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ABSTRACT 

Copper oxide nanoparticles with different shapes were used to examine the effect of 

shape on the various physicochemical properties (reactivity, aggregation, suspension 

stability) and to examine the behaviour by which CuO nanoparticles exhibit their 

biological response towards alveolar type-I cells. The different shapes examined in 

this study include spherical, rod and spindle shaped platelet particles. In vitro 

dissolution studies (7 days) in 1mM NaNO3 matrix showed a marked difference in 

dissolved Cu release between the nanoparticles. However, in serum-free cell culture 

media (exposure media to cells) the particles’ dissolution was found to be 

significantly enhanced with close to complete dissolution reported for all particle 

types. Biological studies showed both shape and size of the CuO nanoparticles tested 

to have a significant effect on TT-1 cell viability and release of pro-inflammatory 

cytokines; IL-6 and IL-8. This study shows a complex interplay between particulate 

and dissolved species triggering the biological response. Upon immediate exposure 

of CuO nanoparticles of different shapes, the particulate form contributes towards 

the toxicity. However, for any biological response observed over and beyond a 

period of 24 hrs the dissolved fraction becomes significant.  
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1. INTRODUCTION 

The interaction of particles with cells is shown to be strongly influenced by particle 

size. However, emerging studies have started to highlight that size may not be the 

only critical factor that governs the biological response of nanoparticles, with surface 

chemistry (Liu et al. 2010), shape (Gratton et al. 2008; Huang et al. 2010, Stoehr et 

al. 2011) and particle solubility (Studer et al. 2010; Franklin et al. 2007) all having the 

potential to play a pivotal role. Therefore, isolating the parameters that affect 

biological response often becomes difficult due to the lack of particles where 

different variables (size, shape, surface area, and surface chemistry) can be 

independently altered one at a time. Often to validate this, nanoparticles of different 

compositions are tested in different studies and the results joined together to 

answer “physicochemical properties dependent toxicity”. This approach hinges on 

the assumption that all the physicochemical properties affect the nanoparticles of 

different composition equally, which often may not be the case. For example, size 

may play an important role in triggering a biological response for silica nanoparticles 

(Yu et al. 2009) but for zinc oxide nanoparticles it may be their rate of dissolution 

(Franklin et al. 2007) which determines their biological response while for Ag 

nanoparticles both the effect of particle size and dissolution have been shown as 

contributing factors (Liu et al. 2010; Kim et al. 2012).  

Synthesizing nanoparticles of different shapes is at present intensely exploited due 

to the enhanced shape specific properties at the nanoscale. Optical, mechanical and 

electrical properties of nanomaterials have been shown to be affected by the shape 

of the nanocrystals. Apart from the material and physicochemical properties, shape 

also seems to have an effect on the biological response (Venkataraman et al. 2011) 



and even on the antimicrobial effect (Pal et al. 2007) of the nanoparticles. Studies 

using polymeric nanoparticles (Venkataraman et al. 2011) have shown that shape of 

the particles can have an effect on their bio-distribution, internalization 

(phagocytosis and endocytosis), and cytotoxicity. Various articles (Gratton et al. 

2008; Huang et al. 2010; Venkataraman et al. 2011; Stoehr et al. 2011) have 

suggested shape of the nanoparticles to play a profound role on the biological 

response. For example, long rod silica particles (450x110 nm) were taken up in larger 

amounts, with faster internalization by A375 human melanoma cells than spherical 

(100 nm) and short rod (240x120 nm) silica nanoparticles (Huang et al. 2010). 

Similarly long rod silica particles had a greater impact on cell proliferation, apoptosis, 

cytoskeleton formation, adhesion and migration. Pal et al. (2007) demonstrated 

shape to play a key role in the antimicrobial property of silver nanoparticles, wherein 

truncated triangular nanoplates (with {111} plane as the basal plane) having a 

stronger biocidal action than spherical and rod-shaped nanoparticles. For silver, wire 

shaped particles have shown to significantly reduce cell viability and increase LDH 

release for A549 cells, whereas no effect on the alveolar epithelial cells was observed 

for spherical silver particles (Stoehr et al. 2011).  

Often, the mode by which the nanoparticles exhibit toxic response varies from 

particulate derived (Yu et al. 2009), dissolution based (Franklin et al. 2007), oxidative 

stress related (Li et al. 2012) to Trojan horse based mechanism (Park et al. 2010). The 

preferred route varies for each particle type (including their physicochemical 

properties) and often can be a combination of the above mechanisms. For example, 

titanium dioxide and zinc oxide nanoparticles have a high propensity to generate 

reactive oxygen species (Li et al. 2012), silver nanoparticles have been shown to 



exhibit Trojan horse mechanism based toxicity (Park et al. 2010; Navarro et al. 2008) 

and solubility of zinc oxide nanoparticles has contributed to dissolution based 

toxicity (Franklin et al. 2007).   

