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Abstract

In this paper we prove the following results (via a uni ed approach) for all
su ciently large n:

(i) [1-factorization conjecture] Suppose thatn is even andD  2dn=4e 1.
Then every D-regular graph G on n vertices has a decomposition into
perfect matchings. Equivalently, (G) = D.

(iiy [ Hamilton decomposition conjecturgl Suppose thatD b n=2c. Then every
D-regular graph G on n vertices has a decomposition into Hamilton cycles
and at most one perfect matching.

(i) [ Optimal packings of Hamilton cycle§ Suppose that G is a graph on
n vertices with minimum degree n=2. Then G contains at least
reGeven(n; )=2 (n 2)=8 edge-disjoint Hamilton cycles. Here reg,,(n; )
denotes the degree of the largest even-regular spanning subgitaone can
guarantee in a graph onn vertices with minimum degree .

() was rst explicitly stated by Chetwynd and Hilton. (ii) and the spec ial case

= dn=2e of (iii) answer questions of Nash-Williams from 1970. All of the above
bounds are best possible.

2010 Mathematics Subject Classi cation.  Primary 05C70, 05C45.
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CHAPTER 1

Introduction

1.1. Introduction

In this paper we provide a uni ed approach towards proving three long-standing
conjectures for all su ciently large graphs. Firstly, the 1-facto rization conjecture,
which can be formulated as an edge-colouring problem; secondly, ¢hHamilton
decomposition conjecture, which provides a far-reaching geneliaation of Walecki's
result [26] that every complete graph of odd order has a Hamilton decomposibn
and thirdly, a best possible result on packing edge-disjoint Hamilton gcles in Dirac
graphs. The latter two problems were raised by Nash-Williams[28] 29] 80] in 1970.

1.1.1. The 1-factorization Conjecture. Vizing's theorem states that for
any graph G of maximum degree , its edge-chromatic number YG) is either
or +1. However, the problem of determining the precise value of YG) for an
arbitrary graph G is NP-complete [L2]. Thus, it is of interest to determine classes
of graphsG that attain the (trivial) lower bound { much of the recent book [ [34]
is devoted to the subject. For regular graphsG, 9YG) = ( G) is equivalent to
the existence of a 1-factorization: a Hactorization of a graph G consists of a set
of edge-disjoint perfect matchings covering all edges o&. The long-standing 1-
factorization conjecture states that every regular graph of swiently high degree
has a 1-factorization. It was rst stated explicitly by Chetwynd an d Hilton [[3] 5]
(who also proved partial results). However, they state that acording to Dirac, it
was already discussed in the 1950s. Here we prove the conjectuis large graphs.

Theorem 1.1.1 There exists anng 2 N such that the following holds. Let
n;D 2 N be such thatn ng is even andD  2dn=4e 1. Then every D-regular
graph G on n vertices has al-factorization. Equivalently, %G)= D.

The bound on the minimum degree in Theoreni_L.I11 is best possible. To se
this, suppose rst that n = 2 (mod 4). Consider the graph which is the disjoint
union of two cliques of ordern=2 (which is odd). If n = 0 (mod 4), consider the
graph obtained from the disjoint union of cliques of ordersn=2 1 andn=2+1
(both odd) by deleting a Hamilton cycle in the larger clique.

Note that Theorem [L.I.1 implies that for every regular graph G on an even
number of vertices, either G or its complement has a 1-factorization. Also, The-
orem[I.I1 has an interpretation in terms of scheduling round-robin dburnaments
(where n players play all of each other inn 1 rounds): one can schedule the
rst half of the rounds arbitrarily before one needs to plan the remainder of the
tournament.

The best previous result towards Theoreni I.111 is due to Perkovic ahReed 2],
who proved an approximate version, i.e. they assumed thaD  n=2 + "n. This

1



2 1. INTRODUCTION

was generalized by Vaughan([35] to multigraphs of bounded multiplicity. In-
deed, he proved an approximate form of the following multigraph vesion of the
1-factorization conjecture which was raised by Plantholt and Tipnis [33]: Let G be
a regular multigraph of even ordern with multiplicity at most r. If the degree of
G is at least rn=2 then G is 1-factorizable.

In 1986, Chetwynd and Hilton [4] made the following “overfull subgraph' con-
jecture. Roughly speaking, this says that a dense graph satises (G) = ( G)
unless there is a trivial obstruction in the form of a dense subgraphH on an
odd number of vertices. Formally, we say that a subgraphH of G is overfull if
e(H) > ( G)bjHj=2c (note this requires jH] to be odd).

Conjecture  1.1.2 A graph G onn vertices with ( G) n=3satises YG) =
( G) if and only if G contains no overfull subgraph.

It is easy to see that this generalizes the 1-factorization conjectre (see e.g.Z]
for the details). The overfull subgraph conjecture is still wide open { partial results
are discussed in[34], which also discusses further results and questions related to
the 1-factorization conjecture.

1.1.2. The Hamilton Decomposition Conjecture. Rather than asking
for a 1-factorization, Nash-Williams [28] 30] raised the more di cult problem of
nding a Hamilton decomposition in an even-regular graph. Here, aHamilton de-
composition of a graph G consists of a set of edge-disjoint Hamilton cycles covering
all edges ofG. A natural extension of this to regular graphs G of odd degree is
to ask for a decomposition into Hamilton cycles and one perfect mataing (i.e. one
perfect matching M in G together with a Hamilton decomposition of G M ). The
following result solves the problem of Nash-Williams for all large graphs

Theorem 1.1.3 There exists anng 2 N such that the following holds. Let
n;D 2 N be such thath ng and D b n=2c. Then every D-regular graph G
on n vertices has a decomposition into Hamilton cycles and at mésone perfect
matching.

Again, the bound on the degree in Theoren1.1]3 is best possible. Indd,
Proposition [I.3.1 shows that a smaller degree bound would not even saore con-
nectivity. Previous results include the following: Nash-Williams [27] showed that
the degree bound in Theoren“1.1]3 ensures a single Hamilton cycle. Jaon [13]
showed that one can ensure close t®d=2 n=6 edge-disjoint Hamilton cycles.
Christo des, Kuhn and Osthus [[6] obtained an approximate decomposition un-
der the assumption that D n=2 + "n. Under the same assumption, Kshn and
Osthus [22] obtained an exact decomposition (as a consequence of the mainstdt
in [21] on Hamilton decompositions of robustly expanding graphs).

Note that Theorem [[L.IT.3 does not quite imply Theorem[L L1, as the dege
threshold in the former result is slightly higher.

A natural question is whether one can extend Theoreni 1.113 to spaer (quasi)-
random graphs. Indeed, for random regular graphs of bounded ejjree this was
proved by Kim and Wormald [[Z6] and for (quasi-)random regular graphs of linear
degree this was proved inl22] as a consequence of the main result ii2[L]. However,
the intermediate range remains open.

1.1.3. Packing Hamilton Cycles in Graphs of Large Minimum De -
gree. Although Dirac's theorem is best possible in the sense that the minimum
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degree condition n=2 is best possible, the conclusion can be strengthened con-
siderably: a remarkable result of Nash-Williams [P9] states that every graph G
on n vertices with minimum degree (G) n=2 contains b5n=224c edge-disjoint
Hamilton cycles. He raised the question of nding the best possible bend, which
we answer in Corollary[I.L5 below.

We actually answer a more general form of this question: what is thenumber
of edge-disjoint Hamilton cycles one can guarantee in a grap® of minimum degree

?

A natural upper bound is obtained by considering the largest degre of an
even-regular spanning subgraph ofG. Let regq.,(G) be the largest degree of an
even-regular spanning subgraph ofs. Then let

reGeven(n; ) = min freg,e,(G) 1 jGj = n; (G)= ¢
Clearly, in general we cannot guarantee more than reg.,(n; )=2 edge-disjoint

Hamilton cycles in a graph of ordern and minimum degree . The next result
shows that this bound is best possible (if <n= 2, then reg,,(n; ) =0).

Theorem 1.1.4 There exists anng 2 N such that the following holds. Suppose
that G is a graph onn ne vertices with minimum degree n=2. Then G
contains at leastreg,,.,(n; )=2 edge-disjoint Hamilton cycles.

The main result of Kshn, Lapinskas and Osthus [19] proves Theorem[I.1T}#
unless G is close to one of the extremal graphs for Dirac's theorem. This will
allow us to restrict our attention to the latter situation (i.e. when G is close to the
complete balanced bipartite graph or close to the union of two disjoim copies of a
clique).

An approximate version of TheoremI.1.4 for = n=2+ "n was obtained earlier
by Christo des, Kuhn and Osthus [[6]. Hartke and Seacrest[L1] gave a simpler
argument with improved error bounds.

Precise estimates for reg,.,(n; ) (which yield either one or two possible values
for any n, ) are proved in [6, 10] using Tutte's theorem: Suppose thatn; 2 N
and n=2 <n . Then the bounds in [10] imply that

P P———
n2 n)+8 + n@2 n
(1.1.1) ( 2 ) " reuen(n; ) é _) +1;
where 0< " 2 is chosen to make the left hand side of[{1.1l11) an even integer.

Note that (LII) determines reg,.,(n; n=2) exactly (the upper bound in this case
was already proved by Katerinis [[5]). Moreover, (I.1.1) implies that if n=2
then regyen(n; ) (N 2)=4. So we obtain the following immediate corollary of
Theorem[T.T.34, which answers a question of Nash-William&B| 29] B0].

Corollary 1.1.5 There exists anng 2 N such that the following holds. Sup-
pose thatG is a graph onn  ng vertices with minimum degree n=2. Then G
contains at least(n  2)=8 edge-disjoint Hamilton cycles.

The following construction (which is based on a construction of Babg see [P8])
shows that the bound in Corollary[I.1.3 is best possible fon = 8k+2, where k 2 N.
Consider the graphG consisting of one empty vertex clasA of size &, one vertex
classB of size &« + 2 containing a perfect matching and no other edges, and all
possible edges betweel and B. Thus G has ordern = 8k + 2 and minimum
degree & + 1 = n=2. Any Hamilton cycle in G must contain at least two edges
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of the perfect matching in B, so G contains at most bjBj=4c = k = (n 2)=8
edge-disjoint Hamilton cycles. The lower bound on reg,,(n; ) in (LI1.I) follows
from a generalization of this construction.

