Prospects for mTOR-mediated functional repair after central nervous system trauma

Martin Berry, Zubair Ahmed, Peter Morgan-Warren, Daniel Fulton, Ann Logan

PII: S0969-9961(15)30059-0
Reference: YNBDI 3606

To appear in: Neurobiology of Disease

Received date: 5 August 2015
Revised date: 9 September 2015
Accepted date: 8 October 2015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
PROSPECTS FOR mTOR-MEDIATED FUNCTIONAL REPAIR AFTER CENTRAL NERVOUS SYSTEM TRAUMA

Martin Berry, Zubair Ahmed, Peter Morgan-Warren, Daniel Fulton and Ann Logan Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Correspondence to:
Zubair Ahmed, Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

E-mail: z.ahmed.1@bham.ac.uk
Tel: 0121 455 48854
ABSTRACT

Recent research has suggested that the growth of central nervous system (CNS) axons during development is mediated through the PI3K/Akt/mammalian target of rapamycin (mTOR) intracellular signalling axis and that suppression of activity in this pathway occurs during maturity as levels of the phosphatase and tensin homolog (PTEN) rise and inhibit PI3K activation of mTOR, accounting for the failure of axon regeneration in the injury adult CNS. This hypothesis is supported by findings confirming that suppression of PTEN in experimental adult animals promotes impressive axon regeneration in the injured visual and corticospinal motor systems. This review focuses on these recent developments, discussing the therapeutic potential of a mTOR-based treatment aimed at promoting functional recovery in CNS trauma patients, recognising that to fulfil this ambition, the new therapy should aim to promote not only axon regeneration but also remyelination of regenerated axons, neuronal survival and re-innervation of denervated targets through accurate axonal guidance and synaptogenesis, all with minimal adverse effects. The translational challenges presented by the implementation of this new axogenic therapy are also discussed.

Key words: mTOR, spinal cord injury, axogenesis, axon regeneration, myelination
INTRODUCTION

Recent research aimed at promoting axon regeneration in the injured central nervous system (CNS) has achieved impressive regrowth of long axonal tracts by activation of the phosphatidylinositol/protein kinase B/mammalian target of rapamycin intracellular signalling pathway (PI3K/Akt/mTOR; mTOR is used throughout as an inclusive term for mTORC1 and mTORC2 – abbreviations of all signalling molecules are given in Fig. 1) (reviewed by Liu et al., 2011; Kanno et al., 2012; Aruni et al., 2012; Maiese et al., 2013; Maiese, 2014; Lu et al., 2014). These and others studies attribute the poor prognosis for functional restitution to suppression, at around birth, of developmental mTOR-mediated neuroprotection and axogenic protein synthesis (Park et al., 2008, 2010; He, 2010; Pernet and Schwab, 2014). This proposition predicts that treatments which re-establish the sensitivity of the PI3K/Akt pathway to growth factor activation in maturity augur well for the restoration of function in CNS trauma patients.

During mammalian CNS development, the viability of neurons and growth of axons is supported by neurotrophic factors (NTF) such as: (i), neurotrophins (NT) including nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophic factor 3 (NT3), and NT4/5, which activate the PI3K/Akt intracellular signalling pathway after engaging tyrosine kinase receptors (Trk); and (ii), cytokines such as ciliary neurotrophic factor (CNTF), interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) all of which bind to the trimeric gp130 receptor complex and activate PI3K through JAK/SHP2 signalling (Heinrich et al., 2003; Müller et al., 2007, 2009) - negatively regulated by suppressor of cytokine signalling 3 (SOCS3) (Nicholson et al., 2000) (Fig.1). The PI3K/Akt pathway controls cell survival and
axogenic protein synthesis (reviewed by Fonseca et al., 2014) through mTORC1 and also cytoskeletal growth cone dynamics by modulation of GSK3β activity (Zhou and Snider, 2005; Liu et al., 2012), potentiated through the mTORC2/Akt loop. CNS axon growth declines during maturation, possibly through suppression of NTF responsiveness engendered by a progressive up-regulation of the PI3K antagonist, phosphatase and tensin homolog (PTEN), a decline in IL-6 secretion by astrocytes and neurons (Codeluppi et al., 2014), a rise in the ratio of repressors:enhancers of transcriptional axon growth Kruppel-like factors (KLF) (Arlotta et al., 2005; Moore et al., 2009), and soaring titres of scar- and myelin-derived axon growth inhibitory factors (AGIF), the potency of which is enhanced by a postnatal decline in intracellular cAMP (Shewan et al., 2002; Peace and Shewan, 2011; Cai et al., 2001). Further suppression of mTOR is induced in mature CNS neurons after axotomy (Liu et al., 2010; Park et al., 2010) but pten gene deletion re-activates the PI3K/Akt pathway promoting new axon growth and additional NTF/cytokine priming may be required to initiate axon sprouting (Leibinger et al., 2012; Fischer and Leibinger, 2012; Lee et al., 2014).