Copper oxide nanoparticles are used for various applications (viz. catalysts, 

microelectronics, solar energy, high temperature superconductivity), with also 

several reports on their enhanced bactericidal effect (Baek et al. 2011). Limited 

biological studies on CuO nanoparticles have shown them to induce significantly 

higher toxicity in mammalian cell lines (Karlsson et al. 2009; Ahamed et al. 2010) 

compared to bulk CuO particles. Instead of a single predominant mode of biological 

response a likely combination of dissolved species generated from the nanoparticles 

(Studer et al. 2010) and ROS (reactive oxygen species) mediated oxidative stress 

(Gunawan et al. 2011) are thought to be the primary mechanism of CuO 

nanoparticles toxicity. Although most of the biological studies performed on CuO 

nanoparticles are based on bulk vs. nanosize comparison, little if anything is known 

about the effect of particle shape on CuO toxicity. Therefore, in this study three 

different shapes (spheres, rods and spindles) of CuO nanoparticles were synthesized 

to examine the effect of shape on (a) the physicochemical properties of CuO 

nanoparticles, (b) dissolution and stability of these nanoparticles in 1mM NaNO3 

medium and DCCM-1 cell culture medium, (c) the biological response of these 

nanoparticles on human, alveolar type-1 epithelial cells (TT-1 cells). Finally, this study 

also addresses comparatively whether the observed biological response from TT-1 

cell lines is a particulate or dissolution derived effect.  

 

 



2. MATERIALS & METHODS 

2.1 Particle synthesis: CuO nanoparticles of three different shapes i.e. sphere, 

rods and spindles were prepared using wet chemistry and CuCl2.2H2O as the 

precursor (Zhu et al. 2004, Misra et al. 2012;). For spherical CuO (CuO-s) 

nanoparticles, 0.02 M of CuCl2.2H2O was dissolved in 150 mL deionised water and 

500 µL of glacial acetic acid was added to the solution. The solution was then heated 

to 100°C followed by a rapid addition of 0.65 g NaOH. For rod shaped CuO (CuO-r) 

nanoparticles, 0.02 M of CuCl2.2H2O was dissolved in 150 mL deionised water and 

heated to 100°C followed by a rapid addition of 0.8 g NaOH. Similarly, for spindles 

(CuO-spindles) 0.02 M of CuCl2.2H2O was dissolved in 150 mL deionised water with 

addition of 500 µL of glacial acetic acid and 0.8 g NaOH. The solution was then 

heated to 100°C and kept at that temperature for 5 mins, before cooling it to room 

temperature. The resulting black precipitate for all samples was centrifuged and the 

nanoparticles were repeatedly washed (3 times) with de-ionized water to get phase 

pure CuO nanoparticles, prior to further characterisation as described below. All the 

three types of CuO NPs were easily re-suspended in deionised water forming stock 

suspension from where appropriate dilutions were made for biological testing.  

 

2.2 Particle characterization: Diluted suspension of the nanoparticles was 

deposited on copper grid for TEM imaging (Hitachi 7100, 100 kV). X-ray diffraction 

was performed on the nanoparticles using Enraf-Nonius diffractometer coupled to 

INEL CPS 120 position-sensitive detector with Co-Kα radiation and the phase 

identification was performed using STOE software. BET analysis (Micromeritics) was 

performed on the dried CuO nanoparticles after washing. For AFM measurements, 



diluted CuO suspensions was deposited onto freshly cleaved mica substrate attached 

on a glass slide and allowed to air dry in a clean environment. AFM was conducted 

on the samples, using Asylum MFP-3D-SA (Santa Barbara, USA) instrument in AC 

mode. The samples were scanned in air using an Olympus AC-240TS tip (spring 

constant 2 N/m). The hydrodynamic size and zeta potential of the nanoparticles 

were measured using Malvern Zetasizer (Malvern Instruments). ICP-AES (Varian 

Instruments) analysis was performed to determine the initial concentration of CuO in 

the aqueous nanoparticulate suspension and also measure the dissolution of the 

nanoparticles as described below.   

 

2.3 Particle reactivity and dissolution studies: Reactivity studies on CuO 

nanoparticles were performed at a Cu concentration of 750 mg/L by using zeta 

potential and hydrodynamic size measurements. The effect of temperature on zeta 

potential and hydrodynamic size of CuO nanoparticles was measured in water using 

a Malvern Zetasizer (Malvern Instruments). The effect of pH on the zeta potential 

was measured in water to assess the colloidal stability of all the particle types. The 

stability of the CuO particle suspension in cell culture media was also investigated 

using Malvern Zetasizer. Particle dissolution was measured using dialysis membranes 

(Misra et al. 2012) and centrifugal ultrafiltration (Navarro et al. 2008; Liu and Hurt, 

2010). All samples were thoroughly washed before the dissolution experiment and 

appropriate blanks were included in the experimental set up to control for a 

potential contamination from reagents and containers. 10 mL of CuO particulate 

suspension (in water) was placed inside a dialysis bag (MWCO=12.4 kDa) and 

transferred to 250 mL plastic bottles (Nalgene) containing 200 mL of 1 mM NaNO3 



(pH=6.7). The starting Cu concentration inside the dialysis bag for all the dissolution 

experiments was kept constant at 750 mg/L, with the exception of a series of 

experiments conducted on CuO-spindles, where the initial concentration varied from 

5 to 50 mg/L. Soluble Cu nitrate salt was used as the source of ionic Cu. The bottles 

were incubated at 25°C and 200 rpm (Stuart Scientific Instruments shaker incubator). 