The following conjecture from [19] would be a common generalization of both
Theorems[1. 1.8 and_1.T}4 (apart from the fact that the degree thrshold in The-
orem[L.1.3 is slightly lower). It would provide a result which is best possikte for
every graph G (rather than the class of graphs with minimum degree at least ).

Conjecture  1.1.6 Suppose thatG is a graph onn vertices with minimum
degree (G) n=2. Then G contains reg,,.,(G)=2 edge-disjoint Hamilton cycles.

For (2 P 2+ ")n, this conjecture was proved in [2Z], based on the main
result of [21]. Recently, Ferber, Krivelevich and Sudakov [[f] were able to obtain
an approximate version of Conjecture 1.1B, i.e. a set of (1 ")reg..,(G)=2 edge-
disjoint Hamilton cycles under the assumption that (G) (1+")n=2. It also makes
sense to consider a directed version of Conjectufe 1.1.6. Some reld questions for
digraphs are discussed inZ2].

It is natural to ask for which other graphs one can obtain similar reslts. One
such instance is the binomial random graphG : for any p, asymptotically almost
surely it contains b (G, )=2c edge-disjoint Hamilton cycles, which is clearly opti-
mal. This follows from the main result of Krivelevich and Samotij [18] combined
with that of Knox, Kshn and Osthus [ [17] (which builds on a number of previous
results). The problem of packing edge-disjoint Hamilton cycles in hygrgraphs has
been considered in[@]. Further questions in the area are discussed in the recent
survey [23].

1.1.4. Overall Structure of the Argument. For all three of our main re-
sults, we split the argument according to the structure of the grgph G under con-
sideration:

(i) G is close to the complete balanced bipartite graphK p=,.n=2;
(i) G is close to the union of two disjoint copies of a cliqueK ,,=»;

(i) G is a ‘robust expander'.

Roughly speaking, G is a robust expander if for every setS of vertices, its neigh-
bourhood is at least a little larger than jSj, even if we delete a small proportion
of the vertices and edges ofc. The main result of [21] states that every dense
regular robust expander has a Hamilton decomposition (see Theone[1.3.4). This
immediately implies Theorems[I.I.l and_1.T]3 in Case (iii). For Theoreni 1.7].4,
Case (iii) is proved in [19] using a more involved argument, but also based on the
main result of [21] (see TheorenL.3[7).

Case (i) is proved in Chapter[4 whilst Chapter[2 tackles Case (ii). We déer
the proof of some of the key lemmas needed for Case (ii) until Chapr[3. (These
lemmas provide a suitable decomposition of the set of “exceptional gds' { these
include the edges between the two almost complete graphs induced/6s.) Case (ii)
is by far the hardest case for TheoremBI1.1l1 arfld 1.1.3, as the eximal examples are
all close to the union of two cliques. On the other hand, the proof ofTheorem[1.1.3
is comparatively simple in this case, as for this result, the extremal onstruction is
close to the complete balanced bipartite graph.

The arguments in Cases (i) and (ii) make use of an “approximate' degoposition
result. We defer the proof of this result until Chapter Bl The arguments for both
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(i) and (ii) use the main lemma from [21] (the ‘robust decomposition lemma') when
transforming this approximate decomposition into an exact one.

In Section[1.3, we derive Theorem§ .11, 1.7.3 arld 1.1.4 from the strucal
results covering Cases (i){(iii).

The main proof in [21] (but not the proof of the robust decomposition lemma)
makes use of Szemeedi's regularity lemma. So due to Case (iii) the hmds onng
in our results are very large (of tower type). However, the case foTheorem[1.1.1
when both n=2 and (iii) hold was proved by Perkovic and Reed [B2] using
“elementary’ methods, i.e. with a much better bound onng. Since the arguments
for Cases (i) and (ii) do not rely on the regularity lemma, this means that if we
assume that n=2, we get much better bounds omg in our 1-factorization result

(Theorem[1.1.1).

1.2. Notation

Unless stated otherwise, all the graphs and digraphs considered ithis paper
are simple and do not contain loops. So in a digraptG, we allow up to two edges
between any two vertices, at most one edge in each direction. Givea graph or
digraph G, we write V (G) for its vertex set, E(G) for its edge set,e(G) = JE(G)j
for the number of edges inG and jGj := jV(G)j for the number of vertices in G.
We denote the complement ofG by G.

Suppose thatG is an undirected graph. We write (G) for the minimum degree
of G, ( G) for its maximum degree and YG) for the edge-chromatic number ofG.
Given a vertex v of G, we write Ng (V) for the set of all neighbours ofv in G. Given
asetA V(G), we write dg(v;A) for the number of neighbours ofv in G which
lie in A. Given A;B V(G), we write Eg(A) for the set of edges ofG which
have both endvertices inA and Eg (A; B) for the set of edges ofG which have one
endvertex in A and its other endvertex in B. We also call the edges inEg (A;B)
AB -edgesof G. We let eg(A) := jJEs(A)j and e (A;B) := JEg(A;B)j. We denote
by G[A] the subgraph of G with vertex set A and edge setEg(A). If A\ B = ;,
we denote byGJA; B ] the bipartite subgraph of G with vertex classesA and B and
edge setEg(A;B). If A =B we de ne G[A;B] := G[A]. We often omit the index
G if the graph G is clear from the context. An AB -path in G is a path with one
endpoint in A and the other in B. A spanning subgraphH of G is an r-factor of
G if the degree of every vertex ofH isr.

Given a vertex setV and two multigraphs G and H with V(G);V(H) V, we
write G+ H for the multigraph whose vertex set isV(G) [ V(H) and in which the
multiplicity of xy in G + H is the sum of the multiplicities of xy in G and in H

wedeneG+H =G+ H;+ + H-. If G and H are simple graphs, we write
G| H for the (simple) graph whose vertex set isV(G) [ V(H) and whose edge set
iSE(G)[ E(H). We write G H for the subgraph of G which is obtained from G
by deleting all the edges inE(G)\ E(H). Given A V(G), we write G A for
the graph obtained from G by deleting all vertices in A.

G=H.+ + H; and the H; are pairwise edge-disjoint.

A path systemis a graph Q which is the union of vertex-disjoint paths (some
of them might be trivial). We say that P is a path in Q if P is a component ofQ
and, abusing the notation, sometimes writeP 2 Q for this. A path sequences a
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digraph which is the union of vertex-disjoint directed paths (some d them might
be trivial). We often view a matching M as a graph (in which every vertex has
degree precisely one).

If G is a digraph, we write xy for an edge directed fromx to y. If xy 2 E(G),
we say thaty is an outneighbour of x and x is an inneighbour of y. A digraph G
is an oriented graph if there are nox;y 2 V(G) such that xy;yx 2 E(G). Unless
stated otherwise, when we refer to paths and cycles in digraphs, evmean directed
paths and cycles, i.e. the edges on these paths/cycles are oriedteonsistently. If x
is a vertex of a digraph G, then N¢ (x) denotes the outneighbourhoodof x, i.e. the
set of all those verticesy for which xy 2 E(G). Similarly, Ng(x) denotes the
inneighbourhood of x, i.e. the set of all those verticesy for which yx 2 E(G). The
outdegree of x is dg(x) := jNg (x)j and the indegree of x is dg(x) := jNg (X)j.
We write dg (x; A) for the number of outneighbours ofx lying inside A and de ne
dg (x;A) similarly. We denote the minimum outdegree of G by *(G) and the
minimum indegree by (G). We write (G) and ( G) for the minimum and
maximum degrees of the underlying simple undirected graph ofs respectively.

Given a digraph G and A;B V(G), an AB-edge is an edge with initial
vertex in A and nal vertex in B, and eg (A; B) denotes the number of these edges
in G. If A\ B = ;, we denote byGJ[A; B] the bipartite subdigraph of G whose
vertex classes aréA and B and whose edges are alAB -edges ofG. By a bipartite
digraph G = G[A; B ] we mean a digraph which only containsAB -edges. A spanning
subdigraph H of G is an r-factor of G if the outdegree and the indegree of every
vertex of H isr.

If P is a path and x;y 2 V(P), we write xPy for the subpath of P whose
endvertices arex and y. We de ne xPy similarly if P is a directed path and x
precedesy on P.

directed cycle on these sets. We say that an edgey of a digraph R winds around
C if there is somei such that x 2 Vi andy 2 Vi.1 . In particular, we say that R
winds around C if all edges ofR wind around C.

In order to simplify the presentation, we omit oors and ceilings and treat large
numbers as integers whenever this does not a ect the argumentThe constants in
the hierarchies used to state our results have to be chosen fromght to left. More
precisely, if we claim that a result holds whenever 0< 1=n a b ¢ 1
(where n is the order of the graph or digraph), then this means that there ae non-
decreasing functionsf : (0;1]! (0;1],9:(0;1]! (0;1]andh: (0;1]! (0O;1] such
that the result holds for all 0 <a;b;c 1 andalln2 Nwith b f(c),a g(b
and 1=n h(a). We will not calculate these functions explicitly. Hierarchies with
more constants are de ned in a similar way. We will write a= b ¢ as shorthand
forb ¢ a btec

1.3. Derivation of Theorems 1.1[1,_T.1[3, 1.1.4from the Mai n
Structural Results

In this section, we combine the main auxiliary results of this paper (tayether
with results from [22] and [19]) to derive Theorems[I.T.1[T.113 and_L.1l14. Before
this, we rst show that the bound on the minimum degree in Theorem[L1.3 is best
possible.
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Proposition  1.3.1 For everyn 6,let D := bn=2c 1. Unless bothD
and n are odd, there is a disconnected -regular graph G on n vertices. If both
D andn are odd, there is a disconnectedD 1)-regular graph G on n vertices.

Note that if both D and n are odd, noD -regular graph exists.

Proof. If n is even, takeG to be the disjoint union of two cliques of order n=2.
Suppose thatn is odd and D is even. This impliesn = 3 (mod 4). Let G be
the graph obtained from the disjoint union of cliques of ordersbn=2c and dn=2e by
deleting a perfect matching in the bigger clique. Finally, suppose thatn and D
are both odd. This implies that n = 1 (mod 4). In this case, take G to be the
graph obtained from the disjoint union of cliques of ordersbn=2c 1 and dn=2e+1
by deleting a 3-factor in the bigger clique.