Because of the cellular omnipresence of the mTOR pathway, many phenotypes in the CNS are affected indiscriminately by mTOR-related treatments unless cell targeting techniques are employed. The cellular functions of mTOR include the regulation of metabolism, growth, proliferation and viability (Laplante and Sabatini, 2009; Dibble and Cantley, 2015) and the uncontrolled dysregulation of any of these responses could provoke potentially deleterious side effects in the CNS. In experimental animals, Cre/loxP recombination and delivery of DNA and si/shRNA PI3K/Akt/mTOR therapies to neurons is achieved using phenotypic promoters and neurotrophic adeno-associated virus (AAV) serotypes with minimal effects on non-
neuronal cells. However, although genes may be successfully targeted to particular neurons using phenotypic promoters (e.g. Thy1 for RGC), AAV vector neurotropism is age-dependent and not absolute (Harvey et al., 2002; Aschauer et al., 2013; Gholizadeh et al., 2013) and may lead to potentially deleterious side effects in non-targeted cells. Neural targeting of conditional gene deletion has employed local injection of specific neurotrophic AAV-Cre constructs into CNS sites where the floxed neuronal phenotype is concentrated (e.g. intravitreal injection of AAV2/Cre for floxed retinal ganglion cells (RGC)) but does not entirely insure against gene deletion in non-neuronal floxed cells and leads to gene knockout in widespread areas of the CNS outside the AAV-Cre injection site (Thévenot et al., 2003; Ahmed et al., 2004; Madisen et al., 2015; Yang et al., 2015). Moreover, a therapy that claims to promote recovery in CNS trauma patients by targeted activation of the PI3K/Akt/mTOR pathway, would need to meet the following criteria: (i), high levels of neuro-protection for axotomised neurons; (ii) axon regeneration for all axotomised neurons; (iii), accurate axon guidance to the original denervated targets; (iv), homologous synaptogenesis within targets; (v), congruent myelination of different calibre regenerated axons; (vi), minimal adverse effects; and (vii) translation into the clinic of the candidate regimen – a tall order for a uni-dimensional treatment?

NEURO-PROTECTION

The numbers of neurons surviving axotomy determines the prospective number of axons available for regeneration. However, since mature neurons are not mitotic, those lost after injury are not replaced. Axotomy is often lethal because the constant supply of vital NTF, transported retrogradely along axons from innervated targets, is discontinued (reviewed by Bähr, 2000; Cellerino et al., 2000);
nonetheless, those neurons with axon collaterals preserved proximal to transection survive and this probably accounts for the viability of axotomised dorsal root ganglion neurons (DRGN) and corticospinal tract neurons (CSTN). However, because only a few RGC have collaterals within the retina, and none have collaterals in the optic nerve (ON), RGC are especially sensitive to ON crush (ONC) when, in rats, 50% die by 7d post lesion (dpl) and >90% by 14dpl (Berkelaar et al., 1994). The 10% of RGC that survive axotomy are mostly melanopsin 1 (M1) and M4 (equivalent to αRGC – Estevez et al., 2012) intrinsically photosensitive (ip) RGC, i.e. >80% and ~25% of M4 and 70% and 15% of M1 ipRGC survive at 14dpl and 28dpl, respectively (Duan et al., 2015). There are five classes of ipRGC (M1-M5) (Fig. 2), of which M1 and M4 subtypes comprise ~3% and ~6% of all RGC, respectively. The properties and connections of ipRGC are reviewed by Schmidt et al. (2011), Estevez et al. (2012) and Cui et al. (2015). PTEN promotes cell death by suppressing PI3K signalling and activating pro-apoptotic forkhead transcription factors (Nakamura et al., 2000) and AMPA type glutamate receptor-mediated excitotoxicity (Liu et al., 2013), but deletion of pten does not affect the numbers of M1 and M4 ipRGC (Fig. 2) surviving ONC (Duan et al., 2015), although other RGC subtypes are neuro-protected, i.e., ~42.5% survive after pten deletion (Park et al., 2008), increased to ~60% after co-deletion of pten and socs3 (Sun et al., 2011). RGC death after ONC correlates with rising REDD2/RT801 activity (Fig. 1) and plummeting mTORC1 levels; whereas REDD2/RTP801 deletion restores mTORC1 activity and rescues RGC from death (Morquette et al., 2014, Morgan Warren et al., 2015), although it has been suggested that Akt/GSK3β rather than Akt/mTORC1 signalling may be more important for RGC neuro-protection (Chin et al., 2005). M1 ipRGC spontaneous survival is correlated with the existence of axon collaterals within the retina, resistance to glutamate
toxicity and possible neuro-protection mediated by melanopsin photo-transduction (reviewed by Cui et al., 2015); similar characteristics may prevail for M4 ipRGC which also constitutively express pS6 (Duan et al., 2015). The latter indicates endogenously active mTORC1 in these cells (Duan et al., 2015) capable of mediating neuro-protection by autophagic degradation and clearance of both damaged organelles and abnormal protein aggregates (Chen et al., 2013; Dunlop and Tee, 2014; Heras-Sandoval et al., 2014), and also by suppression of caspase (CASP) activation (Hanada et al., 2004).

Inhibition of both CASP2 by siRNA, and by dominant negative knock-down, neuro-protects >95% RGC at 14d after ONC (Ahmed et al., 2011; Vigneswara et al., 2014) (Fig. 3). To sustain neuronal viability after axotomy, pharmacological neuro-protection is required for the duration of a regenerative response until target re-innervation re-instates the target-derived NTF supply. Although the effects of CASP knockdown on M1 and M4 ipRGC are unknown, direct CASP2 suppression promotes better pan-RGC survival than pten deletion, implying that an anti-CASP2-based anti-apoptotic therapy may be the optimal pan-RGC neuro-protective treatment. Combining mTOR with stem cell therapy may offer an alternative strategy for increasing neuron numbers after trauma by either replacing lost neurons, providing NTF support for surviving axotomised neurons, or promoting the release of stem cell-derived neuron-differentiating growth factors (reviewed Mead et al., 2015). For example, after spinal cord injury, mTOR-dependent differentiation of transplanted neural stem cells into glia and neurons and the subsequent growth of axons establishes functional connections above and below the lesion (Lu et al., 2014; Peru et al., 2008).
AXOGENESIS