Aliquots of 1 mL were taken from the media outside the dialysis bag at regular 

interval, acidified with 5% HNO3 and the concentration of Cu was then measured 

using ICP-AES (Varian Instruments). At the end of the dissolution experiment, 

aliquots of the suspensions inside the dialysis bag were examined by TEM to 

ascertain the presence of nanoparticles.  

Dissolution experiments were also performed in DCCM-1 cell culture media using 

centrifugal ultrafiltration to minimise the excessive use of cell culture media. The 

results obtained from both the techniques (i.e. Dialysis membrane and Centrifugal 

filtration units) were highly comparable as demonstrated in our control experiments 

(Supporting Information S2). The study was conducted on all the three types of 

particles (at a concentration of 51, 48 and 61 mg/L) suspended in 50 mL of DCCM-1 

media and incubated for 24 hrs at 37 °C under static conditions. At regular time 

points , 2 mL of the particle suspension in the media was withdrawn and transferred 

into 15 mL centrifugal filtration units (Millipore, 3 kDa) containing 8 mL of deionised 

water, which was then centrifuged at 6000g for 30 mins (Eppendorf Centrifuge, 

5810). The use of the centrifugal filter units ensured the separation of nanoparticles 

from the suspension. The filtrate part was then digested using 5% HNO3 before ICP-

AES analysis.  

 



2.4 Cell Culture: To evaluate the toxicity and bioreactivity of CuO-r, CuO-s and 

CuO-spindles, the TT-1 cell line was used. The TT-1 cell line was established in-house 

by transforming alveolar type-2 cells, isolated from human lung tissue, by lentiviral 

transduction (ref: PMID: 18539954). TT-1 cells have an alveolar type-1 cell 

phenotype and morphology (ref: PMID: 18539954). TT-1 cells were cultured as 

previously described (ref: PMID: 18539954), in humidified 5% CO2 air and at 37°C. 

Cells were cultured in DCCM-1 media (Biological Industries, Israel) supplemented 

with 10% New Born Calf serum (NCS; Invitrogen, Paisley, UK) and 1% 

penicillin/streptomycin/glutamine (PSG; Invitrogen). For nanoparticle exposures, 

cells were passaged and seeded into 96-well plates (Greiner Bio One, Stonehouse, 

UK), then grown until 80% confluent. Once cells had reached 80% confluency, the 

culture media was removed and replaced with serum-free media and cultured for a 

further 24 hrs, prior to particle exposure. For particle exposure, a stock suspension 

of 1mg/mL was prepared in deionised water by direct dilution of the synthesised 

CuO nanoparticles aqueous suspension. No further surfactants/dispersant were 

added to ensure dispersion of the particles at the concentrations required for the 

biological tests, as the particles were suspending easily using vortex in the serum 

free DCCM-1 media .  

2.4.1 MTT Assay: Following the 24 hrs exposure period to the nanoparticles, the 

cell culture exposure media was removed and cells were washed 3 times in warm 

PBS (to remove any residual nanoparticles). After washing, cells were then incubated 

for 1h and at 37°C in serum-free media containing 0.5 mg/mL 3-(4,5-Dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT–Sigma Aldrich, UK). MTT-containing 

media was then removed and 200 µL DMSO (Sigma Aldrich, UK) was added to each 



well to lyse the cells and dissolve the insoluble formazan crystals. Prior to the 

measurement of optical densities, the 200 µL DMSO solution from each well was 

transferred to a v-bottom, 96 well plate (Greiner Bio One, Stonehouse, UK) and 

centrifuged at 14,000 g for 20 min to remove any residual nanoparticles. Optical 

densities were measured using a Thermomax 2 microplate reader at 550 nm (MTX 

Lab Systems, USA) and cell viability was calculated as a percentage of unexposed, 

control cells. To determine the effect of nanoparticles on the MTT assay, 

nanoparticles were: (i) added to unexposed, control cells immediately before the 

assay, or (ii) added to the assay system following DMSO dissolution and then 

processed identically to cellular experimental cells. 

2.4.2 Cytokine release: The concentrations of IL-6 and IL-8 released by TT-1 cells 

during exposure to CuO-s, CuO-r, and CuO-spindles were analysed by ELISA. After 

exposure to nanoparticles, cell culture media supernatants were transferred to a v-

bottom, 96-well plate and centrifuged at 14,000 g for 20 min to remove any residual 

nanoparticles. Supernatants from this centrifugal process where then taken and 

analysed for cytokine release, using commercially available, quantitative sandwich 

ELISA kits (DuoSet ELISA kits; R&D systems, Abigndon, UK) according to the 

manufacturer’s recommendations. All measurements were performed in triplicate. 