1.3.1. Deriving Theorems 1.1.T and 1.1[3. As indicated in Section[1.], in
the proofs of our main results we will distinguish the cases when ourigen graph
G is close to the union of two disjoint copies ofK ,-», close to a complete bipartite
graph K =2.n=2 Or a robust expander. We will start by de ning these concepts.

We say that a graph G on n vertices is"-close to the union of two disjoint copies
of K=, if there exists A V(G) with jAj = bn=2c and such that e(A;V (G) nA)
"n2. We say that G is "-close toK -2..=» if there exists A V(G) with jAj = bn=2c
and such that e(A) "n?. We say that G is "-bipartite if there exists AV (G)
with jAj = bn=2c such that e(A);e(V(G) nA) "n?. So every"-bipartite graph is
"-close toK =2.n=2. Conversely, if I=n " and G is a regular graph onn vertices
which "-close toK p-,.,=2, then G is 2'-bipartite.

Given 0 < < 1, we say that a graphG on n vertices is arobust (; )-
expanderifforall S V(G)with n j Sj (1 )n the number of vertices that
have at least n neighbours inS is at leastjSj+ n.

The following observation from [19] implies that we can split the proofs of
Theorems[IT.T.1 and_I.T]3 into three cases.

Lemma 1.3.2 Suppose thatO < 1=n ;"< 1. Let G be a graph on
n vertices of minimum degree = (G) (1=2 )n. Then G satis es one of the
following properties:
(i) Gis "-close toK j=2:n=2;
(i) G is "-close to the union of two disjoint copies ofK ,=5;
(i) G is arobust(; )-expander.

Recall that in Chapter Plwe prove Theoremd LTN andI.113 in Case (ii) wén
our given graph G is "-close to the union of two disjoint copies ofK,-,. The
following result is su ciently general to imply both Theorems LI1.T]land .13 in
this case. We will prove it in Section[2.10.

Theorem 1.3.3 For every "¢ > O there exists anng 2 N such that the fol-
lowing holds for alln  ng. Suppose thatD n 2bn=4c 1 and that G is a
D-regular graph onn vertices which is"¢-close to the union of two disjoint copies
of K,=». Let F be the size of a minimum cut inG. Then G can be decomposed into
bminf D; F g=2c Hamilton cycles andD  2bminf D; F g=2c perfect matchings.

Note that Theorem [1.3.3 provides structural insight into the extremal graphs
for Theorem[I1.1.3 { they are those with a cut of size less tharD.
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Throughout this paper, we will use the following fact.

g n=2 1 ifn=0 (mod 4),

(n 1)=2 ifn=1 (mod 4),
3 n=2 ifn=2 (mod 4),
"(n+1)=2 ifn=3 (mod 4).

(1.3.1) n 2bn=4c 1=

The next result from [22] (derived from the main result of [21]) shows that
every even-regular robust expander of linear degree has a Hamilhodecomposition.
It will be used to prove Theorems[I.1.1 and_1.1I3 in the case when our gn graph
G is a robust expander.

Theorem 1.3.4 For every > O there exists > 0 such that for every > 0
there existsng = ng(; ; ) for which the following holds. Suppose that

(i) G is an r-regular graph onn ng vertices, wherer n is even;
(i) Gisarobust(; )-expander.

Then G has a Hamilton decomposition.

The following result implies Theorems[I.I.1 and_L.113 in the case when our
given graph is"-close toK ,-,.n=». Note that unlike the case whenG is "-close to
the union of two disjoint copies ofK ,-,, we have room to spare in the lower bound
onD.

Theorem 1.3.5 There are "ex > 0 and ng 2 N such that the following holds.
Letn ngandsuppose thaD  (1=2 "ex)n is even. Suppose thaG is a D-regular
graph onn vertices which is"ex-bipartite. Then G has a Hamilton decomposition.

Theorem[1.3.5 is one of the two main results proven in Chaptdrl4. Thedllowing
result is an easy consequence of Tutte's theorem and gives the deg threshold for
a single perfect matching in a regular graph. Note the condition onD is the same
as in TheoremI.1.1.

Proposition  1.3.6. Suppose thatD 2dn=4e 1 and n is even. Then every
D-regular graph G on n vertices has a perfect matching.

Proof. If D n=2then G has a Hamilton cycle (and thus a perfect matching) by
Dirac's theorem. So we may assume thaD = n=2 1 and son =0 (mod 4). In
this case, we will use Tutte's theorem which states that a graphG has a perfect
matching if for every setS  V(G) the graph G S has at mostjSj odd components
(i.e. components on an odd number of vertices). The latter conditiom holds if jSj 1
and if jSj n=2.

If jSj= n=2 1andG S has more thanjSj odd components, thenG S
consists of isolated vertices. But this implies that each vertex outi&le S is joined
to all vertices in S, contradicting the (n=2 1)-regularity of G.

If2 j Sj n=2 2,theneverycomponentofG S hasatleastn=2] Sjvertices
and soG S has at mostb(n j Sj)=(n=2 ] Sj)ccomponents. Butb(n j Sj)=(n=2
iSj)c j Sjunlessn =8 and jSj = 2. (Indeed, note that (n j Sj)=(n=2j Sj) | Sjif
andonly if n+jSj?2 (n=2+1)jSj 0. The latter holds for jSj =3 and jSj = n=2 2,
and so for all values in between. The casgSj = 2 can be checked separately.) If
n=38and jSj=2, itis easy to see that G S has at most two odd components.



1.3. DERIVATION OF THEOREMS 1.1.1[T13,[1T14 MAIN ST RUCTURAL RESULTS 9

Proof of Theorem 1.0.1. ] Let = (1=3) be the constant returned by
Theorem [1.3:34 for := 1=3. Chooseng 2 N and constants ;" ¢x such that
1=ng "ex and ey 1. Letn no and let G be a D-regular graph

as in Theorem[I.IT11. Lemmd_L3]2 implies thatG satis es one of the following
properties:

(i) G is"ex-close toK j=2:n=2;

(i) G is "ex-close to the union of two disjoint copies ofK = 5;

(i) G is arobust (; )-expander.
If (i) holds and D is even, then as observed at the beginning of this subsection, this
implies that G is 2'¢-bipartite. So Theorem[1.3.5 implies that G has a Hamilton
decomposition and thus also a 1-factorization (as is even and so every Hamilton
cycle can be decomposed into two perfect matchings). Supposeah(i) holds and
D is odd. Then Proposition[1.3.6 implies that G contains a perfect matchingM .
Now G M is still "gx-close toK p=5.4=» and so TheorenT 135 implies thatG M
has a Hamilton decomposition. ThusG has a 1-factorization. If (ii) holds, then
Theorem[1.3:3 and [I.311) imply that G has a 1-factorization. If (iii) holds and
D is odd, we use Propositior_1.3J6 to choose a perfect matchingl in G and let
G%:=G M. If Diseven, letG°:= G. In both cases,G° M is still a robust
( =2; )-expander. So Theoren{ 1.3} gives a Hamilton decomposition @°. So G
has a 1-factorization.

The proof of Theorem[I. L3 is similar to that of TheoremL.I1.

Proof of Theorem 1.3 1 Chooseng 2 N and constants ; ;" ¢ as in the proof
of Theorem[I.I1.1. Letn ng and let G be aD-regular graph as in Theoren_1.1.B.
As before, Lemma1.3.2 implies thatG satis es one of (i){(iii). Suppose rst that
() holds. If D is odd, n must be even and s n=2. Choose a perfect matching
M in G (e.g. by applying Dirac's theorem) and letG%:= G M. If D is even, let
GY:= G. Note that in both casesGPis "ex-close toK =2,=2 and so 2 e-bipartite.
Thus Theorem[I.35 implies that G® has a Hamilton decomposition.

Suppose next that (ii) holds. Note that by (.31), D n 2bn=4c 1 unless
n = 3 (mod 4) and D = bn=2c. But the latter would mean that both n and
D are odd, which is impossible. So the conditions of Theorei 1.3.3 are ssied.
Moreover, sinceD b n=2c, Proposition2Z.Z1(ii) implies that the size of a minimum
cut in G is at least D. Thus Theorem[L3.3 implies that G has a decomposition
into Hamilton cycles and at most one perfect matching.

Finally, suppose that (iii) holds. If D is odd (and thus n is even), we can apply
Proposition [[.3.8 again to nd a perfect matchingM in G and let G°:= G M.
If D is even, letG%:= G. In both cases,GC is still a robust ( =2; )-expander. So
Theorem[1.3:3 gives a Hamilton decomposition oG°.

1.3.2. Deriving Theorem 1.1.4.] The derivation of Theorem[I.1.4 is similar
to that of the previous two results. We will replace the use of Lemmdl.3.2 and
Theorem[1.3:4 with the following result, which is an immediate consequece of the
two main results in [19].

Theorem 1.3.7. For every "¢x > 0 there exists anng 2 N such that the follow-
ing holds. Suppose thatG is a graph onn  ng vertices with (G) n=2. Then G
satis es one of the following properties:
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(i) G is "ex-close toK =o:n=2;
(i) G is "ex-close to the union of two disjoint copies ofK =»;
(iii) G contains reg,.,(n; )=2 edge-disjoint Hamilton cycles.

To deal with the near-bipartite case (i), we will apply the following result which
we prove in Chapter[4.

Theorem 1.3.8 For each > O there are "¢ > 0 and ng 2 N such that the
following holds. Suppose thafF is an "ex-bipartite graph on n  ng vertices with
(F) (@=2 "ex)n. Suppose thatF has aD-regular spanning subgraphG such
that n=100 D (1=2 )n and D is even. ThenF contains D=2 edge-disjoint
Hamilton cycles.

The next result immediately implies Theorem[I1.1.2 in Case (ii) whenG is "-
close to the union of two disjoint copies ofK .-,. We will prove it in Chapter Z]
(Section[ZB). SinceG is far from extremal in this case, we obtain almost twice as
many edge-disjoint Hamilton cycles as needed for Theorem 1.1.4.

Theorem 1.3.9 For every " > 0, there exist"¢x > 0 and ng 2 N such that
the following holds. Supposen ng and G is a graph onn vertices such thatG
is "ex-close to the union of two disjoint copies ofK .-, and such that (G) n=2.
Then G has at least(1=4 ")n edge-disjoint Hamilton cycles.

We will also use the following well-known result of Petersen.