The reliance of regenerating axons on PI3K/Akt/mTOR activation may vary across the spectrum of neuronal phenotypes and even within the axon trajectories of a single neuron (Lee et al., 2014). A small population (~10%) of RGC regenerate axons after NTF/cytokine administration (Berry et al., 1996; 1999; Pernet et al., 2013b) and knockdown of pten (Park et al., 2008; Sun et al., 2011; de Lima et al., 2012a, b; Kurimoto et al., 2010) (Fig. 4A, B). Paucity in number is explained by the finding that RGC axon regeneration is exclusively restricted to M4 ipRGC (Fig. 4C) that have high titres of constitutively active mTORC1 (i.e. are pS6+), express osteopontin and insulin-like growth factor receptor (IGFR) (Duan et al., 2015) and project to the dorsal lateral geniculate nucleus (DLGN) (Estevez et al., 2012; Brown et al., 2010; Ecker et al., 2010; Schmidt et al., 2014), although the full extent of their innervation fields is yet to be defined. Interestingly, similar numbers of M4 ipRGC axons regenerate after osteopontin plus IGF-1 treatment as after pten deletion, indicating that both regulate PI3K/Akt axogenic activity in M4 ipRGC. Paradoxically however, although osteopontin and IGF expression is induced in reactive Müller glia and microglia after ONC by ischaemic and excitotoxic retinal injury and by glia derived neurotrophic factor (GDNF) administration (Kermer et al., 2000; Morimoto et al., 2005; Chidlow et al., 2008; Del Rio et al., 2011), RGC axons do not regenerate in these paradigms. Many ipRGC connect with multiple brain centres outside the visual thalamus and subserve the non-image-forming visual functions of circadian photo-entrainment (suprachiasmatic nucleus – SCN and intergeniculate leaflet - IGL), pupillary reflexes (olivary pretectal nucleus – OPN), visual masking (ventral subparaventricular zone - VSPZ) and sleep patterns (ventrolateral preoptic nucleus – VLPON) (Estevez et al., 2012; Hattar et al., 2006; Schmidt et al, 2011; Duan et al.,
2015; Cui et al., 2015) but M4 ipRGC driven by rod and cone bipolar cell inputs may also contribute to pattern vision through their DLGN projections (Estevez et al., 2012). Consistently, <10% RGC axons regenerate irrespective of either the axogenic or neuro-protective stimuli employed (reviewed by Berry et al., 2008). The explanation for restricted RGC axon regeneration may rest with the observation that only M4 axons regenerate after mTORC1 activation (Duan et al., 2015) and thus increasing the survival of other RGC subsets would not improve axon regenerative success; an observation that forecasts limited recovery of sight in blind patients after pten deletion, since rod/cone-mediated conscious perception of pattern colour vision may not be restored (Cui et al., 2015).

It is not known if a similar diversity in growth factor requirements and limited mTORC1-mediated neuro-protection seen in RGC (Duan et al., 2015) applies to other groups of neurons, e.g. DRGN and CSTN. Rheb activation of mTOR (Fig. 1) combined with a chondroitinase ABC anti-scarring treatment promotes CST axon regeneration in the injured cord (Wu et al., 2015). However, after pten deletion by AAV-Cre injection of the motor cortex of floxed adult mice, CSTN axons regenerate through acute spinal cord lesions (Fig. 4D) (Liu et al., 2010; Zukor et al., 2013) and surprisingly also through chronic lesions after AAV-Cre cortical injections are delayed by 1 month and 1 year after injury (Du et al., 2015) without supplementation with an anti-fibrotic regime. These latter findings indicate that acute and chronic scar tissue does not impede the transit of regenerating axons through a CNS lesion and that neurons have an extended axogenic potential after axotomy – good news for chronic spinal patients. The peripheral (Abe et al., 2010; Christie et al., 2010) but probably not central projections of DRGN also regenerate after pten deletion. However, spontaneous sprouting of spared CSTN axons after pyramidotomy is
independent of mTOR activation (Lee et al., 2014), while pten and nogo (a CNS myelin-derived agil gene) co-deletion enhances CSTN axon regeneration but not sprouting (Geoffroy et al., 2015), supporting the contention that mTOR regulates axon elongation rather than the initiation of axon growth (Leibinger et al., 2012; Fischer and Leibinger, 2012, Morgan-Warren et al., 2015). PI3K/Akt stimulated peripheral axon regeneration is insensitive to rapamycin, as is DRGN neurite outgrowth (Christie et al., 2010), suggesting that growth of both central and peripheral DRGN projections is not mediated by the Akt/mTORC1 but by the Akt/GSK3β pathway enhanced by mTORC2/Akt activity (Fig. 1) – although this assertion is controversial since DRGN axon/neurite outgrowth has been reported after both GSK3β inhibition and activation (Zhou et al., 2004; Dill et al., 2008; Saijilafu et al., 2013, Gobrecht et al., 2014). Even so, the possible failure of large phenotypic groups of axotomised neurons to regenerate their axons after mTOR treatment could give rise to neurological sequelae that exacerbate the already poor quality of life of CNS injured patients. For example, the demonstration that CSTN and DRGN have differential sensitivities to mTOR predicts that, although paraplegic patients may become ambulatory after mTOR activation, they will be left with anaesthesia, paraesthesia, neuralgia and without proprioception (as a consequence of failed dorsal column/spinothalamic/spinocerebellar tract regeneration), possibly equivalent to the sensory deprivation and dyskinesia seen in tabes dorsalis.

AXON GUIDANCE

Axon regeneration alone will not re-establish useful function without restoration of the original topographically organised connections. In the adult mammalian CNS, re-innervation of former targets is a poorly executed rare event
(Luo et al., 2013; Diekmann et al., 2013). In the visual system, only M4 ipRGC axons regenerate after pten deletion (Duan et al., 2015) and appear to establish homologous connections in the contralateral DLGN (Kurimoto et al., 2010; de Lima et al., 2012a, b), other presumptive M4 axons project ectopically into the hypothalamus (characteristic of M1 ipRGC projections, which do not regenerate), ipsilateral optic tract, and centrifugally within the ipsilateral and contralateral ON (Luo et al., 2013; Yungher et al., 2015) (Fig. 5). Similar aberrant RGC trajectories of presumptive M4 ipRGC axons may occur after NTF/cytokine stimulation and inflammation, independent of targeted up-regulation of mTOR (Berry et al., 1999; Pernet et al., 2013a, b) and could be mediated by osteopontin/IGF released from reactive Müller cells, retinal astrocytes and microglia (Kermer et al., 2000; Morimoto et al., 2005; Chidlow et al., 2008).

