Diagnosis and management of adrenal insufficiency
Bancos, Irina; Hahner, Stefanie; Tomlinson, Jeremy; Arlt, Wiebke

DOI: 10.1016/S2213-8587(14)70142-1
License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Citation for published version (Harvard):

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

Users may freely distribute the URL that is used to identify this publication.
Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?).
Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Table 1. Causes of adrenal insufficiency according to underlying pathogenesis. Most frequent causes of primary adrenal insufficiency are autoimmune adrenalitis and congenital adrenal hyperplasia; secondary adrenal insufficiency is most frequently the result of hypothalamic-pituitary tumours and their treatment.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Primary adrenal insufficiency</th>
<th>Secondary adrenal insufficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoimmune</td>
<td>• Can occur in isolation or as part of autoimmune polyglandular syndromes (APS)</td>
<td>• Lymphocytic hypophysitis – rare, may occur in relation to pregnancy. Can present as panhypopituitarism or isolated ACTH deficiency, the latter sometimes in combination with primary autoimmune-mediated hypothyroidism)</td>
</tr>
<tr>
<td></td>
<td>• Isolated Addison’s disease (30-40% of patients with autoimmune adrenalitis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• APS type 1 (5-10%; also termed APECED OMIM 240300): caused by AIRE gene mutations. Adrenal insufficiency in combination with other endocrine (hypoparathyroidism (76-93%), premature ovarian failure (17-50%), type 1 diabetes mellitus (2-12%)) and non-endocrine autoimmune disease (mucocutaneous candidiasis (73-100%), alopecia (29-37%), vitiligo (8-15%), coeliac disease (15-22%), pernicious anaemia (13-15%), autoimmune hepatitis (12-20%), Sjogren Syndrome (12%) and ectodermal dystrophy (dental enamel hypoplasia) (77-82%))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• APS type 2 (60%): adrenal insufficiency in combination with other endocrine autoimmune disease (hypo- or hyperthyroidism (60%), premature ovarian failure (7-21%),</td>
<td></td>
</tr>
<tr>
<td>Natural Pathogenesis</td>
<td>Pathology</td>
<td>Pathogenesis</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Compression / replacement of normal tissue</td>
<td>Bilateral adrenal metastasis (mostly originating from solid organ tumours such as lung, breast, colon cancer)</td>
<td>Pituitary macroadenomas (pituitary carcinoma very rare); craniopharyngioma; meningioma; ependymoma; intra- and suprasellar metastases (mostly lung, breast, colon cancer)</td>
</tr>
<tr>
<td>Infection</td>
<td>Tuberculosis; HIV; CMV; fungal infections</td>
<td>Tuberculosis; histoplasmosis; actinomycosis</td>
</tr>
<tr>
<td>Hemorrhage / necrosis /thrombosis</td>
<td>Thrombocytopenia; Waterhouse-Friderichsen syndrome; trauma; lupus erythematosus; antiphospholipid syndrome, panarteritis nodosa; treatment with anticoagulants; treatment with tyrosine kinase inhibitors</td>
<td>Pituitary apoplexy (mostly in the setting of a pituitary macroadenoma); Sheehan syndrome due to transient hypocirculation and subsequent necrosis of the pituitary (e.g. due to significant blood loss)</td>
</tr>
<tr>
<td>Infiltration</td>
<td>Sarcoidosis, amyloidosis, haemochromatosis, histiocytosis, lymphoma</td>
<td>Wegener’s granulomatosis, sarcoidosis, amyloidosis, haemochromatosis, lymphoma</td>
</tr>
<tr>
<td>Surgery/ Trauma</td>
<td>Bilateral adrenalectomy</td>
<td>Treatment of hypothalamic-pituitary tumours by surgery and/or radiation; traumatic brain injury</td>
</tr>
<tr>
<td>Monogenic causes of adrenal insufficiency</td>
<td>Congenital adrenal hyperplasia (CAH) variants: - 21-hydroxylase deficiency (21OHD) (OMIM #201910) (most common cause of disease; >95% of CAH cases) - 11β-hydroxylase deficiency (11OHD) (OMIM #610613) - P450 oxidoreductase deficiency (PORD) (OMIM #613571) - 3β-hydroxysteroid dehydrogenase type 2 (3β-HSD2) deficiency (OMIM #613890); - 17α-hydroxylase deficiency (17OHD) (OMIM #202110) X-linked adrenoleukodystrophy (ALD) or</td>
<td>Combined pituitary hormone deficiency (CPHD) variants: CPHD2 (OMIM #262600) CPHD3 (OMIM #221750) CPHD4 (OMIM #262700) CPHD5 (OMIM #182230) CPHD6 (OMIM #613986) Isolated ACTH deficiency due to mutations in TBX19 (OMIM #201400);</td>
</tr>
</tbody>
</table>
adrenomyeloneuropathy (AMN) (OMIM #300100)
APS type 1 (=APECED) (OMIM #240300)