Theorem 1.3.1Q Every regular graph of positive even degree contains 3-
factor.

Proof of Theorem 1.1.4.1 Chooseng 2 N and "¢ such that 1=ny  "ex 1.
In particular, we choose"ex  "5,(1=12), where";,(1=12) is the constant returned
by Theorem[139 for" := 1=12, as well as'ex  "5(1=6)=2, where"5,(1=6) is the
constant returned by Theorem[1.38 for :=1=6. Let G be a graph onn ng
vertices with = (G) n=2. Theorem[L3.T implies that we may assume thatG
satis es either (i) or (ii). Note thatin both casesitfollowsthat (G) (1=2+5"¢)N.
So (I.11) implies thatn=5 reg,.,(n; ) 3n=10.

Suppose rst that (i) holds. As mentioned above, this implies that G is 2" ¢«-
bipartite. Let G°be aD-regular spanning subgraph ofG such that D is even and
D  reg..en(n; ). Petersen's theorem (TheoreniZI:31I0) implies that by successively
deleting 2-factors of G°, if necessary, we may in addition assume thaD  n=3.
Then Theorem [1.3.8 (applied with := 1=6) implies that G contains at least
D=2 reQ..e,(N; )=2 edge-disjoint Hamilton cycles.

Finally suppose that (ii) holds. Then Theorem[1.3.9 (applied with " := 1=12)
implies that G containsn=6 reg.,e,(n; )=2 edge-disjoint Hamilton cycles.

1.4. Tools

1.4.1. "-regularity. If G=(A;B) is an undirected bipartite graph with ver-
tex classesA and B, then the density of G is de ned as

ec(A;B).

d(A;B) = —/———
(AB)= 78]
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For any " > 0, we say that G is "-regular if for any A A and B® B with
jAY  "jAjand jBY "jBj we havejd(A%B9 d(A;B)j <". We say that G is
(; d)-regular if it is "-regular and has densityd® for somed® d "

We say that G is ['; d]-superregular if it is "-regular anddg(a) = (d ")jBj for
everya2 A anddg(b)=(d ")jAjforeveryb2 B. Gis['; d]-superregular if it
is ['; d9-superregular for somed® d.

Given disjoint vertex sets X and Y in a digraph G, recall that G[X;Y ] denotes
the bipartite subdigraph of G whose vertex classes ar& and Y and whose edges
are all the edges ofs directed from X to Y. We often view G[X; Y ] as an undirected
bipartite graph. In particular, we say G[X;Y ]is "-regular, (*; d)-regular, [";d]-
superregular or [;  d]-superregular if this holds whenG[X;Y ] is viewed as an
undirected graph.

The following proposition states that the graph obtained from a superregular
pair by removing a small number of edges at every vertex is still supgegular (with
slightly worse parameters). We omit the proof which follows straighforwardly from
the de nition of superregularity. A similar argument is for example included in [21].

Proposition 1.4.1 Suppose that0 < 1=m " d° d 1. lLetGbea
bipartite graph with vertex classesA and B of sizem. Suppose thatGC is obtained
from G by removing at mostd’m vertices from each vertex class and at mostm
edges incident to each vertex fronG. If G is ["; d]-superregular thenGPis [2 d° d]-
superregular.

We will also use the following well-known observation, which easily follow$rom
Hall's theorem and the de nition of [ "; d]-superregularity.

Proposition 1.4.2 Suppose that0< 1=m " d 1. Suppose thatG is
an ["; d]-superregular bipartite graph with vertex classes of siz@. Then G contains
a perfect matching.

We will also apply the following simple fact.

Fact 1.4.3 Let "> 0. Suppose thatG is a bipartite graph with vertex classes
of sizen such that (G) (1 ")n. Then Gis[ T 1]-superregular.

1.4.2. A Cherno -Hoe ding Bound. We will often use the following Cher-
no -Hoe ding bound for binomial and hypergeometric distributions (see e.g.[14,
Corollary 2.3 and Theorem 2.10]). Recall that the binomial random vaiable with
parameters (; p) is the sum of n independent Bernoulli variables, each taking value
1 with probability p or 0 with probability 1  p. The hypergeometric random variable
X with parameters (n; m; k) is de ned as follows. We letN be a set of sizen, x
S N of sizejSj = m, pick a uniformly random T N of sizejTj = k, then de ne
X =T\ Sj. Note that EX = km=n.

Proposition  1.4.4 SupposeX has binomial or hypergeometric distribution
andO0<a< 3=2. Then P()X EXj aEX) 2e &3,

1.4.3. Other Useful Results. We will need the following fact, which is a
simple consequence of Vizing's theorem and was rst observed by NDiarmid and
independently by de Werra (see e.gl37]).

Proposition  1.4.5 Let G be a graph with ¥G) m. Then G has a decom-
position into m matchingsMy;:::;Mpn with je(M;) e(M;)j 1foralli;j m.
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It is also useful to state Proposition[L.45 in the following alternative form.

Corollary 1.4.6. Let H be a graph with maximum degree at most : Then
E(H) can be decomposed into+ 1 edge-disjoint matchingsMq;:::;M 41 such
that je(M;) e(M;)j 1for all i;j +1 .

The following partition result will also be useful.

Lemma 1.4.7. Suppose that0< 1=n ";"; ", 1=K 1, that r 2K,
that Km n=4 and thatr;K;n;m 2 N. Let G and F be graphs onn vertices with
V(G) = V(F). Suppose that there is a vertex partition ofV (G) into U;Ry;:::; R,
with the following properties:

jUj=Km.
(GI[U]) "nor ( G[UD) "n.
For eachj r we either havedg (u;Rj) "n forall u2 U or dg(x;U)
“n for all x 2 R;.
Then there exists a partition of U into K parts Us;:::; Uk satisfying the following
properties:
@) jUj=mforali K.

(i) de(v;U)=(ds(v;U) "in)=K forall v2 V(G)andalli K.

(i) es(Ui;Upo) =2(es(U) "»maxfn;eg(U)g)=K?foralll i6i° K.

(iv) ec(U)=(es(U) ",maxin;eg(U)g)=K?foralli K.

(v) es(Ui;R)) = (es(U;Ry)  "2maxfn;eg(U;R;)g)=K for all i K and
jor.

(vi) de(v;U) =(de(v;U) "in)=K forall v2 V(F) and alli K.

Proof.  Consider an equipartition Uy;:::; Uk of U which is chosen uniformly at

random. So (i) holds by de nition. Note that for a given vertex v 2 V(G), dg (v; U;)

has the hypergeometric distribution with mean dg(v;U)=K. So if dg(v;U)

"1n=K, Proposition [[.4.4 implies that

ds(v;U)  "1dg(v;V)
K K

Thus we deduce that forallv2 V(G) and alli K,
P(ids(v;U) de(v;U)=Kj "in=K) 1=n*

w2 .
2exp 10e(vil) 1,

P dG (Vl UI) 3K n2

Similarly,
P(jde (v;U;) de(v;U)=Kj "in=K) 1=n?%

So with probability at least 3/4, both (ii) and (vi) are satis ed.

We now consider (i) and (iv). Fix i;i® K. Ifi 6 i let X := eg(U;; Ujo). If
i =% let X :=2eg(U;). For an edgef 2 E(G[U]), let E; denote the event that
f 2 E(Ui;Upo). Soiff = xy andi 6 i° then
m m
juj juj 1
Similarly, if f and f ®are disjoint (that is, f and f ® have no common endpoint) and
i 6 i° then

(1.4.1) P(Ef)=2P(x 2 U))P(y 2 Upojx 2 Uj) =2

m 1 m 1 _m m
U 2 Ui 3 AU qup 1o

(1.4.2) P(EfojEf)=2
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By (LZ.1), if i 6 i% we also have

_,&(U) Ui _ 2 2es(V) _ W _n 26c(U) .
(143) EX)=2557 FEg= 1o S =0 e S
If f = xy andi = i° then
. m m 1
(1.4.4) P(Ef)= P(x 2 U)P(y2 Ui jx 2 Uj) = U Ul T

Soifi = i% similarly to (ILZ.2) we also obtainP(Efo j Et)  P(Es ) for disjoint f and
f Oand we obtain the same bound as in[{T.Z13) orfE(X ) (recall that X = 2eg(U;)

in this case).
Note that if i 6 i°then
X X
Var(X) = (P(Ef \ Efo) P(Ef)P(Efo))
fZ)E(U)fOZE(U)
= P(Es ) (P(Efoj Ef) P(Ef0))
f2E(U) f 02 E (U)
@TZ2 X @TZ3 3¢5(U)

P(Er) 2( G[U)) 2( G[U)

K2
f2E(U)
ec(U) ( G[U)):
Similarly, if i = i°then
X

X
Var(X) =4 (P(Ef \ Efo) P(Ef)P(Efo)) es(U)( G[U]):
f2E(U)fO2E(U)
Let a:= eg(U) ( G[U]). In both cases, from Chebyshev's inequality, it follows that

q
P jX EX)j a2 "t

Suppose that ( G[U]) "n. If we also have havees(U) n, then P a="1=2
"1¥n "n=2K 2. If eg(U) n,then  a="122 "1Feg(U)  "peg(U)=2K 2.
If we do not have ( G[U]) "n, then our assumptions imply that (G[U])
Fp So (G[U]) n "eg(G[U]) with room to spare. This in turn means that
a="1=2 "¥eg(U) ",es(U)=2K 2. So in all cases, we have

"> maxfn; eg(U)g wi=2.

(1.4.5) P X E(X)j 52

Now note that by (L.4.3) we have

2ec(V)  "2e5(U),
K2 2K2
So (I.45) and [I.4.6) together imply that for xed i;i°the bound in (iii) fails with
probability at most "'=2. The analogue holds for the bound in (iv). By summing
over all possible values of;i® K, we have that (iii) and (iv) hold with probability
at least 3-4.
A similar argument shows that foralli K andj r, we have

(1.4.6) E(X)

es(U;R) "> maxfn; eg(U; Rj)g wi=2.

(1.4.7) P es(Ui;R)) < >
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Indeed, x i K, r and let X := eg(Ui;R;). For an edgef 2 G[U;R;], let
Er denote the event thatf 2 E(U;;R;). Then P(E;) = m=jUj = 1=K and so
E(X) = es(U;Rj)=K. The remainder of the argument proceeds as in the previous
case (with slightly simpler calculations).