2.4.3 Reactive oxygen species (ROS) study: Generation of reactive oxygen species 

after exposure to CuO nanoparticles was measured using the fluorescent, free-

radical sensor, dihydroethidium (DHE – Invitrogen, Paisley, UK). Cells were serum 

starved for 24 hrs prior to exposure to particles for 4 hours. After exposure, cells 

were washed twice in warm, serum-free media then incubated for 25 mins at 37°C 

and 5% CO2 in serum-free media containing 40 µM DHE. The DHE probe was then 



removed and cells were again washed twice in warm, serum free media to remove 

any residual DHE. Fluorescent microscopy and image capture software (SimplePCI 

software, Digital Pixel, UK) was used to analyse ROS generation. 

 

3. RESULTS 

3.1 Size, surface area and morphology  

Three different shapes of CuO nanoparticles synthesized in this study were 

characterized using a range of analytical techniques. The size, shape and crystal 

phase of the synthesized nanoparticles are shown in Fig. 1-3. In Fig. 1, TEM images of 

spherical, rod shaped, and spindle shaped nanoplatelets of CuO-spindles are shown. 

The synthesized CuO-s nanoparticles had a size of 7±1 nm with a narrow size 

distribution and were found to be in a non-aggregated state. In the case of 

nanorods, the nanoparticles were 7±1 nm in width and 40±10 nm in length. 

Compared with the spheres, there was more polydispersity in the length of the rods 

and less so in their diameter, also the nanoparticles were more agglomerated, as 

shown in Fig. 1b. For spindles the longitudinal length was 1.14±0.24 μm and axial 

width was 270±50 nm (Fig. 1c). Fig. 2 shows the AFM analysis performed on the 

synthesized nanoparticles. The spherical nature of the CuO-s nanoparticles was 

confirmed through AFM imaging, as the height of the nanoparticles was measured to 

be of 8±1 nm. For CuO-r nanoparticles, the height of the individual nanorods was 

9±1 nm. However, for CuO-spindles sample the height of the nanoparticles was 

measured to be 30±10 nm. The dimension of the CuO-spindles taken in conjunction 

with the TEM and AFM measurements denotes the particles to be of plate like 

morphology with a 2D-shape of spindles (Fig. 2d). All three shaped particles have at 



least one of their dimensions below the 100 nm range, as shown by all the analysis 

(all 3 dimensions for CuO-s, 2 dimensions and CuO-r, and 1 dimension for CuO-

spindles particles). Another measure of size is hydrodynamic diameter, which refers 

to how a particle diffuses within a given fluid. The hydrodynamic size of CuO-s 

nanoparticles measured in water was 76 nm and 150 nm in cell culture medium 

(DCCM-1). The DLS technique employed in this study to measure hydrodynamic size 

of the nanoparticles is not accurate for non-spherical nanoparticles and hence only 

the DLS size of the CuO-s nanoparticles is quoted. The crystal phase identified by XRD 

for all the nanoparticles was to be of tenorite (ICDD 48-1548), as shown in Fig. 3. The 

measured Brunauer-Emmett-Teller (BET) surface area for CuO-s, CuO-r and CuO-

spindles were 60, 51 and 18 m2/g, respectively (Table 1). This large difference in 

specific surface area for the samples stems from the differences in the size and 

shape of the nanoparticles.  

 

3.2 Stability of CuO nanoparticles  

The stability of the nanoparticles suspension in deionised water and in cell culture 

media was assessed using zeta potential (ξ) measurements. All the samples were 

positively charged with a ξ value of 48, 43 and 36 mV in deionised water for CuO-s, 

CuO-r and CuO-spindles, respectively. The relative high ξ values indicate the stability 

of the nanoparticles in deionised water. The effect of temperature on the stability of 

the aqueous nanoparticles suspension was measured by monitoring the change in ξ 

of the samples over a temperature range of 15-50°C. There was a considerable 

decrease in ξ with increase in the temperature for all the CuO nanoparticles (12% for 

CuO-s, 16% for CuO-spindles and 24% for CuO-r), as shown in Fig. 4A. Additionally, 



the effect of pH on the stability of CuO nanoparticles (Fig. 4b) in 1 mM NaNO3 at 

22 °C was also measured. Stability of the suspension decreased with increasing the 

pH as samples were approaching the point of zero charge (PZC), which for CuO-s 

nanoparticles was found around pH 9.87, for CuO-r nanoparticles around pH 9.13 

and for CuO-spindles around pH 8.34. In contrast to the high ξ of the nanoparticles in 

water, when suspended in cell culture media, the ξ of the nanoparticles reduced 

considerably at room temperature (Table 1). This difference in zeta potential has 

been well documented by Lundqvist et al (2008) to occur due to the interaction of 

the nanoparticle surface with the molecular components of the cell culture medium. 