Ontogenetic guidance of axon growth and disinhibition of adult regenerating axons in the CNS have much in common; they both exploit growth cone collapse and some developmental repellent guidance ligands are also axon growth inhibitory ligands (AGIL) in the mature CNS (e.g. Sema 3A). In the adult, AGIL derived from incipient scar tissue and from myelin (reviewed by Sandvig et al., 2004), bind to their cognate receptors and activate signalling pathways which converge on RhoA and mediate growth cone collapse by depolymerisation of actin/microtubule filaments through the ROCK/LIMK/Cofilin pathway (reviewed by Ahmed et al., 2005). For instance, myelin-derived AGIL bind to the Nogo receptor (NgR) complex comprised of AGIL-binding, membrane anchored, extracellular NgR, Lingo/Amigo co-receptors and transmembrane signalling p75NTR/TROY components. It was quickly realised that axons blinded to AGIL after knock-down of either NgR (Zheng et al., 2003), RhoA or ROCK (Ichikawa et al., 2008; Lingor et al, 2007, 2008; Ahmed et al., 2009)
will not regenerate unless growth cone advance is also stimulated by NTF/cytokines (Ahmed et al., 2005, 2009) and intracellular axogenic pathways are activated (Liu et al., 2011; Geoffroy and Zheng, 2014). Additionally, the discovery that NTF (including a combination of CNTF/BDNF/NT-3/FGF-2) induce regulated intramembranous proteolysis (RIP) of the p75NTR signalling NgR co-receptor (Ahmed et al., 2005; 2006, 2009) revealed the axiom that the coupling of axogenesis with growth disinhibition is mandatory for NTF-induced axogenesis in the AGIL-rich adult CNS.

Binding of Sema 3 family of axon guidance molecules to the neuropilin/plexin receptor complex inhibits PI3K/Akt signalling disrupting mTOR1/2 dependent activation of RhoA (Nakayama et al., 2015). Axon trajectories may also become disordered when PI3K/Akt activation inhibits ephrin-induced growth cone collapse after disturbed Rheb signalling in tsc2 haplo-insufficiency mice (Nie et al., 2010), and to altered growth cone sensitivity to AGIL/axon guidance cues after moderation of GSK3\textbeta signalling (Dent and Gertler, 2003; Zhou and Snider, 2005). GSK3\textbeta controls axon outgrowth de novo, guidance and branching by regulating multiple transcriptional factors and also growth cone actin filament/microtubule assembly through cytoskeletal binding proteins, including collapsing response mediator protein (CRMP) and adenomatous polyposis coli (APC) (Fig.1) in response to inhibition/attraction guidance ligands (reviewed by Dent and Gertler, 2003; Goold et al., 2004; Zhou and Snider, 2005; Hur and Zhou, 2010; Liu et al., 2012). GSK3\textbeta is constitutively active and either inhibited by Akt phosphorylation (Arevalo and Rodriguez-Tébar, 2006; Dill et al., 2008) or activated by repulsive guidance cues and AGIL (Zhou and Snider, 2005; Ito et al., 2006; Shen et al., 2011; Eickholt et al., 2002). However, the finding that inhibition of GSK3\textbeta can also block axon growth (Alabed et al., 2010) has led to the concept that differential priming of substrates by
phosphorylation determines whether GSK3β promotes the advance or collapse of
growth cones (Kim et al., 2006). Activated GSK3β regulates the sequential
phosphorylation of cyclin-dependent kinase 5 (Cdk5) as well as both primed CRMP
(Uchida et al., 2005) and APC (Zumbrunn et al., 2001), causing growth cone
collapse by abrogating binding to the cytoskeleton (Fukata et al., 2002). By inhibiting
GSK3β, the PI3K/Akt axogenic pathway acts to disinhibit by default AGIL-mediated
inhibition of axon growth (Uchida et al., 2005; Zhou et al., 2005). Accordingly, CST
and serotonergic axons regenerate in the injured cord after lithium-induced inhibition
of GSK3β (Dill et al., 2008), DRGN axons regenerate through AGIL-rich dorsal
column glial scars after GSK3β-deletion (Liz et al., 2014) and the neurites of cortical
neurons grow on an AGIL-coated substrate after over-expression of phospho-Akt
and deletion or knockdown of pten (Perdigoto et al., 2011). Growing axons are
steered through CNS neuropil by collapse and counter-collapse in different regions
of their growth cones and thus AGIL/repulsion guidance cue-activation of GSK3β
may not completely arrest axon growth (Zhou et al., 2004; Hur et al., 2010). Hence,
assuming that ontogenetic path finding maps are retained in mature CNS neuropil
(discussed by Koeberle and Bähr, 2004), misguidance of regenerated adult axons
after pten deletion, shRNA pten silencing (Yungher et al., 2015) and activation of the
PI3K/Akt pathway may be attributed to an inability of growth cones to respond to
AGIL and repellent guidance cues that define the boundaries of the original axon
trajectories, implying that CNS axogenic treatments are incompatible with functional
recovery, since NTF-induced RIP- and GSK3β-mediated disinhibition (essential for
growth cone advance in the mature CNS) inevitably fashions disorganised
connectivity. This disinhibited axon growth paradox may become an impediment for
researchers attempting to achieve functional recovery after CNS injury, although the
preservation of axon fasciculation mechanisms may compensate for poor path finding when attraction/repulsion cues are not detected (Marcos et al., 2015).