So (v) holds with probability at least 3/4, by summing over all possible values
ofi K andj r again. So with positive probability, the partition satis es all
requirements.



CHAPTER 2

The two cliques case

This chapter is concerned with proving Theoremd_I.T11[ 1,113 and_1.7.4 ithe
case when our graph is close to the union of two disjoint copies of a clig K =5
(Case (ii)). More precisely, we prove Theoreni 1.319 (i.e. Case (ii) of Taorem[I1.T.4)
and Theorem[1.3.3, which is a common generalization of Case (ii) of Theems[1.1.1
and[I.1.3. In Section[2.1, we give a sketch of the arguments for thewb cliques'
Case (ii) (i.e. the proofs of Theoremd1.313 and1.3]9). Sectios 2[2{2(nd part
of Section[Z.%) are common to the proofs of both Theorems1.3.3 arff3.9. Theo-
rem[1.39 is proved in Sectioi’Zl5. All the subsequent sections of thishapter are
devoted to the proof of Theorem[1.3.8.

In this chapter (and Chapter B) it is convenient to view matchings as graphs
(in which every vertex has degree precisely one).

2.1. Overview of the Proofs of Theorems 1.3.8and 1.3.9

The proof of TheoremI.3® is much simpler than that of Theorem§ T 3]8mainly
because its assertion leaves some leeway { one could probably nd &ghtly larger
set of edge-disjoint Hamilton cycles than guaranteed by Theoreri.B.9). Moreover,
the ideas used in the former all appear in the proof of the latter too

2.1.1. Proof Overview for Theorem 1.3.0.] Let G be a graph onn vertices
with (G) n=2 which is close to being the union of two disjoint cliques. So there
is a vertex partition of G into sets A and B of roughly equal size so thatG[A]
and G[B] are almost complete. Our aim is to construct almostn=4 edge-disjoint
Hamilton cycles.

Several techniques have recently been developed which yield appimate de-
compositions of dense (almost) regular graphs, i.e. a set of Hamiltoaycles covering
almost all the edges (see e.g6] [7] 9] 24] 817]). This leads to the following idea:
replace G[A] and G[B] by multigraphs Ga and Gg so that any suitable pair of
Hamilton cycles Ca and Cg of Go and Gg respectively corresponds to a single
Hamilton cycle C in the original graph G. We will construct G5 and Gg by delet-
ing some edges of5 and introducing some " ctive edges'. (The introduction of
these ctive edges is the reason whyGa and Gg are multigraphs.)

We next explain the key concept of these " ctive edges'. The followinggraph G
provides an instructive example: suppose thath =0 (mod 4). Let G be obtained
from two disjoint cliques induced by setsA and B of sizen=2 by adding a perfect
matching M betweenA and B. Note that G is n=2-regular. Now pair up the edges
of M into n=4 pairs (g;e+1) fori =1;3;:::;n=2 1. Write g =: X;y; with x; 2 A
andy; 2 B. Next let G4 be the multigraph obtained from G[A] by adding all the
edgesx;Xj+1 , wherei is odd. Similarly, let Gg be obtained from G[B] by adding all
the edgesyiyi+1 , wherei is odd. We call the edge;x;+1 andy;yj+1 ctive edges.

15
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Note that G, and Gg are regular multigraphs. Now pair o the ctive edges in
Ga with those in Gg, i.e. XjXj+1 is paired o with Viyi+1 . Suppose thatCp is a
Hamilton cycle in Ga which contains xjx;+1 (and no other ctive edges) and Cg is
a Hamilton cycle in Gg which contains y;yi+1 (and no other ctive edges). Then
together, Ca and Cg correspond to a Hamilton cycleC in the original graph G
(where ctive edges are replaced by the corresponding matchingdges inM again).
So we have reduced the problem of nding many edge-disjoint Hamilta cycles
in G to that of nding many edge-disjoint Hamilton cycles in the almost complete
graph G (and Gg), with the additional requirement that each such Hamilton
cycle contains a unique ctive edge. This can be achieved via the “appximate
decomposition result' (see Lemma2.514 which is proved in Chaptdrl 5).
Additional di culties arise from “exceptional’ vertices, namely those which have
high degree into both A and B. (It is easy to see that there cannot be too many
of these vertices.) Fictive edges also provide a natural way of “elimirieng' these
exceptional vertices. Suppose for example thaG® is obtained from the graph G
above by adding a vertexa so that a is adjacent to half of the vertices in A and
half of the vertices in B. (Note that (G9 is a little smaller than jG3=2, but
Gl is similar to graphs actually occurring in the proof.) Then we can pair o the
neighbours ofa into pairs within A and introduce a ctive edge f; between each pair
of neighbours. We also introduce ctive edgesf; between pairs of neighbours ofa

that jGY = n+1). So we haveV(GQ) = A and V(G3) = B again. We then require
each pair of Hamilton cyclesCp, Cg of Gg and Gg to contain XjXj+1, YiYi+1 and a
ctive edge f; (which may lie in A or B) wherei is odd, see Figurd Z.T]1. TherCp
and Cg together correspond to a Hamilton cycleC in G°again. The subgraphJ of
G®which corresponds to three such ctive edgesXi+1, yiyi+1 andf; of C is called
a "Hamilton exceptional system'. J will always be a path system. So in general, we
will rst nd a su cient number of edge-disjoint Hamilton exceptiona | systemsJ.
Then we apply LemmalZ5.% to nd edge-disjoint Hamilton cycles inG% and G,
where each pair of cycles contains a suitable set of ctive edges (corresponding
to some Hamilton exceptional systemJ).

For Lemma [Z5.4, we need each of the Hamilton exceptional system3$ to
be “localized": given a partition of A and B into clusters, the endpoints of the
corresponding set] of ctive edges need to be contained in a single cluster oA
and of B. The fact that the Hamilton exceptional systems need to be localizé is one
reason for treating exceptional vertices di erently from the others by introducing
ctive edges for them.

2.1.2. Proof Overview for Theorem 1.3.B__1 The main result of this chapter
is Theorem[1.3.8. Suppose that is a D-regular graph satisfying the conditions of
that theorem.

Using the approach of the previous subsection, one can obtain arpgroximate
decomposition ofG, i.e. a set of edge-disjoint Hamilton cycles covering almost all
edges ofG. However, one does not have any control over the leftover' ggh H,
which makes a complete decomposition seem infeasible. This problem waver-
come in 1] by introducing the concept of a “robustly decomposable graphG™®.
Roughly speaking, this is a sparse regular graph with the following prperty: given
any very sparse regular graphH with V(H) = V(G™®) which is edge-disjoint from
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A B

Figure 2.1.1. Transforming the problem of nding a Hamilton
cycle onV(GY into nding two Hamilton cycles Ca and Cg on A
and B respectively.

G™P, one can guarantee thatG™ [ H has a Hamilton decomposition. This leads
to a natural (and very general) strategy to obtain a decompositian of G:

(1) nd a (sparse) robustly decomposable graphG™® in G and let G° denote
the leftover;

(2) nd an approximate Hamilton decomposition of G° and let H denote the
(very sparse) leftover;

(3) nd a Hamilton decomposition of G™ [ H.

It is of course far from clear that one can always nd such a graphG™. The main
“robust decomposition lemma' of B1] guarantees such a graptG™ in any regular
robustly expanding graph of linear degree. Sinces is close to the disjoint union
of two cliques, we are of course not in this situation. However, a ragar almost
complete graph is certainly a robust expander, i.e. our assumptiongmply that G
is close to being the disjoint union of two regular robustly expanding gaphs Ga
and Gg, with vertex sets A and B.

So very roughly, the strategy is to apply the robust decompositionemma of [21]
to Ga and Gg separately, to obtain a Hamilton decomposition of bothGa and Gg .
Now we pair up Hamilton cycles of Ga and Gg in this decomposition, so that each
such pair corresponds to a single Hamilton cycle oG and so that all edges ofG
are covered. It turns out that we can achieve this as in the proof 6Theorem[1.3.9:
we replace all edges ofs between A and B by suitable ° ctive edges' in G, and
Gg. We then need to ensure that each Hamilton cycle inGa and Gg contains a
suitable set of ctive edges { and the set-up of the robust decompsition lemma
does allow for this.

One signi cant di culty compared to the proof of Theorem 1[3.97s tha t this
time we need adecomposition of all the “exceptional' edges (i.e. those between
A and B and those incident to the exceptional vertices) into Hamilton excepional
systems. The nature of the decomposition depends on the struate of the bipartite
subgraphG[A% B of G, where A%is obtained from A by including some subsetA,
of the exceptional vertices, andB? is obtained from B by including the remaining
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set B of exceptional vertices. We say thatG is “critical' if many edges of G[A% B
are incident to very few (exceptional) vertices. In our decomposibn into Hamilton
exceptional systems, we will need to distinguish between the critideand non-critical
case (when in additionG[A% B9 contains many edges) and the case wheG[A% B9
contains only a few edges. The lemmas guaranteeing this decompasit are stated
and discussed in Sectiofl 217, but their proofs are deferred until Clpter [3.

Finding these localized Hamilton exceptional systems becomes moredsible if
we can assume that there are no edges with both endpoints in the erptional set
Ao or both endpoints in Bg. So in Section[Z.6, we nd and remove a set of edge-
disjoint Hamilton cycles covering all edges inG[Aq] and G[Bo]. We can then nd the
localized Hamilton exceptional systems in Sectioi Z]7. After this, we eed to extend
and combine them into certain path systems and factors in Sectiofi B, before we
can use them as an ‘input' for the robust decomposition lemma in Seiin 2.9.
Finally, all these steps are combined in Sectio 2,10 to prove Theoreif.3.3.

2.2. Partitions and Frameworks

2.2.1. Edges between Partition Classes. Let A% B be a partition of the
vertex set of a graphG. The aim of this subsection is to give some useful bounds
on the number eg (A% B9 of edges betweerA®and B%in G.

Proposition  2.2.1 Let G be a graph onn vertices with (G) D. Let A%B°
be a partition of V(G). Then the following properties hold:

() es(A%B9 (D j BY+1)jBY:

(i) f D n 2bn=4c 1, then eg(A%B% D unlessn = 0 (mod 4),

D=n=2 1andjAY=jBY=n=2

Proof. Since (G) D we haved(v;A% D jBY+1forall v2 B%and so
ecs(A%BY (D j BY+1)jBY, which implies (i). (ii) follows from (L3I} and
().

