Distinct p53 response profiles in transgenic mouse models of thyroid-specific PBF and PTTG expression
Read, Martin; Fong, Jim; Imruetaicharoenchoke, Waraporn; Modasia, Bhavika; Lewy, Gregory; Ryan, Gavin; Sharma, Neil; Smith, Vicki; Watkinson, John; Boelaert, Kristien; McCabe, Christopher
DOI:
10.1530/endoabs.38.P149

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Steroid sulphatase (STS) liberates sulphated oestrogens into their active forms. In the colon, evidence suggests that although initially pro-apoptotic in healthy mucosa, once malignancy occurs, oestrogens may stimulate colorectal cancer (CRC) proliferation. Moreover, greater intratumoural oestrogen synthesis is negatively associated with survival outcomes in CRC patients. However, little is known about oestrogen metabolism pathways in CRC, and whether alterations in local oestrogen synthesis and actions relate to clinical and pathological features. Furthermore, it is unknown whether manipulation of oestrogen pathways has therapeutic potential. Therefore, using qRT-PCR and immunoblotting, in healthy human colorectal tissue matched with CRC samples (n = 56) we correlate the dysregulation of key oestrogen synthesis enzymes (steroid sulphatase (STS), 17β-hydroxysteroid dehydrogenase (17βHSD) type-1, type-2, type-7, and type-12) and the G-protein coupled oestrogen receptor (GPER), with patient TNM staging, lymph node infiltration, and distant metastases. In addition, ELISA assays were undertaken to ascertain the effects of oestrogens on proliferation of CRC cell lines. STS activity, 17βHSD7, and 17βHSD12 expression all showed a positive correlation with TNM staging in patient CRC samples, indicating greater oestrogen availability is linked to advanced stage disease. Increased GPER expression also significantly (P < 0.05) correlated with late-stage malignancy. In CRC cell lines, over-expression of STS significantly (P < 0.01) increased cell proliferation when treated with sulphated oestrogens. This effect was completely ablated when treated in combination with the STS inhibitor STX64 (P < 0.001). Furthermore, we show here for the first time that the GPER agonist, G1, also stimulated CRC proliferation; with both oestrogen and G1 effects significantly inhibited with the GPER selective antagonist G15 (P < 0.001). Increased STS activity and GPER expression are associated with late-stage CRC, strongly suggesting a role for oestrogens in this malignancy. Thus, reducing the availability and action of oestrogens by inhibiting STS and GPER, respectively, may have therapeutic benefits for patients with CRC.

Detection was also lost with a PTTG-T60 mutant (T60A). Antibody specificity was further confirmed by immunoprecipitation assays. Paraffin-embedded formalin-fixed tumour sections were obtained for immunohistochemical analysis from patients with primary oropharyngeal squamous cell carcinoma. Abundant total PTTG protein expression was evident both in the cytoplasm and nucleus. In contrast, expression of T60-phosphorylated PTTG was predominantly nuclear. As interaction with its binding partner PBF facilitates PTTG nuclear localisation, and both proto-oncogenes affect p53 stability and function, we assessed the relative contributions of PTTG and PBF to p53 stability. Preliminary experiments demonstrated that transfection of wild-type PBF or PTTG into HPV-positive 93-VU-147T HSNC cells decreased p53 protein levels compared to controls. Further, half-life studies demonstrated reduced p53 stability in 93-VU-147T cells transfected with either PBF or PTTG. Interestingly, transfection with a PBF mutant incapable of PTTG interaction, or a PTTG mutant unable to bind PBF, resulted in an initial decrease in p53 stability followed by subsequent stabilisation. These data indicate a potential role for both PTFG and PBF in modulation of p53 stability in head and neck cancers. Furthermore, PTTG is phosphorylated at residue T60 in head and neck tumours, which may alter its well described mitotic regulatory function.

PTTG1 both regulate p53 activity, but the relative contribution of each gene in influencing p53 function has not been delineated, especially in thyroid cancer where both proto-oncogenes are commonly overexpressed. To better understand the interplay between PTTG1, PBF and p53 in vivo, we examined p53 responses in primary thyrocytes cultured from transgenic mice overexpressing PBF (PBF-Tg) and PTTG1 (PTTG-Tg), either singly or in combination in a bi-transgenic murine model (Bi-Tg). Western blotting showed that p53 and γ-H2AX protein levels were elevated in PTTG1-Tg and Bi-Tg thyrocytes (>2-fold; P < 0.05). In contrast, no significant increase was observed in p53 or γ-H2AX levels in PBF-Tg thyrocytes compared to WT (P = NS). Consistent with this, a greater proportion of a panel of p53-responsive DNA repair genes were significantly down-regulated in PTTG1-Tg (30/83 genes) and Bi-Tg (30/83 genes) than in PBF-Tg thyrocytes (12/83 genes). A differential p53 response was further evidenced following gamma-irradiation of cells, with fewer significant mRNA changes occurring in PTTG1-Tg (0/10 genes; P = NS) and Bi-Tg (4/10 genes; P < 0.05) than in WT primary thyrocytes (10/10 genes; P < 0.01). By comparison, irradiation of PBF-Tg thyrocytes gave the greatest reduction in mRNA levels (6/10 genes; P < 0.05) for genes such as Chek1 (4.4-fold; P < 0.01) and Rad51 (8.4-fold; P < 0.01). We therefore examined potential associations between PBF and DNA repair genes in human thyroid tumours. Importantly, a significant correlation was apparent between PBF and Chek1 (R = 0.44; P < 0.05; N = 22), Fancg (R = 0.78; P < 0.001; N = 22) and Mutyh (R = 0.62; P < 0.05; N = 22). Together our data reveal for the first time that PBF and PTTG1 mediate distinct p53 response profiles in vivo. These results offer important insights for understanding the impact of proto-oncogenes on thyroid tumorigenesis and for identifying new tumour biomarkers.

PTTG is a multifunctional proto-oncogene, overexpressed in thyroid, pituitary and other endocrine cancers. PTTG is also implicated in the pathogenesis of head and neck cancer, where high PTTG expression independently correlates with advanced tumour stage and reduced disease-free survival. Recently, aberration of residue threonine-60 (T60) has been associated with altered PTTG half-life, chromosomal instability and cell invasion. We therefore generated a phospho-specific antibody against T60 PTTG. Transient transfection of wild-type PTTG resulted in a significant increase in T60-phosphorylated PTTG protein expression in HeLa cells (3-fold, p = 0.001), which was blocked by a phospho-peptide.