 

3.3 Copper release 

The dissolution of CuO nanoparticles was measured in 1 mM NaNO3 (pH=6.7) 

solution using dialysis membranes (Misra et al. 2012) for a period of up to 7 days. 

The use of dialysis membrane and centrifugal ultrafiltration for the experiments 

ensured that only the dissolved fraction of copper contributes to the measurement 

and not the nanoparticles. Fig. 5 shows the dissolved copper (Cu2+) fraction released 

from the nanoparticles. The equilibrium concentration of dissolved copper was 

found to be significantly different between three types of nanoparticles. Dissolved 

copper of up to 1, 0.4 and 0.31 mg/L was released from CuO-s, CuO-r, and CuO-

spindles, respectively. The corresponding wt. % of nanoparticles dissolved from the 

samples was 2.5%, 1.1% and 0.8% for CuO-s, CuO-r and CuO-spindles, respectively 

(Fig. 5b). Diffusion of dissolved Cu through the dialysis membrane was fast, with up 

to 95% Cu recovery within the first few hours, as shown in the case of the soluble 

copper nitrate that was used as the ionic control. TEM analysis of the nanoparticles 



suspensions from inside the dialysis bag after the dissolution experiments confirmed 

the presence of nanoparticles (data not shown). The dissolution data obtained for 

the samples were described by first-order Noyes-Witney equation (Costa et al. 

2001).   

         (1) 

With y(t) the released amount of copper (ppm), yfinal the final steady state 

concentration of the released copper, k the rate coefficient, and t the time in hours. 

The values for yfinal and k were extracted from the data (selected through least 

square fitting). The rate coefficient of dissolution curve for the samples followed the 

order of sCuOk −  (0.32 h-1)> rCuOk −  (0.050 h-1)> spCuOk − (0.022), which further highlights 

the difference in dissolution kinetics between the three different shaped 

nanoparticles. The release of dissolved Cu was fastest from the ionic source, 

followed by CuO-s nanoparticles and slowest for the CuO-spindles. To examine the 

effect of starting concentration on the dissolution of CuO nanoparticles, a range of 

starting concentration of CuO-spindles (5-50 mg/L) were used. The results (Fig. 5c-d) 

demonstrated a significant increase in the apparent dissolved Cu concentration with 

time on increasing the starting concentration. However, when normalised by mass, 

there was a significant decrease in % dissolution of CuO-spindles with increasing 

starting concentration. A similar concentration dependent dissolution has also been 

reported for various other types of nanoparticles (Misra et al. 2012; Liu and Hurt, 

2010). 

Within this study, the dissolution of CuO nanoparticles was also measured in serum 

free DCCM-1 media to facilitate a better understanding of the nanoparticles 

)exp1()( kt
finalyty −−=



biological response. Under static conditions the spheres and rods showed a high 

degree of dissolution over time (Table 2), with close to 81% dissolution within 4 hrs 

and staying constant for a period of 24 hrs. However, for spindles there was a 

gradual increase in dissolution with time. The % dissolution for CuO-spindles 

increased from 40% to 64% by the end of 24 hrs. In addition, the marked differences 

in the release of dissolved Cu between the samples, as observed in 1mM NaNO3 

medium, was no longer so evident in the DCCM-1 medium.  

 

3.4 Particle toxicity 

Particle toxicity was assessed using MTT assay, cytokine release study and oxidative 

stress measurements. TT-1 cell viability greatly reduced after 24 hrs exposure to 

both CuO-r and CuO-s nanoparticles (Fig. 6). Whilst concentrations of 0.1 and 1 

µg/mL were tolerated, 5, 10, 25 and 50 µg/mL caused a statistically significant, 

concentration-dependent decrease in cell viability, ranging from 75 – 90% loss 

(compared with non-treated controls, Fig. 6). In contrast to these effects, exposure 

to the CuO-spindles did not significantly alter TT-1 cell viability (Fig. 6). TT-1 cell 

release of the two pro-inflammatory cytokines; IL-6, and IL-8 were measured after 24 

hr exposure to the three CuO nanoparticles by ELISA. IL-6 release was significantly 

elevated above baseline after 24 hrs exposure to both 1 µg/mL CuO-r and 1 µg/mL 

CuO-s, by approximately 7- and 5-fold respectively (Fig. 7a). However, this was the 

maximal level of release observed for both nanoparticles since IL-6 concentrations 

then concentration-dependently decreased back down to baseline, as particle 

concentration increased (Fig. 7a). In the case of exposure to the CuO-s nanoparticles, 

IL-6 concentrations went from being significantly elevated above baseline controls at 



1 µg/mL, to being significantly lower than baseline controls at 50 µg/mL (Fig. 7a). In 

stark contrast to both the CuO-r and CuO-s nanoparticles, exposure to the CuO-

spindles resulted in a concentration-dependent increase in IL-6 release, becoming 

statistically elevated above baseline controls at a concentration of 10 µg/mL (Fig. 