Proposition 2.2.2 Let G be aD-regular graph onn vertices together with a
vertex partition A%BC Then

(i) ec(A%B9 is odd if and only if bothjAY and D are odd.
(i) es(A®BY) = ex(A)+ eg(BY+ @0*2 min (A% BY)*.
Proof. Note that eg(A%B9 =" ,,0d(v;B9 = P wao(D d(v;AY) = jAYD
2ec (A9. Hence (i) follows.
For (ii), note that

JAY
2

JAY

e(A) = )

e (A = 2(DJAY es(A%BY);

and similarly e5(B9 = 87 (DjBY es(A%B9Y)=2. SincejA]+ jBY = n it
follows that
ec(A%BY = es(A)+ es(B) 5 AT+ B n(D+1)

(2D+2 n)n  (JAY j BY)?,
4 4 ’

= eg(A)+ eg(BY +

as required.



2.2. PARTITIONS AND FRAMEWORKS 19

Proposition  2.2.3 Let G be aD -regular graph onn vertices withD b n=2c.
Let A% B0 be a partition of V(G) with jAY;jB§ D=2 and ( G[A%BY) D=2
Then (
D 28 if D n=2
A%B '

e UASBY) o 8 D=(n 1)
for every U V(G) with jUj 3.
Proof. Without loss of generality, we may assume thatjAY | BY. Set
GY:= G[A%BY. If BY D 4,thene(GY) (D jBY+1)jBY 5D=2 by
Proposition Z.21(i). Since ( G% D=2 we havee(G® U) eG% 3D=2 D.
Thus we may assume thatjB§ D 3. For everyv 2 B° we have
deo(v) = dg(v;A) =D ds(v;BY)=D (B dg(v;BY) 1) dg(v;BY+4;
and similarly dgo(v)  dg(v;A9+4 for all v2 A% Thus
X X X
deo(u) 12+ ds(u; A9 + ds(u; B9
u2U u2U\ A0 u2U\ B°
(2.2.1) 15+ es(A9) + e5(BY:
Note that jAY j B 7 sincejAY j B D 3 bn=2c 3. By Proposi-
tion Z22(ii), we have
X
e(G° U) e(GY deo(u)
u2U

@D+2 mn (jAg j BY® X

es(A9+ es(B9) + 2 2 dgo(u)
u2U
@z iAG | BY)2
(2D+f1 nn (JA‘ijArB‘ﬁ) 15 (2D+i nn o8

Hence the proposition follows.
The following result is an analogue of Propositiof 2.2Z.1B for the case wineG is
(n=2  1)-regular with n =0 (mod 4) and jAY = n=2 = jBY.

Proposition  2.2.4. Let G be an(n=2 1)-regular graph on n vertices with
n=0 (mod 4). Let A%, B?be a partition of V(G) with jAY = n=2 = jBY. Then

es(A’nX;BY es(X;BY j Xj(iXj 1)
for every vertex setX A% Moreover, ( G[A%B9) es(A%B9=2.
Proof. For everyv 2 A% we have
ds(v;BY=n=2 1 ds(v;A)=jAY 1 dg(v;A%)= ds(v;AY:

By summing over all v 2 A% we obtain |

ec(A%BY=2e(AY) 2 X d=(x; A9 X
G ’ G G\ 2
X x2X

=2 ds(xBY j Xj(Xj 1)

X2 X
=2es(X;B Y j Xj(Xj 1)
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Therefore,
ec(A°nX;B9Y = es(A%BY) es(X;BY es(X;BY j Xj({Xj 1)
In particular, this implies that for each vertex x 2 A°we haveeg (A°nfxg; B9

es(fxg;BY = ds(x;B9 and so s (x;BY)  es(A%BY9. By symmetry, for any
y 2 BOwe have 21(y; A9 eg(A%B9. Therefore, ( GI[A%BY) eg(A%BY=2.

2.2.2. Frameworks. Throughout this chapter, we will consider partitions
into sets A and B of equal size (which induce “near-cliques’) as well as “excep-
tional sets' Ag and Bgy. The following de nition formalizes this. Given a graph G,
we say that (G;A; Ag;B;By) is an ("o; K )-framework if the following holds, where
A%:= Apg[ A,B%:= Bog[ B andn := jV(G)j:

(FR1) A;Ao;B;Bg forms a partition of V(G).

(FR2) eA%B9 "gn2.

(FR3) jAj = jBj is divisible by K, jAgj j Boj and jAgj + jBoj  "on.

(FR4) If v2 A then d(v;B% <" gn and if v 2 B then d(v; A% <" on.
We often write Vo for Ag [ B and think of the vertices in Vp as “exceptional
vertices'. Also, whenever G;A;Ag;B;By) is an ("o; K)-framework, we will write
A%:= Ag[ A,B%:= Bg[ B.

Proposition 2.2.5 Let 0< 1=n ";1=K land"ex "o 1. Let G be
a graph onn vertices with (G)= D n 2bn=4c 1thatis "¢-close to the union
of two disjoint copies ofK ,=,. Then there is a partition A; Ap; B;B o of V(G) such
that (G;A;Ag;B;By) is an ("o; K )-framework, d(v; A% d(v)=2 for all v2 A°and
d(v;B9 d(v)=2for all v2 B°

Proof. Write " = "¢. Since G is "-close to the union of two disjoint copies
of K=, there exists a partition A% B% of V(G) such that jA°] = bn=2c and
e(A%%B%  "n2 If there exists a vertexv 2 A%such that d(v;A% < d(v;B9,
then we movev to B% We still denote the vertex classes thus obtained byA%
and B Similarly, if there exists a vertex v 2 B%such that d(v;B% < d(v; A%,
then we movev to A% We repeat this process untild(v; A%  d(v;B% for all
v 2 A%and d(v;B%  d(v;A% for all v 2 B% Note that this process must
terminate since at each step the value ole(A% B% decreases. LetA%B° denote
the resulting partition. By relabeling the classes if necessary we magassume that
jAY j BY. By construction, e A%B9  e(A%%B%  "n? and so (FR2) holds.
Suppose thatjBg < (1 5")n=2. Then at some stage in the process we have that
jB%9 =(1 5")n=2. But then by Proposition E.21J(i),

eA%B%Y (D jBY+1)jB%>"n?

a contradiction to the de nition of "-closeness (as the number of edges between the
partition classes has not increased while moving the vertices). Hemachb‘i i BY

5")n=2. Let B§ be the set of verticesvpin B9 such that d(v; A9 . Since
MjBY e(A%BY "n? we havejB] ™. Note that
2.2.2) BYiBY @ syn=2 P Pon=
Similarlx, let A be the set of verticesv in A° sucB that d(v; B9 Py Thus,

jASj ™ andjAg j AJj n=2 j AJj (1 2 ")n=2. Let m be the largest
integer such that Km j AG j ASj;jBY j BYj. Let A and B be Km -subsets of
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A°nAS and B°n B respectively. SetAg := A°nA and By := Br?n B. Note that
@.2.2) and its analogue forA° together imply that jAgj+ jBoj 3 ™M +2K  "gn.
Therefore, (G; A; Ao;B;Byg) is an ("o; K )-framework.

2.3. Exceptional Systems and  (K;m;" o)-Partitions

The de nitions and observations in this section will enable us to ‘redue' the
problem of nding Hamilton cycles in G to that of nding suitable pairs Ca, Cg
of cycles with V(Ca) = A and V(Cg) = B. In particular, they will enable us to
“ignore' the exceptional setVy = Ag [ Bo. Roughly speaking, for each Hamilton
cycle we seek, we nd a certain path systeml covering Vy (called an exceptional
system). From this, we derive a set] of edges whose endvertices lie iA [ B by
replacing paths ofJ with " ctive edges' in a suitable way. We can then work with
J instead of J when constructing our Hamilton cycles (see Propositiori 2.3]1 and
the explanation preceding it).

Suppose thatA;Ag;B; B forms a partition of a vertex set V of sizen such
that jAj = jBj. Let Vp := Ag[ Bo. An exceptional coverJ is a graph which satis es
the following properties:

(EC1) J is a path system with\V, V(J) V.

(EC2) dj(v)=2forevery v2 Vpandd;(v) 1foreveryv2 V(J)nV.

(EC3) e;(A);e;(B) =0.
We say that J is an exceptional system with parametet'y, or an ES for short, if J
satis es the following properties:

(ES1) J is an exceptional cover.
(ES2) One of the following is satis ed:
(HES) The number of AB -paths in J is even and positive. In this case we
say J is a Hamilton exceptional system or HES for short.
(MES) e;(A%B9 = 0. In this case we sayJ is a matching exceptional
system or MES for short.
(ES3) J contains at most"™ "on AB -paths.

Note that by de nition, every AB -path in J is maximal. So the number of AB -
paths in J is the number of genuine “connections' betwee® and B (and thus
between A and B9. If we want to extend J into a Hamilton cycle using only
edges induced byA and edges induced byB, this nhumber clearly has to be even
and positive. Hamilton exceptional systems will always be extended ito Hamilton
cycles and matching exceptional systems will always be extended iottwo disjoint
even cycles which together span all vertices (and thus consist ofso edge-disjoint
perfect matchings).

Since each maximal path inJ has endpoints inA [ B and internal vertices in
Vo, an exceptional systemJ naturally induces a matching J,5 on A[ B. More

of Pi, then we dene J,g = fXjyi @i *%. Thus &,, (A;B) is equal to the
number of AB -paths in J. In particular, if J is a matching exceptional system,
thene;,, (A;B)=0.

Xi 2 Aandy; 2 B. Dene

Jp = Jag [A][f X2 aX2i 01 1 "g and Jg = Jag [BIIF Yaivair 01 0 g
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Ao Bo Ao Bo Ag Bo

® ® ® ®

A B A B A B
@ J (0) Jng (© J

Figure 2.3.1. The thick lines illustrate the edges ofJ, J,; and
J respectively.