For very rare inborn causes of primary adrenal insufficiency including congenital lipoid adrenal hyperplasia, congenital adrenal hypoplasia and familial glucocorticoid deficiency see Supplemental Table 1.

For more details on the above and even rarer inborn causes of secondary adrenal insufficiency see Supplemental Table 2.

<table>
<thead>
<tr>
<th>Drugs interfering with adrenal function</th>
<th>Increased metabolism of glucocorticoids: concomitant use reduces corticosteroid levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Inducers of CYP3A4 (resulting in increased inactivation of cortisol by 6β-hydroxylation) - mitotane, phenytoin, rifampicin, troglitazone, phenobarbital</td>
</tr>
</tbody>
</table>

Impaired glucocorticoid action: peripheral glucocorticoid insensitivity

- Glucocorticoid receptor antagonist - mifepristone (RU486)
- Suppression of glucocorticoid-induced gene transcription – chlorpromazine, imipramine

Suppression of hypothalamic-pituitary-adrenal axis:

- Down-regulation of endogenous ACTH release: chronic exogenous glucocorticoid administration (including topical, inhaled, oral, intra-articular or parenteral administration), megestrol acetate, medroxyprogesterone acetate, cyproterone acetate, opiates

Inhibition of steroidogenic enzymes involved in cortisol production

- Inhibition of mitochondrial (type 1) cytochrome P450 enzymes (CYP11A1, CYP11B1/2): ketoconazole, fluconazole, itraconazole, etomidate, metyrapone, aminoglutethimide
- Inhibition of 3β-HSD2: trilostane

Adrenal haemorrhage

- Anticoagulants: heparin, warfarin

Autoimmune hypophysitis:

- Anti-CTLA4 antibody: ipilimumab
<table>
<thead>
<tr>
<th>Action point</th>
<th>Intervention</th>
</tr>
</thead>
</table>
| **Identify and define the problem** | • Steroid emergency card (check that available and up to date)
• Medical alert bracelet or necklace: “Adrenal insufficiency – needs steroids!” |
| **Educate patient (and partner/parents)** | **Sick day rule 1:** Need to double the routine oral glucocorticoid dose when the patient experiences fever, illness requiring bed rest or when requiring antibiotics for an infection
Sick day rule 2: Need to inject a glucocorticoid preparation intra-muscularly or intravenously in case of severe illness, trauma, persistent vomiting, when fasting for a procedure (colonoscopy!) or during surgical intervention.
Special attention to:
• Explaining the rationale for dose adjustment in stress / sickness
• Discussing the situations requiring dose adjustment
• Discussing symptoms and signs of emergency adrenal crisis
• Teaching parenteral self-administration of glucocorticoid preparation
• Enforce the need to go to hospital after emergency injection |
| **Provide patient with** | • Sufficient supply of hydrocortisone and fludrocortisone (accounting for possible sick days)
• Hydrocortisone emergency injection kit prescription (vials of 100 mg hydrocortisone sodium such as Solu-Cortef, syringes, needles; alternatively also hydrocortisone or prednisolone suppositories)
• Leaflet with information on adrenal crisis and hospitalization to be shown to health care staff, clearly advise regarding the need to inject 100 mg hydrocortisone immediately i.v. or i.m., followed by continuous infusion of 200 mg/24 hrs
• Emergency phone number of endocrine specialist team |
| **Follow up** | Re-enforce education and confirm understanding during each follow up visit (at least annually in a patient without specific problems or recent crises, otherwise more frequently) |