SYNAPTOGENESIS

 Connectivity is controlled by mTOR-mediated regulation of dendritic stability (Morquette et al., 2014), synaptic protein production, synaptic plasticity (Hoeffer and Klann, 2009) and the morphology and possibly the density of dendritic spines (Lai et al., 2006; Li et al., 2010; Haws et al., 2014; Di Polo, 2015). After spinal cord injury, *pten* deletion stimulates transected CST axons to regrow through the lesion (Fig. 4D) and form new synapses in homotopic regions of the caudal cord, suggesting re-engagement of former post-synaptic membranes (Liu et al., 2010; Zukor et al., 2013). In the visual system after *pten/socs3* co-deletion, new synaptic connections are formed in the SCN by regenerating axons (Li et al., 2014, Yungher et al., 2015), presumed to be heterotopic contacts of misguided regenerating M4 ipRGC axons since, after *pten* deletion/silencing, MI ipRGC axons (that normally innervate the SCN) do not regenerate (Duan et al., 2015). In adult mice after *pten* deletion combined with cAMP and zymogen administration, homotopic DLGN and SC re-innervation by presumptive regenerating M4 ipRGC axons may explain the partial return of both depth perception and visually guided behaviours (de Lima et al., 2012a, b), but the return of circadian photo-entrainment, normally mediated by M1-SCN connections (Estevez et al., 2012; Hattar et al., 2006; Schmidt et al., 2011; Duan et al., 2015), is unexpected and more difficult to explain. Thus, aberrations in axon guidance (see above) together with ectopic synaptogenesis after *pten* deletion may cause gross CNS dysfunction (Ebrahimi-Fakhari and Sahin, 2015), although the capacity of the CNS to preferentially process information from the original,
denervated centres after suboptimal re-innervation, while filtering out misinformation generated in rogue connections, may restore limited function after activation of mTOR (Weidner et al., 2001). However, in CNS with raised mTOR activity, imbalance in excitatory and inhibitory synaptic activity and disordered transmission of action potentials through abnormally myelinated regenerated neural circuits are all likely to cause seizures and deterioration in intellect, memory and cognition (Garcia-Junco-Clemente and Golshani, 2014; Williams et al., 2015).

MYELINATION OF REGENERATED AXONS

Return of function after CNS injury is critically reliant on remyelination of regenerated axons to re-instate the temporal integrity of axon conduction patterns between centres and to preserve the viability of axons (reviewed by Doring and Yong, 2011; Franklin et al., 2012). The prevalence of psychiatric and neurological conditions in myelin disorders, including the Tuberous Sclerosis Complex (TSC) genetic disorder, is probably explained by such desynchronisation of propagated axon potentials caused by changes in conduction velocities and refractory times as a consequence of abnormal ‘g’ ratios (diameters of axon:myelinated fibre), variable inter-nodal lengths and abnormal nodal physiology (Fields, 2008; Bartzokis, 2012). Schwann cells invade penetrant lesions of the CNS, myelinate axons and often become replaced by remyelinating oligodendrocyte precursors (OPC – reviewed by Crawford et al., 2014) and oligodendrocytes (Jasmin and Ohara, 2002). A few regenerating axons in the transected ON become myelinated after pten deletion (de Lima et al., 2012a, b), but whether by oligodendrocytes or Schwann cells is unknown. In demyelinating diseases, like multiple sclerosis, remyelination is limited, transient and often fails, probably because of impaired recruitment of OPC and their
failure to both make contact with axons and differentiate into myelinating oligodendrocytes (Flores et al., 2000; Chari, 2007; Franklin and Kotter, 2008; Franklin and ffrench-Constant, 2008; Barros et al., 2009; Tyler et al., 2009; Bruce et al., 2010; Patel and Klein, 2011). In addition, CNS remyelination efficiency wanes with age as OPC differentiation potential decreases (reviewed by Franklin and ffrench-Constant, 2008) and the frequency of type-M2 microglia declines, suggesting a pro-remyelinating influence of type–M2 microglia on OPC differentiation (Miron et al., 2013). Regenerated axons in the adult CNS may also have defective myelin with related dysfunctional outcomes, because remyelination of regenerated axons is likely to be as aberrant as that of axons demyelinated by disease. Oligodendrocyte myelination is principally regulated by mTORC1 and the PI3K/AKT/GSK3β pathway (Tyler et al., 2009; Narayanan et al., 2009; Azim and Butt, 2011; Normén and Suter, 2013; Dai et al., 2014; Wood et al., 2013; Lebrun-Julien et al., 2014; Wahl et al., 2014; Bercury et al., 2014; reviewed by Bartzokis, 2011), whereas mTORC2 has a modest effect on differentiation with little influence on myelination (Bercury et al., 2014), but the roles of these signalling molecules in remyelination are contentious. Myelin gene transcription is down regulated (Lai et al., 2006) and myelination is retarded (Sachs et al., 2014) after suppression of mTORC1, either by deletion of Akt or treatment with rapamycin, whereas over active mTORC1 promotes remyelination and improves conduction and refractoriness (Moore et al., 2014). Moreover, oestrogen receptor (ER) α and β ligand-activation of PI3K/Akt in oligodendrocytes co-activates Trk and IGF receptors and potentiates IGF1-induced OPC proliferation (Kumar et al., 2013), inhibition of PTEN promotes MBP accumulation and stimulates myelination (De Paula et al., 2014) and over expression of phospho-Akt increases myelin protein production leading to hyper-myelination (Goebbles et al., 2010).
Counter-intuitively however, mTOR activation can cause defective oligodendrocyte differentiation after deletion of Rheb1 (Fig. 1) in murine neural progenitor cells (Zou et al., 2004). GSK3β also has contradictory effects, inducing both hyper-myelination (Carson et al., 1993; Freude et al., 2008) after inhibition by either Akt (Flores et al., 2008; Narayanan et al., 2009; Goebbles et al., 2010; Yu et al., 2011) or IGF (Fig. 1) and oligodendrocyte formation and remyelination through the regulation of Wnt-β-catenin, Notch and CREB signalling (Azim and Butt, 2011). Hyper-myelination induced by mTOR over activity in the mouse ON is correlated acutely with short latencies of visually evoked potentials, which later become delayed as myelin sheaths thicken and decompact (Yu et al., 2011). Although precise unequivocal neuronal targeting of mTOR therapies would protect against possible adverse hyper-myelination effects (Lai et al., 2006; Goebbles et al., 2010; Zou et al., 2011; De Paula et al., 2014), re-myelination of regenerated axons would require a supplementary OPC-oligodendrocyte differentiation regimen (not yet available - Doring and Yong, 2011) to restore normal conduction in regenerated axons.

