A pragmatic approach to the design and calibration of a Bayesian CRM dose finding trial
Cole, Michael; Stocken, Deborah; Yap, Christina

DOI:
10.1186/1745-6215-16-S2-P210

License:
Creative Commons: Attribution (CC BY)

Citation for published version (Harvard):

Download date: 08. Nov. 2019
A pragmatic approach to the design and calibration of a Bayesian CRM dose finding trial

Michael Cole¹*, Deborah Stocken¹, Christina Yap²

From 3rd International Clinical Trials Methodology Conference
Glasgow, UK. 16-17 November 2015

The Continual Reassessment Method (CRM) is not widely used in early phase dose finding trials partly because the logistics of development and implementation are perceived as complex and time consuming. Details are presented of the steps involved when designing such a trial using an adaptation of a Bayesian CRM calibration algorithm proposed by Cheung [1].

In addition to clinician centred parameters including target toxicity probability and number of test doses, the Bayesian CRM requires specification of the prior probability of toxicity associated with each of the test doses and the prior SD of the single model parameter. Cheung’s simple pragmatic approach is used to aid selection of these parameters.

Competing designs are assessed in terms of risk-adjusted accuracy and trial specific requirements including the mean number of patients treated above the maximum tolerated dose. Performance measures are estimated by Monte Carlo simulation across a range of scenarios chosen solely upon the target toxicity level and the number of test doses.

We demonstrate that following this pragmatic approach to CRM design calibration, design of CRM trials need not be overly complex or time-consuming.

Authors' details
¹Newcastle University, Newcastle upon Tyne, UK. ²University of Birmingham, Birmingham, UK.

Published: 16 November 2015

Reference

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

© 2015 Cole et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.