(with indices considered modulo 2). Let J := J, + Jg, see Figure[Z31l. Note
that J is the union of one matching induced byA and another onB, and e(J ) =
e(Jg )- Moreover, by (EC2) we have
(2.3.2) o3 )= ens) | Voi+ &(A%BY 2P on:
We will call the edges inJ ctive edges. Note that if J; and J, are two edge-
disjoint exceptional systems, thenJ; and J, may not be edge-disjoint. However,
we will always view ctive edges as being distinct from each other and fom the
edges in other graphs. So in particular, wheneved; and J, are two exceptional
systems, we will viewJ,; and J, as being edge-disjoint.

We say that a path P is consistent with J, if P contains J, and (there is an

order. In a similar way we de ne when a cycle is consistent withJ, or Jg .

The next result shows that if J is a Hamilton exceptional system andCa ; Cg
are two Hamilton cycles onA and B respectively which are consistent withJ, and
Jg, then the graph obtained from Cy + Cg by replacingJ = J, + Jg with J
is a Hamilton cycle onV which contains J, see Figure[Z.31l. When choosing our
Hamilton cycles, this property will enable us ignore all the vertices inVp and to
consider the (almost complete) graphs induced byA and by B instead. Similarly,
if J is a matching exceptional system and bothjA9 and jBY are even, then the
graph obtained from Cp + Cg by replacingJ with J is the edge-disjoint union of
two perfect matchings onV.

Proposition  2.3.1 Suppose thatA; Ag; B; B forms a partition of a vertex set
V. Let J be an exceptional system. Le€C, and Cg be two cycles such that

Ca is a Hamilton cycle on A that is consistent with J, ;
Cg is a Hamilton cycle on B that is consistent with Jg .

Then the following assertions hold.

(i) If J is a Hamilton exceptional system, therCay+ Cg J +J is a Hamilton
cycle onV.

(iiy If J is a matching exceptional system, theitC, + Cg J + J is the union
of a Hamilton cycle on A® and a Hamilton cycle onBP°. In particular, if
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both jAY and jBY are even, thenCa + Cg  J + J is the union of two
edge-disjoint perfect matchings onv.

Proof. Suppose thatJ is a Hamilton exceptional system. Letxiys;:::;X2 Y2 be
an enumeration of the edges ofl .5z [A;B] with x; 2 A andy; 2 B and such that
Jp = I [AIlf X2i 1x2i 11 1 "gandJg = Jag [B][f Yaiyeier 11 1 Q. Let
P{;:::;PA bethe pathsinCa f Xz 1X2i :1 i °g. SinceCy is consistent with
J,, We may assume thatPiA is a path from x5 2 to xg 1 foralli ~. Similarly,
let PlB ;::0;PB bethe paths inCg f yaiyai1 :1 i "g. Again, we may assume
that PiB is a path from yy; 1 to yy for all i *. Dene C to be the 2-regular

and y, X, . Together with (HES), the construction implies that C is a Hamilton
cycleonA[ BandC =Ca+Cg J +J,g. ThusC:=C Jy,g +Jisa
Hamilton cycle on V. SinceC = Co + Cg  J + J, (i) holds.

The proof of (ii) is similar to that of (i). Indeed, the previous argument shows
that C is the union of a Hamilton cycle onA and a Hamilton cycle onB. (MES)
now implies that C is the union of a Hamilton cycle onA°® and one onB?,

In general, we construct an exceptional system by rst choosingan exceptional
system candidate (de ned below) and then extending it to an excefional system.
More precisely, suppose thatA; Ag; B; B forms a partition of a vertex set V. Let
Vo := Ag[ Bo. A graph F is called anexceptional system candidate with parameter
"o, Or an ESC for short, if F satis es the following properties:

(ESC1) F is a path systemwithVy V(F) V and such thater(A);er(B)=0.

(ESC2) dr (v) 2 for 8' v2Voandde(v)=1forall v2 V(F)nV.

(ESC3) & (A%B9 mon=2. In particular, jV(F)\ Aj;jV(F)\ Bj  2jVoj +
Ton=2.

(ESC4) One of the following holds:

(HESC) Let b(F) be the number of maximal paths in F with one endpoint in
Aland the other in B% Then b(F) is even andb(F) > 0. In this case
we say that F is a Hamilton exceptional system candidateor HESC
for short.

(MESC) e (A%B9% = 0. In this case, F is called a matching exceptional
system candidateor MESC for short.

Note that if d=(v) = 2 for all v 2 Vg, then F is an exceptional system. Also,
if F is a Hamilton exceptional system candidate withe(F) = 2, then F consists
of two independent A°B -edges. Moreover, note that (EC2) allows an exceptional
coverJ (and so also an exceptional systend) to contain vertices in A[ B which
are isolated inJ. However, (ESC2) does not allow for this in an exceptional system
candidate F.

Similarly to condition (HES), in (HESC) the parameter b(F) counts the number
of “connections' betweenA® and B®. In order to extend a Hamilton exceptional
system candidate into a Hamilton cycle without using any additional A’8 -edges,
it is clearly necessary thatb(F) is positive and even.

The next result shows that we can extend an exceptional systemandidate
into an exceptional system by adding suitableAgA- and BoB-edges. In the proof
of LemmalZ.6.1 we will use that ifG is aD-regular graph with D n=100 (say) and
(G;A;Ap;B;By)isan ("o; K )-framework with ( G[A%BY) D=2, then conditions
(i) and (ii) below are satis ed.
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Lemma 2.3.2 Suppose that0 < 1=n "y land thatn 2 N. Let G be a
graph onn vertices so that

(i) A;A0;B;Byo forms a partition of V(G) with jAg[ Boj "on.

@iy d(v;A) p“Bn for all v2 Ag and d(v;B) on for all v2 By.
Let F be an exceptional system candidate with parametérpy. Then there exists an
exceptional systemJ with parameter "o such thatF J G+ F and such that
every edge of] F lies in G[Ag; Al + G[By;B]. Moreover, if F is a Hamilton
exceptional system candidate, therd is a Hamilton exceptional system. Otherwise
J is a matching exceptional system.

Proof. For eachvertexv 2 Ag, we select 2 dr (v) edgesuv in G with u 2 AnV (F).
Sincedg (v; A) P mon j V(F)\ Aj+2jVj by (ESC3), these edges can be chosen
such that they have no common endpoint inA. Similarly, for each vertex v 2 By,
we select 2 dg (v) edgesuv in G with u 2 B nV(F). Again, these edges are chosen
such that they have no common endpoint inB. Let J be the graph obtained from
F by adding all these edges. Note that] is an exceptional cover such that every
edge of] F liesin G[AO;AA + G[Bo; B]. Furthermore, the number of AB -paths
in J is at most e (A% B9 on=2.

SupposeF is a Hamilton exceptional system candidate with parameter'y. Our
construction of J implies that the number of AB -paths in J equalsb(F). So (HES)
follows from (HESC). Now supposeF is a matching exceptional system candidate.
Then (MES) is satis ed since e; (A% B9 = e (A%B% =0 by (MESC). This proves
the lemma.

Let Kism 2 N and "y > 0. A (K;m;" g)-partition P of a setV of vertices

jBij=mforalli 1andjAo[ Boj "ojVj. The setsAj;:::;Ax andBg;:::;Bk
are called clusters of P and Ag, Bo are called exceptional sets We often write
Vo for Ag [ Bo and think of the vertices in Vo as “exceptional vertices'. Unless
stated otherwise, wheneverP is a (K;m;" g)-partition, we will denote the clusters

alsowrite A:= A;[ [ Ak,B:=Bi[ [ Bk,A%=A¢[ A;[ [ Ak and
BO:= Bo[Bl[ [ Bk .

Given a (K;m;" o)-partition P and 1 i;i® K, we say thatJ is an (i;i 9-
localized Hamilton exceptional systen{abbreviated as ;i 9-HES) if J is a Hamilton
exceptional system andV(J) Vo[ Ai[ Bjo. In a similar way, we de ne

(i;1 9-localized matching exceptional system§(i;i 9-MES),
(i;1 9-localized exceptional systemg(i;i 9-ES),
(i;1 9-localized Hamilton exceptional system candidate$(i; i 9-HESC),
(i;i 9-localized matching exceptional system candidate§i; i 9-MESC),
(i;1 9-localized exceptional system candidate§(i; i 9-ESC).
To make clear with which partition we are working, we sometimes also sathat J
is an (i;i 9-localized Hamilton exceptional system with respect toP etc.

2.4. Schemes and Exceptional Schemes

It will often be convenient to consider the “exceptional' and “non-egeptional’
part of a graph G separately. For this, we introduce a “scheme' (which corresponds
to the non-exceptional part and also incorporates a re ned parition of G) and an



2.4. SCHEMES AND EXCEPTIONAL SCHEMES 25

“exceptional scheme' (which corresponds to the exceptional paand also incorpo-
rates a re ned partition of G).

Given a graph G and a partition P of a vertex setV, we call (G;P) a (K;m;" ¢;
")-schemeif the following properties hold:

(Schl) P is a (K;m;" g)-partition of V.

(Sch2) V(G) = A[ B andes(A;B) =0.

(Sch3) Foralll i K andallv2 A we haved(v;A;) (1 ")m. Similarly,
foralll i K andallv2B we haved(v;B;) (1 ")m.

The next proposition shows that if (G; P) is a scheme andz®is obtained from G
by removing a small number of edges at each vertex, then@% P) is also a scheme

with slightly worse parameters. Its proof is immediate from the de nition of a
scheme.

Proposition  2.4.1 Suppose that0 < 1=m ;"% 1 and that K;m 2 N.
Let (G;P) be a(K;m;" o;")-scheme. LetGP be a spanning subgraph of such that
(G GY "Um. Then (G%P)is a(K;m;"o;" + "9-scheme.

Given a graph G on n vertices and a partition P of V(G) we call (G;P) a
(K;m;" o;")-exceptional schemeif the following properties are satis ed:
(ESchl) P is a (K;m;" g)-partition of V(G).
(ESch2) e(A); e(B) = 0.
(ESch3) If v2 A then d(v;B% <" on and if v2 B then d(v; A% <" on.
(ESch4) Forallv2 V(G)andall1 i K we haved(v;A;)=(d(v;A) "n)=K
and d(v;Bj) = (d(v;B) "n)=K.
(ESch5) Forall1 i;i® K we have

e(Ao;Ai) = (e(Ag;A) " maxfe(Ag; A); ng)=K;
e(Bo;Ai) =(e(Bo;A) "maxfe(Bo;A);ng)=K;
e(Ao;Bi) = (e(Ao;B) " maxfe(Ao;B);ng)=K;
e(Bo;Bi) =(e(Bp;B) "maxfe(Bp;B);ng)=K;
e(Ai;Bio) = (e(A;B) "maxfe(A;B);ng)=K?

