOC for at least 20 minutes, while Kenny and Lennings\textsuperscript{56} suggest that 37.7\% of males and only 5.3\% of females have experienced one of a wide range of head injury types.

In contrast two studies demonstrate very similar rates amongst males and females. A recent study which screened young offenders in custody in New York State for TBI resulting in LOC reported only one percentage point difference with a prevalence of 50\% amongst male respondents and 49\% amongst female respondents\textsuperscript{55}. While the reported rates are
notably different, Moore et al. also suggest equivalency in prevalence with 32.1% of males and 33.3% of females in their sample experienced TBI with LOC.

It is difficult to explain this variation between studies, even with reference to the varying definitions of TBI and diverse sampling frames. While there is variation in the degree of difference reported, studies of the general youth population consistently suggest a significantly higher prevalence of TBI amongst males.

Two studies consider variation by ethnicity, though neither study reports any significant difference. In a study of nine Australian detention centres, the rate of TBI is slightly higher amongst Aboriginal young people (33.8%) than non-Aboriginal young people (30.9%). Interviews with 72 young people in custody in Missouri, USA, suggest that 17.8% of white young people experienced TBI with LOC for more than 20 minutes, compared to 16.9% of non-white young people.

There is insufficient evidence upon which to draw firm conclusions, however these findings would suggest that TBI might act as a risk factor for criminality independent of ethnicity. Further such research examining sociodemographic characteristics is needed. In particular consideration must be given to factors known to increase risk of criminality and/or criminalisation that might therefore act as confounding variables in seeking to understand the relationship between TBI and offending.

**Comorbidity**

Several studies have identified patterns of comorbidity of TBI with other neurodevelopmental disorders or mental health problems. Such associations are of two distinct types. Firstly, the pre-existence of other disorders, such as Attention-Deficit Hyperactivity Disorder, may heighten the risk of brain injury due to the types of behaviour or activity that might more readily be engaged in. Secondly, there is evidence to suggest that
TBI might increase the risk of developing other disorders. For example, TBI can result in speech and language difficulties and can increase the risk of mental health problems, such as depression, anxiety and suicidality. Young offenders reporting TBI have also been found to be at greater risk of mental health problems and misuse of cannabis.

Despite the heightened risk of comorbidity, none of the studies reviewed examined the co-occurrence of TBI and other conditions amongst incarcerated youth. Further research is required to understand experiences of comorbidity within this vulnerable population.

Evidence is presented elsewhere in this special issue. In their study of young male offenders in custody, Chitsabesan et al. found that the prevalence of deliberate self-harm and suicide risk factors was significantly increased in those experiencing a TBI, although rates of depression and other neurodevelopmental disorders, including ADHD and speech and language disorders, were not increased in this subgroup. The authors consider possible mediating factors for the co-morbidity of TBI with self-harming behaviour, including the presence of shared risk factors such as a history of being in care.

**Conclusion**

This review has identified a significant prevalence of TBI amongst young people in custody in multiple national contexts. Between 49.7% and 71.2% of incarcerated young people are reported to have experienced some kind of head injury, with between 16.5% and 49% having experienced TBI with LOC. While diverse definitions of TBI lead to a wide disparity in reported rates, this suggests high levels of associated need amongst young people in custody.

There is also strong and consistent evidence of a prevalence of TBI amongst incarcerated youth that is substantially greater than that in the general population and amongst offenders in community service settings. Where control groups or comparable
studies within the general population exist, the rates of all forms of TBI appear higher amongst incarcerated youths. This disparity is seemingly more pronounced as the severity of the injury increases.

The correlation between TBI and incarceration does not imply causation. Engaging in types of behaviour related to antisocial behaviour, aggression and criminality may result in a greater risk of TBI. Nonetheless, as outlined in the Introduction, the strong evidence base regarding the association between TBI and subsequent deficits in a wide range of known risk factors for criminality, including cognitive skills, impulse control, academic engagement, and susceptibility to negative peer group influence, provides a strong theoretical framework with which to understand and explain the relationship between TBI and serious and / or persistent offending, and therefore the disproportionate prevalence among incarcerated youth.

There are a number of limitations with regard to the effectiveness of this review in addressing its aims. As discussed above, there are numerous challenges in seeking to combining and comparing disparate research studies with diverse definitions, samples and methodologies so as to form a coherent picture of the prevalence of TBI amongst young people in custodial institutions. In particular, variation in the definition of TBI utilised in research, and indeed practice, inhibits clear understanding of both the prevalence of TBI and its relationship to offending. Furthermore, the relatively small number of sources identified demonstrates that, while greater focus is rightly being placed on this as an issue, there remains a lack of robust data upon which to draw comprehensive conclusions regarding levels of need or associations between serious and persistent offending and degrees of severity of TBI.

