Functional consequences of germline mutations in a novel non-RET medullary thyroid cancer susceptibility gene

Read, Martin; Smith, Joel; Smith, Vicki; Bosseboeuf, Emy; Wake, Naomi; Watkinson, John; Wallis, Yvonne; Maher, Eamonn; McCabe, Christopher; Woodward, Emma

DOI:
10.1530/endoabs.38.OC5.1

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 27. Dec. 2018
OC4.4
Hyperinsulinaemia due to inhibition of 5α-reductases is ameliorated by liver-selective glucocorticoid receptor antagonism in diet-induced obesity
Tracy C S Mak, Dawn E W Livingstone, Brian R Walker & Ruth Andrew
University of Edinburgh, Edinburgh, UK.

Background
5α-reductase 1 (5αR1) metabolises steroids such as glucocorticoids and androgens, and is highly expressed in murine liver. Genetic disruption of 5αR1 leads to adverse metabolic changes in mice. We hypothesised that dutasteride, a 5αR inhibitor, induces insulin resistance in mice, as in humans, and this effect is underpinned by increased hepatic glucocorticoid action; an experimental paradigm was set up using A-348441, a liver-selective glucocorticoid receptor (GR) antagonist, and then utilised to assessed the contribution of increased hepatic glucocorticoid action to the metabolic consequences of dutasteride.

Methods
C57BL6/J male mice (n=8-15/group; age 12 weeks) were given high fat (HF), HF with A-348441 (Karobio), HF + dutasteride (Dut), or HF + Dut + A-348441 diet for 4 weeks. Glucose tolerance tests (GTT) were performed at week 3, with mice cycled at week 4. Plasma insulin and corticosterone were measured by ELISA and plasma glucose spectrophotometrically. Data are mean ± S.E.M., *P<0.05 vs HF diet and †P<0.05 vs HF + Dut diet.

Results
Plasma corticosterone concentrations were not changed by A-348441, supporting liver-selective GR antagonism. A-348441 improved metabolic health of mice receiving a HF diet, preventing HF-induced bodyweight gain (34.3 ± 0.8 g vs 31 ± 0.8 g, n=8, P<0.05 vs HF diet) and total white adipose depot weight gain (1.58 ± 0.1 g vs 1.8 ± 0.1 g, n=8, P<0.05 vs HF diet). A-348441 reduced fasting plasma insulin, fasting glucose, or glucose response to GTT; A-348441 did not change body weight, total adipose depot weight, fasting insulin, fasting glucose, or glucose response to GTT; A-348441 reduced fasting plasma insulin (235.9 ± 17 mg/dl per min vs 329.3 ± 16 mg/dl per min vs 198.4 ± 25 mg/dl per min).

Conclusions
Liver-specific GR antagonist ameliorates the metabolic consequences of acute diet-induced obesity. Hyperinsulinaemia caused by inhibition of 5αR was ameliorated by A-348441, suggesting that hepatic glucocorticoid action plays a substantial role in metabolic dysfunction caused by 5αR inhibition. Moreover, targeting hepatic GR may be beneficial in maintaining metabolic homeostasis in diet-induced obesity.

DOI: 10.1530/endoabs.38.OC4.4

OC4.5
Glucagon increases energy expenditure independently of brown adipose tissue activation in humans
Chioma Izi-Engbeaya1, Victoria Salem1, Rajveer Atkar1, Christopher Coello2, David Thomas1, Alexander Commninos1, Adam Buckley1, Eugenii Rabiney1, Roger Gunn1, Tricia Tan1, Stephen Bloom1 & Wajid Dhillon1
1Section of Investigative Medicine, Imperial College London, London, UK; 2Imanova Imaging Centre, London, UK; 3Department of Computing, Imperial College London, London, UK.

Background
Obesity is a global health concern. Elevating energy expenditure (EE) would be a highly effective treatment approach to treat obesity but no current drugs can safely achieve this. Cold exposure potently increases EE through brown adipose tissue (BAT) thermogenesis in humans. Glucagon elevates EE via BAT in rodents but the mechanism in humans is unknown. We investigated for the first time the mechanism by which glucagon increases EE in humans.

Methods
Eleven volunteers underwent measurement of EE using an indirect calorimeter at the start and end of three interventions: i) cold exposure; ii) control (vehicle) infusion at 23 °C; and iii) glucagon infusion at 23 °C. On each visit thermal images of the neck were taken – an increase in temperature is a non-invasive measure of increased BAT activity. All 11 volunteers also underwent a FDG PET-CT scan with cold exposure. In those in whom this confirmed cold-induced BAT activity (n=8), they had a second PET-CT scan with either vehicle (n=4) or glucagon (n=4) infusion (23 °C).