7a). IL-6 release reached a maximal, 12-fold increase above non-treated, baseline 

secretions at the highest concentration of CuO-spindles tested – 50 µg/mL. Although 

CuO-r and CuO-s nanoparticles induced elevated levels of IL-8 at concentrations of 1, 

5 and 10 µg/mL, none of these observations were statically significant (Fig. 7b). 

However, exposing TT-1 cells to higher concentrations (25 and 50 µg/mL) of both 

CuO-r and CuO-s nanoparticles resulted in significant inhibition of IL-8, below that of 

baseline secretions (Fig. 7b). Exposure to the CuO-spindles resulted in no significant 

changes at all concentrations tested (Fig. 7b). Non-quantitative ROS measurement 

(Fig. 8) was also performed on the cells exposed to the nanomaterials and ionic 

copper, over a period of 4 hrs. Exposure to CuO spheres and rods caused 

considerably higher oxidative stress compared to spindles and ionic copper.  

 

4. DISCUSSIONS 

4.1 Effect of particle shape on colloidal stability and dissolution behaviour  

This study shows how the particle shape can affect the stability and dissolution 

behaviour of particles with the same chemical composition i.e. CuO nanoparticles 

(i.e. spheres rods and spindles). Different shapes of the nanoparticles resulted in 

differences in their respective specific surface areas (SSA), with the highest SSA for 

the smallest CuO-s nanoparticles, followed by rods and CuO-spindles. The shape did 

have a considerable effect on ξ of the nanoparticles with spindles having the lowest ξ 



followed by rods and spheres. On increasing the temperature (up to 50°C), the shape 

of the nanoparticles played a further role in the decrease of ξ, as shown in Fig. 4a. All 

the nanoparticles showed a decrease in ξ with increasing pH (up to their respective 

point of zero charge). The shape of the nanoparticles influenced the measured PZC, 

following the order of PZCCuO-spindles< PZCCuO-r<PZCCuO-s. This order reflects the stability 

of suspensions at neutral pH, whereby the spheres are most stable being the farthest 

away from the PZC at this pH while spindles should be least stable as being closest to 

PZC. Differences in the PZC of the samples can be accredited to the different shapes 

altering the surface area and surface energy of the nanoparticles resulting in 

different adsorption and affinity of protons on the surface (Mills et al. 1993). Various 

intrinsic (particle size, crystal phase, synthesis method) and extrinsic parameters 

(ionic strength, presence of organic matter) can affect the PZC for samples 

(Suttiponparnit et al. 2011; Liao et al. 2009), and thus the stability of the 

nanoparticles. It is important to note that the differences in the shape of the 

nanoparticles also has a further effect on other aspects of the nanoparticles (such as, 

size, surface area, surface energy etc.), which would all in turn contribute to the 

differences observed in the physicochemical properties of the CuO nanoparticles in 

this study. 

Dissolution experiments (Fig. 5) on nanoparticles dispersed in 1mM NaNO3 indicate 

that particle shape had a significant effect on the amount of Cu dissolved over the 7 

days period. For CuO-s and CuO-r nanoparticles, an apparent equilibrium Cu 

concentration (1 and 0.4 mg/L, respectively) was reached within 72 hrs from the 

start of the experiment and no significant change for the remaining duration of the 

experiment was observed. In comparison, for CuO-spindles the rate of dissolution 



was slower (Fig. 5a-b). There was also significant difference in the quantity of Cu 

released over a 7 day period, with 2.5% dissolution reported for CuO-s and 

significantly lower 0.8% dissolution for CuO-spindles. The relative differences in the 

dissolution between the three types of CuO nanoparticles could be due to the shape 

related differences in their specific surface areas and their suspension stability, as 

reported for various other particles (Gunawan et al. 2011: Bian et al. 2011). To gain a 

further understanding of the effects of starting concentration on dissolution, 

dissolution of CuO-spindles, was measured over a 7 day period using a range of 

starting concentration inside the dialysis bag, as shown in Fig. 5c-d. The quantity of 

Cu released increased as the starting particle concentration increased. However, on 

normalising the data by mass the pattern is somewhat different. With increasing the 

particle concentration beyond 10 mg/L, a decrease in mass percentage of 

nanoparticles dissolved throughout the time period is observed. For example, after 6 

days the percentage of CuO-spindles dissolved for 5, 10, 20, 50 and 750 mg/L 

starting concentration was 11%, 17%, 13%, 8% and 0.8%, respectively. This clearly 

shows that in a low exposure concentration scenario, a larger proportion of the 

nanoparticles will be dissolved and thus the contribution of particulate driven 

toxicity effect will be much lower than in high exposure concentration studies. This 

also has particularly important implications in laboratory experiments, where serial 

dilutions are tested. Such concentration dependent dissolution has been also 

reported for other nanoparticles (Liu and Hurt, 2010).  