The heterogeneity in definition of TBI and study design limits the meaningfulness of combining estimates of prevalence to establish a general estimate. The review identified 10 studies across three countries. There are, therefore, insufficient studies from each country to
draw firm and meaningful comparative conclusions. Such comparison is further limited by variations in policy and practice in specific states within each country, as well as by the varied definitions and measures employed in each study. This precludes any meaningful reflections on the relative impact or effectiveness of specific state policy and practice systems. There are also some specific gaps in the available evidence. Despite the likely vulnerability within this population, there appear to be particular limitations in the available evidence regarding experiences of comorbidity of TBI and other developmental and mental health difficulties amongst young people in custody. Similarly, few studies consider the prevalence or impact of repeat experiences of childhood TBI within this population. There is also insufficient consideration to sociodemographic characteristics that are commonly identified within criminological research as impacting on experiences within the criminal justice system, including ethnicity and socio-economic status. Given concern for experiences of criminalisation and disablement amongst young people who experience childhood TBI, the potential for complex and multiplicative experiences of disadvantage must be considered.

Notwithstanding these limitations in the evidence base, the findings presented here have clear implications for youth justice systems. The high levels of need emphasise the requirement for effective screening and assessment of TBI amongst offending populations so as to support the development of practices and interventions better able to meet the needs of young people in custody, both individually and collectively. Effective assessment provides the means to understand an individual young person’s history of TBI and address its potential impact on aspects of behaviour and functioning. In turn, such screening and assessment can provide an understanding of the collective level of need so as to inform the commissioning and development of specialist services. In addition, the prevalence of TBI, and indeed other neurodevelopmental disorders, amongst young people who offend suggests the need for youth justice processes to be revised, given the significant proportions of young people on
trial or in contact with the police who may struggle to engage effectively with key aspects of
the legal system, including forensic interviewing and courtroom procedures.

An awareness of this disparity amongst populations in custody also suggests a
necessary focus on preventative services and earlier intervention where young people are
known to have been affected by TBI. This might include specialist, responsive interventions
during community youth justice orders. It might also inform interventions prior to any
significant engagement in criminal behaviour, including: the sharing of information regarding
TBI between health services and schools; routine follow-up support with children and their
families at various time points following medical attention for TBI; the provision of
information to parents regarding the potential short, medium and long term impacts of TBI,
and the availability of support services. While requiring resources, such approaches might
offer cost savings if preventing persistent engagement with the criminal justice system and
eventual incarceration for a proportion of young people experiencing childhood TBI.

The findings of this review also have implications regarding research in this field.
Comparative research between countries using standardised definitions and measures of
severity will support analysis regarding the influence of youth justice practices, including
preventative measures, on the criminality and criminalisation of young people experiencing
childhood TBI. This can be further supported by qualitative examination of the experiences
of the youth justice system and criminal justice processes of young people who have
experienced TBI. Consideration to and evaluation of interventions and practices better able to
meet the needs of young people who have experienced TBI in custodial and community
settings can support the development of youth justice practices better able to address the
needs of these vulnerable young people.
References


Table 1. Studies reporting on the prevalence of TBI amongst young people in custody