ADVERSE EFFECTS OF mTOR HYPERACTIVITY IN THE CNS

The use of rapamycin and its analogues as immunosuppressive, anti-cancer, pro/anti-inflammatory and anti-angiogenic agents emphasises the potential for activated mTOR to cause severe pathologies in the CNS. Indeed, the control by mTOR of cell proliferation and growth, food intake and stress reactions makes it unsurprising that over activity is linked to cancer, diabetes, obesity and cardiovascular and neurological conditions. The latter include Huntington’s, Alzheimer’s, Parkinson’s and TSC diseases in which autism, a decline in intellectual and cognitive function, epilepsy, abnormal protein translation and nerve growth are
all prevalent (Inoki et al., 2005; Lai et al., 2006; Tsang et al., 2007; Yang and Guan, 2007; Chong et al., 2010; Don and Zheng, 2011; Don et al., 2012; Alayev and Holz, 2013; O’Neill, 2013). Such adverse side effects of mTOR activation are expected to be largely eliminated in prospective axogenic therapies employing fail-safe neuronal targeting. Nonetheless, in response to perturbed mTORC1 signalling, which frequently occurs during tumour formation and associated angiogenesis, targeted pharmacological suppression of mTORC1, PI3K, Akt and TSC1/2 (Fig. 1) are emerging as effective treatments for multiple forms of cancer (Hay, 2005; Yang and Guan, 2007; Don et al., 2012; Alayev and Holz, 2013; Cargnello et al., 2015), contra-indicating mTOR-based axogenic therapies for CNS trauma patients, particularly those with a high risk of cancer. Moreover, elevated mTORC1 activity after Akt hyperactivity, pten deletion, suppression of both PTEN (Hay, 2005; Alayev and Holz, 2013) and TSC1/2 (Crino et al., 2006; Sosunov et al., 2008) (Fig. 1) all promote the growth of benign and malignant glia tumours, including the transformation of OPC into malignant glioma (Galvao et al., 2015; Duzgun et al., 2015), accompanied by an astrocytosis (Li et al., 1997, 2015; Fraser et al., 2004; Wullschleger et al., 2006; Codeluppi et al., 2009, 2014; Latacz et al., 2015). The net effect of the latter may also be functionally detrimental, arresting axon growth and generating epileptic foci in the injured CNS, since reactive astrocytes: (i), are a rich source of the AGI-L, inhibiting both axon regeneration and synaptogenesis (Sandvig et al., 2004; Li et al., 1997; Fraser et al., 2004; Silver and Miller, 2004; Wullschleger et al., 2006, Liu et al., 2006; Codeluppi et al., 2009; Sofroniew, 2009); and (ii), have impaired glutamate uptake leading to seizures as increasing titres of extracellular glutamate accumulate (Ulmann et al., 2002; Wong et al., 2003). Despite all the above and the predilection of pten+/- mice to develop multiple neoplasias (reviewed by Hay, 2005), no tumours
have been observed in the CNS after neuron-targeted *pten* deletion in short duration axon regeneration studies in which non-neuronal cells may also be affected, although long term outcomes have yet to be evaluated (Ali et al., 1999). Nevertheless, until the above high carcinogenic risks and unreliability of neuronal targeting are eliminated, potentially carcinogenic mTOR-related therapies are unlikely to achieve clinical approval. Recent unbiased high-throughput functional screening of the genome for phosphatase suppressors of axon regeneration has identified an axogenic pathway independent of the PI3K/Akt/mTOR pathway opening up the prospect of development of axogenic gene therapies which knock-out non-*pten* phosphatases (Zou et al., 2015).

TRANSLATABLE mTOR-BASED THERAPIES

Many of the gene therapy techniques used in experimental animals to achieve activation of mTOR and axon regeneration (e.g., Flox/loxP recombinant inducible gene deletion of *pten*) are not translatable possibly because of ethical, toxicity and anti-mitotic issues compounded by the development of cavitation lesions and chromosomal aberrations (e.g. Pfeifer et al., 2001; Loonstra et al., 2001; Schmidt et al., 2000). Refinements in the clinical use of chemically modified synthetic si/shRNA for knock-down of specific genes (e.g. siRTP801, which has undergone a Pfizer Phase II clinical trial for the treatment of wet age-related macular degeneration (AMD) (DDIT4, Quark Pharmaceuticals/Pfizer, Ness Ziona, Israel) have eradicated the problems of incomplete transient non-specific gene silencing, innate immune responses, instability, degradation and the need for multiple injections (Ahmed et al., 2011; Guzman-Aranguez et al., 2013). Combinations of AAV-shPTEN+CNTF+cAMP promote enhanced RGC axon regeneration, compared to
pten deletion alone, with extensive re-innervation of central targets (Yungher et al., 2015), although the caveats relating to poor axon guidance and aberrant target re-innervation apply (see above). Thus, a chemically modified synthetic si/shRNA could be developed for use in the clinic as an alternative to pten deletion, although specific unequivocal RGC targeting may not be achievable (Ahmed et al., 2011). For example, intravitreal injections of siRTP801 raise mTOR activity in the retina and induce bystander effects in Müller glia and astrocytes which are partially responsible for the resulting RGC survival and limited axogenesis (Morgan-Warren et al., 2015). Treatments which target elements located higher up-stream in the PI3K/mTOR pathway may cause numerous undesirable down-stream side effects, and more distal down-stream targeting of, for instance, TSC1/2, mTORC1, GSK3β and CRMP/APC reduce but do not eradicate these risks because focal points of activation of alternative regulatory pathways exist, even at these levels. Small molecule kinase inhibitors could qualify as translatable drug candidates but often have a high incidence of unwanted off-target side effects, as well as toxicity, absorption, distribution, metabolism and excretion issues (Meijer et al., 2004; Rosivatz et al., 2006; Douglas et al., 2009). NTF therapies also have a chequered history of success in both laboratory animal (Harvey et al., 2012) and clinical studies (Thoenen and Sendtner, 2002), but the discovery that subtypes within phenotypic groups of neurons may require particular combinations of growth factors to stimulate axon regeneration (Duan et al., 2015) suggests that such therapies may ultimately evolve as cocktails of multiple factors capable of promoting axon regeneration in all axotomised subtypes. However, after spinal cord injury, multiple neuronal subsets become axotomised and thus a plethora of growth factor combinations may be required to promote the regeneration of all transected ascending, descending and
intra-spinal tracts, possibly making growth factor treatment impracticable. Moreover, since NTF induce RIP of the p75NR signalling component of NGR, the disinhibited axon growth paradox complicates the development of growth factor based treatments for CNS axon regeneration.