Results
EE rose by 14% with cold exposure and 15% following glucagon infusion (P<0.05 vs control). BAT deposits identified on the cold scan had significantly (4×) higher metabolic activity than on the vehicle or glucagon infusion scans, which were not significantly different from each other. There was a 0.31 °C rise (P<0.001) in neck temperature on thermal images after cold exposure in the BAT positive cohort but not after glucagon or vehicle infusion.

Conclusions
Glucagon and cold exposure have a similar effect in stimulating energy expenditure but glucagon has no effect on the metabolic activity of classical adult supraclavicular BAT compared with cold exposure. This information is of importance to the development of better targeted and safe treatments designed to combat obesity through upregulation of energy expenditure.

DOI: 10.1530/endoabs.38.OC4.5

OC4.6
Cardiac fibrosis and the balance between glucocorticoid and mineralocorticoid receptors signalling
Rachel Richardson1, Emma Batchen1, Rowan Darroch1, Kathleen Sculillson1, Ewa Rog-Zielinska1, Christopher Kenyon1, Gillian Gray1 & Karen Chapman1
1University of Edinburgh, Edinburgh, UK; 2Newcastle University, Newcastle, UK; 3Imperial College London, London, UK.

Background
Increased fibrotic activity is known to be an important cause of increased cardiovascular disease risk. Glucocorticoid receptor (GR) signalling is essential for cardiac maturation in utero and adult mice with cardiac myocyte and vascular smooth muscle deletion of GR (SMGRKO mice) have cardiac hypertrophy, fibrosis and impaired function. Intriguingly, levels of left ventricle (LV) mRNA encoding the mineralocorticoid receptor (MR), which is pro-fibrotic in heart, rise postnatally in SMGRKO mice in parallel with the development of cardiac fibrosis. Here, the benefit of MR antagonism in limiting cardiac fibrosis was assessed in SMGRKO mice.

Methods
SMGRKO mice (generated via SM22α-Cre mediated deletion of GR) and control (Cre−/) littermates were treated from birth with vehicle or 20 mg/kg per day spironolactone, an MR antagonist, administered in the drinking water to lactating dams until weaning then to offspring (n=10-13/group). At 8 weeks of age, hearts were collected for histology and mRNA profiling. Data were analysed by two-way ANOVA with Tukey’s multiple comparisons test.

Results
Heart weight in male SMGRKO mice was higher than controls irrespective of spironolactone treatment (P<0.01). Interestingly, spironolactone modestly reduced heart weight in both genotypes (P<0.05).

Conclusion
Specific variations in the human glucocorticoid receptor (GR) gene associate with increased cardiovascular disease risk. GR signalling is essential for cardiac maturation in utero and adult mice with cardiomyocyte and vascular smooth muscle deletion of GR (SMGRKO mice) have cardiac hypertrophy, fibrosis and impaired function. Intriguingly, levels of left ventricle (LV) mRNA encoding the mineralocorticoid receptor (MR), which is pro-fibrotic in heart, rise postnatally in SMGRKO mice in parallel with the development of cardiac fibrosis. Here, the benefit of MR antagonism in limiting cardiac fibrosis was assessed in SMGRKO mice.

DOI: 10.1530/endoabs.38.OC4.6

OC5.1
Thyroid and parathyroid

Functional consequences of germline mutations in a novel non-RET medullary thyroid cancer susceptibility gene
Martin Read1, Joel Smith1, Vicki Smith1, Emly Bossebecou1, Naomi Wake1, John Wathkinson2, Yvonne Wallis1,13, Eamonn Maher1,14, Christopher McCabe1 & Emma Woodward1,15
1Centre for Endocrinology, Diabetes and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; 2University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; 3Birmingham Women’s NHS Foundation Trust, Birmingham, UK; 4Department of Medical Genetics, University of Cambridge, Cambridge, UK.

Results
Whilst the majority of familial medullary thyroid cancer (MTC) is caused by germline mutations of the RET proto-oncogene, there are families and individuals

Endocrine Abstracts (2015) Vol 38
OCS3

Use of 11C-methionine PET to localise parathyroid adenoma/hyperplasia: a single centre experience
Ben Challis1, Ziauddin Saad2, H K Chew3, John Buscombe1 & Helen Simpson1
1Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; 2University of Cambridge, Cambridge, UK;
3University of Cambridge, Cambridge, UK.