In contrast to tests performed in water, when particles were suspended in serum 

free cell culture media (DCCM-1), there was a significant increase in the dissolution 

of all three shapes of CuO nanoparticles, with >50% dissolution after 24 hrs 



exposure, (Table 2). To check whether the presence of high concentration of 

inorganic salts in the cell culture media influenced the dissolution, CuO-s 

nanoparticles were suspended in US EPA approved freshwater and seawater (media 

containing high concentration of inorganic salts). The results indicated a much-

reduced dissolution, most likely due to significant particle agglomeration in the 

media (Supporting Information S4). Similar results were also obtained by Gunawan 

et al (2011), wherein dissolution of 14 nm CuO nanoparticles was significantly 

reduced in high inorganic salt content media but enhanced (up to 95% dissolution) in 

bacterial culture media containing high amount of amino acids. The presence of 

various amino acids in the DCCM-1 medium could be the critical factor in enhancing 

dissolution. The presence of peptides has been shown to increase the dissolution of 

CuO nanoparticles (Midander et al. 2009), which may be explained by a well-known 

tendency of Cu to bind to amino acids and in particular to histidine, and glutamine 

(Neumann et al. 1967), both of which are present in the DCCM-1 media. In addition, 

the presence of citric acid has also been shown to catalyse the dissolution of copper 

oxide (Kwang Ko et al. 2010), due to the chelating action of citric acid. Therefore, the 

dissolution of CuO particles could also be expected to be higher in lysosomol fluid 

due to the high content of citric acid (Marques et al. 2011). 

 

4.2 Effect of particle shape on biological response  

Biological studies (Fig. 6-7) performed on transformed, human alveolar type-1 cells 

(TT-1 cells) showed that the presence of CuO-s and CuO-r nanoparticles were 

tolerated up to a concentration of 1 μg/mL, beyond which, there was a significant 

reduction in cell viability during 24 hrs exposure period. In contrast, there was no 



significant reduction in cell viability on increasing CuO-spindle concentration, 

suggesting this particular CuO nanoparticles shape was not cytotoxic. In DCCM-1 

media there was a significant dissolution for all three particle types; the highest for 

spheres and rods (>80%), followed by spindles (>60%) over the 24hrs exposure 

period. Since Cu ions have been shown to be cytotoxic (Blinova et al. 2010; Lei et al. 

2008; Mortimer et al. 2010), it is possible that the high concentrations of dissolved 

Cu could have been a significant contributor to the observed cytotoxicity of the 

nanoparticles. However, data obtained in this study indicates that the cytotoxicity 

induced by ionic Cu (at concentrations equivalent to that of the Cu content of the 

concentrations used for nanoparticles exposure) is not directly comparable with the 

cytotoxicity caused by exposure to the CuO-r and CuO-s nanoparticles themselves. In 

addition, even though CuO-spindles, undergoes >50%dissolution in DCCM-1 media, it 

has a significantly lower cytotoxic response in TT-1 cells compared to spheres and 

rods. Therefore, in this case, dissolved species of Cu do not solely account for the 

observed cytotoxicity in response to CuO-r and CuO-s exposure. Recent 

(eco)toxicological studies (Baek et al. 2011; Karlsson et al. 2008; Midlander et al. 

2009) show that the toxicity generated by the exposure of CuO nanoparticles is also 

accounted by the nanoparticles themselves and not exclusive to dissolved copper. 

This could be explained due to the sedimentation of the particles in the cell culture 

media providing a higher degree of interaction with the cells deposited at the 

bottom (Cho et al. 2011; Midlander et al. 2009).   

Another mechanism by which CuO nanoparticles can exhibit toxicity is oxidative 

stress. The exposure of the nanoparticles to TT-1 cell lines for a period of 4 hours 

resulted in increased oxidative stress on the cells (Fig.8). Exposure to spherical and 



rod shaped nanoparticles caused considerably higher oxidative stress in the tested 

cells compared with spindles. On the other hand, exposure to ionic copper did not 

result in any considerable oxidative stress to the cells. The fact that all these particles 

agglomerate in the DCCM media and sediment under static condition on cells, can 

also lead to an increase in the oxidative stress on the cells (Cho et al. 2011; 

Plascencia-Villa et al. 2012). As shown in Fig. 7a, there was a marked decrease in 

release of IL-6 from TT-1 cells on increasing the concentration of CuO-s and CuO-r 

nanoparticles. The presence of low concentration (up to 5 μg/mL) of spherical and 

rod shaped nanoparticles did not cause a significant reduction in cell viability but did 

show a significant increase in IL-6 release compared to the baseline over the 

exposure duration. The higher proportion of cell death at increased nanoparticulate 

concentration can explain the reduction in release of IL-6 from TT-1 cells for CuO-s 

and CuO-r exposure. Even though the CuO-spindles did not have a significant effect 

on the viability of the cells, there was a considerable increase in IL-6, suggesting a 

bioreactive response to the nanoparticles. Such a response could be due to the 

dissolved copper released by CuO-spindles (Fig. 5c-d), or the presence of the 

nanoparticles themselves, or a combination of both. 