CONCLUSIONS

The mTOR antagonist rapamycin and its analogues are used to treat cancer and thus the intention to develop a therapy which elevates mTORC1 activity would constitute an anathema to oncologists. Neural targeting might eradicate the carcinogenic risks (since mature neurons rarely, if ever become malignant), but would force the design of a combinatorial therapy to promote, in addition to axogenesis, oligodendrocyte myelination of regenerated axons and more comprehensive viability of axotomised neurons using an anti-CASP regimen. However, neural targeting of mTOR-based therapies does not eliminate the problems of either limited responsiveness within specific phenotypic neuronal groupings or the generation of anomalous axon guidance and synaptogenesis through the disinhibited axon growth paradox. Thus, therapeutic elevation of mTOR activity is unlikely to improve and could possibly lead to deterioration in the quality of life of CNS injury patients. Even so, the demonstration in experimental animals of long tract axon regeneration after PI3K/Akt activation (Park et al., 2008; Liu et al., 2010; Kurimoto et al., 2010; Sun et al., 2011), growth factor administration (Berry et al., 1999; Pernet et al., 2013b; Duan et al., 2015) and inflammation (Leon et al., 2000; Fischer, 20210) demonstrates that CNS axon regeneration is feasible clinically and not an inherent impossibility as once thought, but a therapy to restore function in CNS injury patients is yet to be realised.
REFERENCES

Doring A, Yong VW. (2011) The good, the bad and the ugly. Macrophages/microglia with a focus on myelin repair. *Front Biosci (Schol Ed)* **3**:846-856.

ganglion-cell photoreceptors: Cellular diversity and role in pattern vision.

Neuron 67:49–60

PI3K/Akt/mTOR signalling in oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. *Neurobiol Dis* **56:**131-144.

Science **326**:298-301.

DOI:10.1038/srep11789

FIGURE LEGENDS
Figure 1. Activators of the mTOR axogenic pathway. Tyrosine receptor kinase (Trk) receptors bind neurotrophic factors (NTF) including nerve growth factor (NGF)/brain-derived neurotrophic factor (BDNF)/neurotrophin 3/4 (NT3/4) which in turn activate the Trk/PI3K/Akt pathway; hypoxia, DNA damage and stress activate the HIF/RTP801/TSC pathway down stream of Akt; and the gp130 receptor complex binds the cytokines leukaemia inhibitory factor (LIF), interleukin 6 (IL6) and ciliary neurotrophic factor (CNTF), and activates the janus kinase (JAK)/signal transducers and activators of transcription (STAT), cAMP and RAS/CREB pathways (Akt - serine/threonine kinase; APC - adenomatous polyposis coli microtubule plus-end-binding protein; CREB - cAMP response element binding protein; CRMP - collapsin response mediator protein; eIF4E - eukaryotic initiation factor 4E; 4E-BP1 - eIF4E binding to protein 1; Epac - exchange protein directly activated by cyclic adosine mono-phosphate (cAMP); ERK - extracellular signal-regulated kinase; GSK3β - glycogen synthase kinase 3β; HIFα - hypoxia inducible factor alpha; IGF - insulin-like growth factor; IGFR - IGF receptor; IRS1 - insulin receptor substrate 1; MAPK - mitogen-activated protein kinase; MEK - MAPK/ERK kinase; mTORC1 - mTOR (mammalian target of rapamycin)+Raptor (regulatory association protein to mTOR)+GβL-G (protein β-subunit-like protein); mTORC2 - mTOR+Rictor (rapamycin independent companion of mTOR)+GβL+Sin1; PDK1/2 - phosphatidylinositol-dependent kinase 1/2; PI3K - phosphatidylinositol 3-kinase; PIP2 - phosphatidylinositol (3, 4) bisphosphate; PIP3 - phosphatidylinositol (3, 4, 5) trisphosphate; PKA - protein kinase A; SHP-2, a Src homology 2 (SH2) domain containing non-transmembrane PTP; PTEN - phosphatase and tensin homolog; RAF - proto-oncogene serine/threonine-protein kinases; REDD/RTP801 - regulated in development and DNA damage response protein; RAS - rat sarcoma protein; RHEB
- Ras homolog enriched in brain protein; RSK - 40S ribosomal protein S6 kinase; S6K1 - p70 ribosomal protein S6 kinase 1; S6 - ribosomal protein S6; S727 - phosphostat3 serine 727; SOCS3 - suppressor of cytokine signalling 3; TSCI/2 - tuberous sclerosis complex 1/2; Y705 - phosphostat3 tyrosine727).