Introduction
It is established practice to localise parathyroid lesions preoperatively using ultrasound (US) and sestaMIBI (MIBI). Whilst these imaging techniques have good sensitivity/specify, there are patients in which imaging does not localise a parathyroid lesion. 11C-Methionine PET (MET PET) is an imaging modality where 11C-methionine, a radioactive tracer, is taken up at sites of protein/peptide synthesis and has been demonstrated to be effective in localising parathyroid lesions. We therefore investigated the clinical utility of this imaging technique at our centre.

Methods
All patients had biochemistry prior to imaging thought to be consistent with primary hyperparathyroidism. Criteria to undergo PET imaging were inability of conventional imaging to identify a parathyroid lesion, potential intrathyroidal parathyroid lesion, and three patients where mediastinal disease was suspected. Twenty patients underwent MET PET over a 18-month period.

Results
MET PET identified a parathyroid lesion in 14/20 patients. Three out of three of these were demonstrated to be mediastinal lesions, leading to a parathyroid adenoma being successfully resected by sternotomy. 11/20 demonstrated disease in the neck. Of these 3/11 parathyroid lesions were very deep in the neck adjacent to vertebrae/oesophagus and not seen with US/sestaMIBI. In 2/11 patients MET PET demonstrated intrathyroidal parathyroid lesions and patients underwent hemi/hypophysectomy. All parathyroid lesions were confirmed on histology (13 adenoma and one hyperplasia). Of the 6/20 who had negative imaging, one now has a diagnosis of sarcoidosis with elevated 1,25-dihydroxycholecalciferol, one underwent bilateral neck exploration and histology demonstrated parathyroid hyperplasia. The remaining four patients are still being investigated with working diagnoses of PBI in three patients.

Discussion
MET PET is a useful additional functional imaging technique when conventional imaging fails to localise a lesion, where mediastinal disease is suspected or intrathyroidal disease needs confirmation. This can particularly helpful when deciding to refer patients for major surgery.

DOI: 10.1530/endoabs.38.OC5.3

Endocrine Abstracts (2015) Vol 38

OCS2

A novel, missense, mutation (P81R) in the TRHR gene in congenital central hypothyroidism
Olympia Koulouri1, Adeline Nicholas1, Erik Schoenmakers1, Jacke Mokrosinski2, Frances Lane3, Trevor Cole4, Jeremy Kirk5, Sadaf Farooqi1, Krishna Chatterjee1, Mark Gurnell1 & Nadia Schoenmakers1
1Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK; 2West Midlands Regional Genetics Service, Birmingham Womens Hospital NHS Foundation Trust, Birmingham, UK; 3Department of Endocrinology, Birmingham Children’s Hospital, Birmingham, UK.

Background
Congenital, isolated, central, hypothyroidism (CCH), is rare and evades diagnosis on TSH-based congenital hypothyroidism screening programmes in the UK. Genetic ascertainment is therefore paramount in enabling prompt diagnosis and treatment of familial cases. Recognised causes include TSHB and IGSF1 gene defects, with only two previous reports of biallelic, highly disruptive (non-sense; R17X, in-frame deletion and missense; p.S115>T117del + T118), mutations in the TRHR gene. Here, we describe the first homozygous missense mutation in TRHR, associated with a typical phenotype.

Case
A female infant from a consanguineous Pakistani family, presented with prolonged neonatal jaundice and was found to have central hypothyroidism (TSH 2.2 mU/l, NR 0.4–3.5 and free T 4 7.9 pmol/l, NR 10.7–21.8), with otherwise normal pituitary function. With TSHB and IGSF1 gene mutations being usually associated with profound or X-linked CCH, a TRHR mutation was sought.

Results
Sequencing identified a homozygous mutation (P81R) in TRHR, substituting arginine for a proline residue in transmembrane helix 2 (TM2) that is highly conserved amongst G-protein coupled receptors (GPCRs). Functional studies showed that although the mutant receptor was expressed and localised to the cell membrane normally, its ability to bind radiolabelled TRH and signal via Gαq was markedly impaired, likely due to disruption of the membrane structure of TM2.

Conclusion
We describe the first deleterious, missense TRHR defect associated with moderate CCH. Importantly, the location of the mutated amino acid (proline 81) highlights a previously unanticipated functional importance of the TM2 in mediating hormone binding and receptor activation. Future identification of other, naturally-occurring, TRHR mutations may map the molecular basis of ligand binding and activation of TRHR which are poorly understood.

DOI: 10.1530/endoabs.38.OC5.2