 

5. CONCLUSIONS 

Extensive nano-toxicological studies using spherical nanoparticles have provided 

valuable insights on the effect of particle characteristics (size, surface chemistry) on 

biological response. However, for engineered nanoparticles there seems to be very 

limited information on the relevance of shape on reactivity and biological response. 

This study therefore brings into light the important and complex role shape can play 



for CuO particles in their physicochemical behaviour and also in their biological 

response. Our study suggests that the shape of the particles has a significant effect 

on the suspension stability and dissolution. Spherical particles showed higher 

suspension stability and dissolution compared to the rod and spindle shaped 

particles. However, these differences were found to be diminished when particles 

were suspended in relevant biological media i.e. cell culture media where it was also 

found that dissolution behaviour of all particles was markedly changed resulting in 

almost complete particle dissolution in biological media. This suggests strongly that 

dissolved copper is a significant factor in the biological response of CuO 

nanoparticles. The results generated in this study imply, however, that 

toxicity/inflammatory response induced in TT-1 cells by the nanoparticles cannot be 

solely correlated to dissolve particle fraction, and it is also the nanoparticles 

themselves that are having cytotoxic effects. The work is expected to instigate a 

more holistic understanding of the source of toxicity from other nanomaterials 

beyond CuO involving a wider range of particle physicochemical properties. 
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SUPPORTING INFORMATION 

Dissolution of CuO nanoparticles as assessed using different methods (dialysis and 

centrifugal filtration), dissolution of CuO nanoparticles and micron particles in 1mM 

NaNO3, and dissolution of CuO nanoparticles in artificial freshwater. 
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Figure 1 TEM images of (a) CuO-s (scale bar =20 nm), (b) CuO-r (scale bar =20 nm), 
and (c) CuO-spindles (scale bar =200 nm) nanomaterials  
 

 

 
Figure 2 AFM images of (a) CuO-s, (b) CuO-r, and (c,d) CuO-spindles  
 

 
 
Figure 3 XRD pattern for the three different shapes of CuO nanoparticles particles 
indicating them to be of tenorite (green vertical markers) phase. The peaks have been 
shifted vertically for clarity. 
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Figure 4 (a) Effect of temperature on zeta potential for three different shapes of CuO 
nanoparticles. (b) Effect of pH on zeta potential measurements indicating point of zero 
charge (PZC) for CuO-s, CuO-r and CuO-sp nanoparticles in 1 mM NaNO3 media at room 
temperature. 
 

     

     
 
Figure 5 Dissolved Cu release from three different shapes of CuO nanoparticles and 
ionic copper source in 1 mM NaNO3 at 25°C expressed in (a) dissolved copper in solution, (b) 
proportion to the original mass of CuO nanoparticles at the start of the experiment 
(mass %). For Figure (a) and (b) the starting Cu concentration inside the dialysis bag was kept 
constant at 750 mg/L and all data were fitted with a first order exponential growth equation 
described in Equation 1. (c) Dissolved Cu released from CuO-spindles using a range of 
starting concentrations from 5-50 mg/L (ppm) expressed in concentration and (d) in 
proportion to the original mass of CuO spindles (mass %).  
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Figure 6 Effect of 24 hrs CuO nanoparticles exposure on TT-1 cell viability. TT-1 cells 
were serum starved for 24 hrs, then exposed to increasing concentrations of nanoparticles. 
Data are represented as percent viability (compared with non-treated (NT) control) and 
expressed as standard error of the mean for 4 individual experiments. Statistical significance 
was analysed by one-way ANOVA and compared with non-treated control (NT) ***p<0.001. 
The concentration expressed in µg/mL is for copper. 
 

  

Figure 7 Effect of 24 hr CuO-r, CuO-spindles and CuO-s nanoparticles exposure on TT-
1 cell showing (A) IL-6 (B), IL-8. TT-1 cells were serum starved for 24 hours, then exposed to 
increasing concentrations of nanoparticles. Cytokine release was measured by ELISA and 
data are expressed as concentration, extrapolated from standard curves. Data are expressed 
as standard error of the mean for 3 individual experiments. Statistical significance was 
analysed by one-way ANOVA and compared with non-treated control (NT) *p<0.05, 
**p<0.01, ***p<0.001. The concentration expressed in µg/mL is for copper. 
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Figure 8 Effect of 4 hour CuO-r, CuO-spindles, and CuO-s nanoparticles exposure on 
reactive oxygen species generation in TT-1 cells. TT-1 cells were serum starved for 24 hours, 
then exposed to increasing concentrations of particles for 4 hours. After exposure, cells were 
washed 3 times and then incubated with dihydroethidium, which, upon oxidation by free 
radicals, intercalates with DNA and stains the cell nuclei red. Concentrations of particles are 
indicated on the figure and each image is taken at 10x magnification. Treatment with 1mM 
H2O2 provided a positive control. 
 
 
 