Figure 2. Morphology of five types of intrinsically photosensitive retinal ganglion cell (ipRGC); (A) en face view of ipRGC dendritic fields (scale bar=100µm), (B) dendritic stratification as viewed in a schematic radial retinal section. Pale blue bands in the inner plexiform layer (IPL) are the ON and OFF cholinergic bands. There are two bands of melanopsin dendrites ramifying outside the ON/OFF cholinergic bands; the outer lying at the margin of the inner nuclear layer (INL) contains M1 and M3 cell dendrites and the inner broader band is juxtaposed to the ganglion cell layer (GLC) and contains the dendrites of M2, M3, M4, and M5 cells with subtle differences in stratification. (from ‘Intrinsically photosensitive retinal ganglion cells’, Berson DM, reprinted courtesy of The MIT Press from The New Visual Neurosciences edited by John S. Werner and Leo M. Chalupa, with permission).

Figure 3. Comparison of (A) CASP2 and (B) combined pten/socs3 deletion on the survival of axotomised RGC after intra-orbital ONC in rats and mice, respectively. A. Frequencies of FluoroGold back filled rat RGC at 7d post ONC after intravitreal injection of a control siRNA targeting a random combination of Caspase nucleotides (siCNL) and after escalating doses of siCASP2 at 0d. Treatment with siCNL resulted in 60% RGC survival compared with intact controls, while increasing doses of siCASP2 enhanced RGC survival and, over an optimal dose range of 20–35 mg, promoted 100% RGC protection compared with intact controls (P>0.001*; from Ahmed et al., 2011 with permission). B. Synergistic effects on TUJ1+ mouse RGC
survival at 4w post ONC and after deletion of pten and socs3. Percentages of TUJ1⁺ RGC in wild type (WT), pten deleted (PTEN⁺), socs3 deleted (SOCS3⁺), and combined pten/socs3 deleted (PTEN⁺/SOCS3⁺) groups, compared with intact retinas (*P>0.001; from Sun et al., 2011 with permission).

Figure 4. A. GAP-43⁺ axons in the non-regenerating and regenerating adult rat ON 20d after ON transaction; (i), non-regenerating ON in which the growth of GAP43⁺ RGC axons is arrested in the proximal lesion (⁎) margin; (ii), after an intravitreal sciatic nerve implant at 0d regenerating GAP43⁺ RGC axons traverse the lesion (⁎) and invade the distal ON segment (note there are more GAP43⁺ axons in the proximal regenerating (ii), compared to the non-regenerating ON (i) because more RGC survive in the former; eye to the left, chiasm to the right; magnification bar = 100µm; from Berry et al., 2008 with permission). B. Confocal images of the transected adult mouse optic nerve after pten deletion showing regenerated Cholera Toxin-B⁺ (CTB⁺) axons passing through the lesion site at 14d (i) and 28d (ii) and invading the distal optic nerve segment (scale bar = 100mm; the normal response to optic crush is essentially similar to that of the rat see A(i) above – from Park et al., 2008 with permission). C. Selective regeneration of M4 ipRGC (αRGC – KCNG4) axons in the optic nerves of mice after ONC: (i), CTB anterograde axon tracing detects all regenerating RGC axons; (ii), in Kcng4-yellow fluorescent protein (YFP) mice YFP⁺ regenerating axons are exclusively M4 ipRGC axons; (iii), the near complete convergence of the images of YFP⁺ and CTB⁺ regenerating axons demonstrates that most axons derive from M4 (scale bar = 200µm; from Duan et al., 2015 with permission); ipRGC. D. Biotinylated dextran amine⁺ (BDA⁺ - red) regenerating CST axons on the left side of the cord extending for up to 3mm caudal
to the lesion site (*) after pten deletion (longitudinal parasagittal sections of the adult mouse spinal cord crushed at the vertebral level of T8). In these experiments, AAV-Cre was injected into the right hind limb sensorimotor cortex of Pten^{loxP/loxP} mice aged 4w; 4w later the cord was lesioned and, after a further 4w, BDA was injected into the right sensorimotor cortex and the mice killed 2w later (scale bar = 500μm; from Liu et al., 2010 with permission).

Figure 5. Trajectories of (A) normal RGC axons in a hypothetical representative oblique coronal section through the rodent diencephalon (optic nerve (ON); optic chiasm (OX) – from whence axons invade the suprachiasmatic nucleus (SCN) in the hypothalamus and where 1-10% RGC axons project ipsilaterally and 90-99% contralaterally into the optic tracts (OT) connecting with ventral lateral geniculate nucleus (VLGN) and dorsal lateral geniculate nucleus (DLN) in the thalamus; superior quadrigeminal brachium (SQB) running to the superior colliculus (SC) in the midbrain; IIIrd ventricle (IIIV). (B) Ventral light sheet fluorescent microscopic view of regenerated axon projections in an unsectioned mouse brain after ONC and pten/socs3 deletion. Cholera toxin-B anterograde labelled regenerating RGC axons are seen in the transected ON and OX. Note: (i), ectopic RGC axons regenerate centrifugally into each ON; (ii), overgrowth into the hypothalamus; and (iii), equal numbers of axons regenerating into each OT. (C) Lateral view of the 3D reconstruction showing axons regenerating into the diencephalon (inset shows low magnification of the whole brain following 3D reconstruction). (D) Quantification of RGC axon trajectories in 6 different mice (cases #1–6 - values = % total axons exiting the OX). Note the following abnormalities: (i), near normal numbers of ipsilateral and contralateral RGC axons in the OT; and (ii), variable ectopic
regeneration of axons into the hypothalamus and contralateral ON (scale bar = 200μm; from Luo et al., 2013 with permission).
Figure 1
Figure 3
Figure 4
Figure 5