<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Population</th>
<th>Age range</th>
<th>Sample size</th>
<th>Data collection method</th>
<th>Definition of TBI</th>
<th>Prevalence rate in offending population</th>
<th>Prevalence rate in control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davies et al 2012</td>
<td>UK</td>
<td>Young male offenders in custody</td>
<td>16-18</td>
<td>61</td>
<td>Semi-structured interview carried out by researcher</td>
<td>Any head injury resulting in LOC or feeling ‘dazed and confused’</td>
<td>72.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Head injury resulting in LOC of any length of time</td>
<td>41%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>‘Mild’ TBI, with LOC of less than 10 minutes</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>‘Complicated mild’ TBI, with LOC of 10 to 30 minutes</td>
<td>9.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>‘Moderate/severe’ TBI, with LOC of 30 to 60 minutes</td>
<td>6.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>‘Very severe’ TBI, with LOC of more than 60 minutes</td>
<td>1.6%</td>
<td></td>
</tr>
<tr>
<td>Forrest et al, 2000</td>
<td>US</td>
<td>Young male offenders in custody</td>
<td>12-19</td>
<td>202</td>
<td>Self-administered questionnaire completed by young person</td>
<td>Taken from the Child Health and Illness Profile, Adolescent Edition in which head injury is considered as an ‘acute major disorder’</td>
<td>12.5% in the last 12 months</td>
<td>5.8% in the last 12 months</td>
</tr>
<tr>
<td>Hux et al, 1998</td>
<td>US</td>
<td>Young male and female offenders in custody</td>
<td>11-20</td>
<td>753</td>
<td>Self-administered survey completed by parent</td>
<td>Any head injury, including cuts or whiplash, and ‘blows to the head’ resulting in headaches, dizziness or blurred vision, with or without LOC</td>
<td>49.7%</td>
<td>42.1%</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Population</td>
<td>Age Range</td>
<td>Sample Size</td>
<td>Method of Data Collection</td>
<td>Outcome Definitions</td>
<td>Prevalence</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>---------</td>
<td>-----------------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-------------------------------------------------------------------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Kaba et al, 2014 55</td>
<td>US</td>
<td>Young male and female offenders in custody</td>
<td>16-18</td>
<td>384</td>
<td>Screening tool administered by professional</td>
<td>Head injury ‘with loss of consciousness and/or posttraumatic amnesia’</td>
<td>49.7%</td>
<td></td>
</tr>
<tr>
<td>Kenny and Lennings 2007 56</td>
<td>Australia</td>
<td>Young male and female offenders in custody</td>
<td>14-21</td>
<td>242</td>
<td>Survey administered by psychologist</td>
<td>Any injury ‘to the scalp, skull, brain and underlying tissue and blood vessels in the head’</td>
<td>35.1%</td>
<td></td>
</tr>
<tr>
<td>Levine et al, 1985 57</td>
<td>US</td>
<td>Young male offenders in custody</td>
<td>12-16</td>
<td>104</td>
<td>Self-administered questionnaires completed by young people and parents</td>
<td>Head trauma significant enough to require medical attention</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>Lewis et al, 1985 58</td>
<td>US</td>
<td>Young male offenders in custody later convicted of murder</td>
<td>12-18</td>
<td>9</td>
<td>Medical records</td>
<td>Any ‘illnesses or accidents’ affecting the central nervous system, including those resulting in LOC</td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Country</td>
<td>Age Range</td>
<td>Sample Size</td>
<td>Methodology</td>
<td>Prevalence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis et al, 1988</td>
<td>US</td>
<td>Under 18 at time of offence</td>
<td>14</td>
<td>Detailed clinical examination, Interview of young person by a neurologist and a psychiatrist, Medical records</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore et al, 2014</td>
<td>Australia</td>
<td>Not stated (mean 17)</td>
<td>316</td>
<td>Self-administered survey, Head injury ‘where they became unconscious or “blacked out”’</td>
<td>32%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perron and Howard, 2008</td>
<td>US</td>
<td>11-20</td>
<td>720</td>
<td>Interviews administered by trained team of interviewers</td>
<td>18.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Studies reporting on the prevalence of TBI amongst young people

<table>
<thead>
<tr>
<th>Reference</th>
<th>Country</th>
<th>Population</th>
<th>Age range</th>
<th>Sample size</th>
<th>Data collection method</th>
<th>Definition of TBI</th>
<th>Prevalence rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilie et al, 2013 62</td>
<td>Canada</td>
<td>Male and female students aged 11-20 years</td>
<td>11-20</td>
<td>8915</td>
<td>Self-administered questionnaire</td>
<td>Head injury resulting in LOC for at least 5 minutes or overnight hospitalization</td>
<td>20.2%</td>
</tr>
<tr>
<td>McKinley et al, 2008 63</td>
<td>New Zealand</td>
<td>Males and females at age 25</td>
<td>0-25</td>
<td>1003</td>
<td>Birth cohort study. Reports of TBI based on medical records from 4 months to 16 years, and self report of medical attendance from 16 to 25 years old</td>
<td>A blow to the head for which medical treatment was sought and a diagnosis of concussion was given</td>
<td>31.6%</td>
</tr>
<tr>
<td>Riley et al, 1996 64</td>
<td>US</td>
<td>Male and female public school students, aged 11 to 17 years</td>
<td>11-17</td>
<td>2712</td>
<td>Self-administered questionnaire</td>
<td>Taken from the Child Health and Illness Profile, Adolescent Edition in which head injury is considered as an ‘acute major disorder’</td>
<td>4.7%</td>
</tr>
<tr>
<td>Segalowitz and Lawson, 1995 65</td>
<td>Canada</td>
<td>Male and female high school students</td>
<td>14-18</td>
<td>1123</td>
<td>Self-administered questionnaire</td>
<td>Any form of head injury</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Head injury with concussion</td>
<td>14.9%</td>
</tr>
<tr>
<td>Segalowitz and Brown, 1991 66</td>
<td>Canada</td>
<td>Male and female high school students</td>
<td>14-18</td>
<td>616</td>
<td>Self-administered questionnaire</td>
<td>Any form of head injury</td>
<td>31.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Head injury with concussion</td>
<td>15.5%</td>
</tr>
</tbody>
</table>