Suppose that G; A; Ag; B;Bo) is an ("o; K )-framework. The next lemma shows
that there is a re nement of the vertex partition A;Ao;B;Bg of V(G) into a
(K;m;" o)-partition P such that (G[A] + G[B];P) is a scheme and G GJA]
G[B]; P) is an exceptional scheme.

Lemma 2.4.2 Suppose thaD< 1=n ", 1=K 1, that"y "1 "o 1,
that 1=n "5 and that n;K;m 2 N. Let G be a graph onn vertices such
that (G) (1 )n=2. Let (G;A;Ao;B;Bg) be an("o; K)-framework with jAj =
jBj = Km. Then there are partitions A1;:::;Ax of A andBy;:::;Bk of B which
satisfy the following properties:

(i) The partition P formed byAg, Bo and all these2K clusters is a(K; m;" ¢)-
partition of V(G).
(i) (G[A]+ G[B];P) is a (K;m;" o;"2)-scheme.
(i) (G GJA] GIB];P)is a (K;m;" o;"1)-exceptional scheme.
(iv) Forall v2 V(G) and all1 i K we havedg(v;Ai) = (ds(v;A)
"on)=K and dg(v;Bi) = (dg(v;B) "on)=K.
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Proof. De ne a new constant "8 such that "9 "3 "1:1=K. In order to
nd the required partitions Agj;:::;Ax of A and B;;:::;Bk of B we will apply
Lemmall4T twice, as follows.

In our rst application of Lemma L. 4. 7we let F := G, U := A and let Ag;Bo; B
play the roles of R1;R,; R3. Note that (G[A]) (G) j Aoj "on "on (with
room to spare) by (FR3), (FR4) and that d(a;R;) j Rjj "on forall a2 A and
j =1;2 by (FR3). Moreover, (FR4) implies that d(a;R3) d(a;B% "on for all
a2 A. Thus we can apply LemmaLZY with"o;"o and "9 playing the roles of";" ;

and ", to obtain a partition of A into K clustersAj;:::; Ak, each of sizem. Then
by Lemmall47(ii) forall v2 V(G)and all1 i K we have
(2.4.2) de(v;Ai) =(ds(v;A) "on)=K:

Moreover, LemmalL.4Y(v) implies that the rst two equalities in (ESch5) hold with
respect to"9 (for G and thus also forG  G[A] G[B]). Furthermore,

(2.4.2) ec(Ai;B)=(ec(A;B) "Imaxfn;es(A;B)g)=K:

For the second application of Lemmd1.4]7 we leF := G, U := B and letBg;Ag; A1;
::1; A play the roles of Ry;:::; Rk +2 . As before, (G[B]) "on by (FR3), (FR4)
andd(b;R)) j Rjj "onforallb2 B andj =1;2 by (FR3). Moreover, (FR4)
implies that d(b;R;) d(b;A%) "onforallb2 B andallj =3;:::;K +2. Thus
we can apply LemmalLZ4Jy with"o;"o and "? playing the roles of ";"; and ", to

obtain a partition of B into K clusters By;:::; Bk, each of sizem. Similarly as
before one can show that for allv2 V(G)and all1 i K we have
(2.4.3) ds(v;Bi)=(ds(v;B) "on)=K;

and that the third and the fourth equalities in (ESch5) hold with resp ect to "¢ (for
G and thus also forG  G[A] G[B]). Moreover, LemmalLZ.T(v) implies that for
all1 i K we have

ec(Ai;Bio) = (es(Ai;B) "Imaxfn;eg(Ai;B)g)=K
ezzn es(A;B) "Imaxfn;es(A;B)g K" {maxfn;es(Ai;B)g
= 3

(es(A;B) "i1maxfn;eg(A;B)g)=K?;

i.e. the last equality in (ESch5) holds too. Let P be the partition formed by

Let us now verify (ii). Clearly ( G[A]+ G[B]; P) satis es (Schl) and (Sch2). In
order to check (Sch3), letG; := G[A]+ G[B] and note that for all v 2 A and all
1 i K wehave

() (FR4)
de, (V; Aj) = dg(v; A) (ds(v;A) "on)=K ((G) j Apgj 2'on)=K
(FR3)
(1 )n=2 3'on)=K (1 ")m:
Similarly one can use [Z4.B) to show thatdg,(v;B;) (1 "2)m forall v2 B and
alll i K. This implies (Sch3) and thus (ii).
Note that (iv) follows from (Z4.I) and (24.3). Thus it remains to check (iii).
Clearly (G G[A] GIB];P) satis es (ESchl), (ESch2) and we have already ver-
i ed (ESch5). (ESch3) follows from (FR4) and (ESch4) follows from 2.4.7) and

@.4.3).
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2.5. Proof of Theorem 1.89 ]

An important tool in the proof of Theorem [.3.9]is Lemmal[Z.5.4, which guar-
antees an “approximate' Hamilton decomposition of a graphG, provided that G is
close to the union of two disjoint copies ofK -,. This yields the required num-
ber of Hamilton cycles for TheoremI.3D. As an “input’, Lemmd_Z.5]4 regues an
appropriate number of localized Hamilton exceptional systems.

To nd these, we proceed as follows: the next lemma (Lemm&2.511) qaran-
tees many edge-disjoint Hamilton exceptional systems in a given fraework. We
will apply it to “localized subgraphs' (obtained from LemmalZ5.2) of the original
graph to ensure that the exceptional systems guaranteed by lramal[Z5.] are also
localized. These can then be used as the required input for Lemma2%

Lemma 2.5.1 Suppose that0 < 1=n "y " 1land thatn; n 2
N. Let G be a graph onn vertices. Suppose that{G; A;Ag;B;Byg) is an ("o;K)-
framework which satis es the following conditions:

(@) ec(A%BY 2( + ")n.

(b) ec v(A%B9 n forall v2 Ag[ Bo.

(c) d(v) 2( +")nforall v2 Ap[ Bo.

(d) d(v;A% d(v;B% "n forall v2 Agandd(v;B% d(v;A9) "n for all

v 2 By.

Then there exist n edge-disjoint Hamilton exceptional systems with paramete"g
in G.

Proof.  First we will nd n edge-disjoint matchings of size 2 inG[A%BY. If
( GIA%BY) ( + "=2)n, then by (a) and Proposition [[LZ8 we can nd such
matchings. So suppose that (G[A%BY) ( + "=2)n and let v be a vertex such
that dgjaogq(v) ( + "=2)n. Thusv 2 Ag[ Bo by (FR4). By (b) there are n
edgese;;:::;en in G[A%BY . Sincedgacgq(v) ( + "=2)n, for eaches in
turn we can nd an edge €2 incident to v in G[A% B9 such that € is vertex-disjoint
from es and such that the eg are distinct for di erent indices s n . Then the
matchings consisting ofes and €2 are as required. Thus in both cases we can nd

Our aim is to extend eachM into a Hamilton exceptional system Jg such that
all these Jg are pairwise edge-disjoint. Initially, we setFs := Mg foralls n.
So eachF is a Hamilton exceptional system candidate. For eachs 2 Vj in turn,

in such a way that now eachFs is a Hamilton exceptional system candidate with
de, (V) = 2. Thus after we have carried out these assignments for al 2 Vo, every
Fs will be a Hamilton exceptional system with parameter".

So consider any 2 V. Without loss of generality we may assume thatv 2 Ag.
Moreover, by relabelling the Fs if necessary, we may assume that there exists an
integerO0 r n suchthatde (v)=1forall s randdg (v)=0forr<s n.
For eachs r our aim is to assign some edgews betweenv and A to Fs such that
ws 2 V (Fs) and such that the verticeswsg are distinct for dierent s r. To check
that such an assignment of edges is possible, note thaV (Fs) \ Aj;jV(Fs)\ Bj
2]Voj +2  3"on. Together with (c) and (d) this implies that

d(v;A) d(v;AO) j Aoj ( +"=2 "g)n>r + jV(Fs)\ Aj:

Thus for all s r we can assign an edgews to Fs as required.
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It remains to assign two edges atv to each of Fr.q1;:::;F, . We will do this
foreachs = r +1;:::; n in turn and for each suchs we will either assign two
edges betweerv and A to Fg or two edges betweery and B. (This will ensure that
we still have b(Fs) = 2, where b(Fs) is the number of vertex-disjoint A% %paths
in the path system Fs.) So suppose that for somer < s n we hqye already
assigned two edges at/ to each of Fr41;:::;Fs 1. Set Gg = G 5’3:1 Fso.
The fact that v has degree at most two in eachFso and (c) together imply that
ds. (V) ds(v) 2n  10'n. So eitherdg, (v;A% 5"9n or dg, (v;B9Y  5"on.
If the former holds then

de.(ViA)  do, (ViAY | Agj 4"on j V(Fs)\ Aj+2

and so we can assign two edgesv and vw® of G to Fs such that w;w®2 AnV (Fs).
Similarly if dg_ (v;B% 5"9n then we can assign two edgesw and vw®in Gs to

Fs such that w;w®2 B nV(Fs). This shows that to each of F;41 ;:::;F, we can
assign two suitable edges av.
Let Ji1;:::;J, be the graphs obtained after carrying out these assignments

for all v 2 V. Then the Js are pairwise edge-disjoint and it is easy to check that
eachJs is a Hamilton exceptional system with parameter”,. (Note that (ES2) and
(ES3) hold sinceb(Js) = 2 and so the number of AB -paths is two.)

The next lemma guarantees a decomposition of an exceptional scme (G; P)
into suitable “localized slices'G(i;i % whose edges are induced by, By and two
clusters of P. We will use it again in Chapter 3.

Lemma 2.5.2 Suppose that0 < 1=n "o " 1=K 1 and that
n;K;m 2 N. Let (G;P) be a(K;m;" o;")-exceptional scheme withiGj = n and
ec(Ao);es(Bo) = 0. Then G can be decomposed into edge-disjoint spanning sub-
graphsH (i;i9 and HYi;i 9 of G (for all i;i® K) such that the following properties
hold, whereG(i;i% := H(i;i%9+ HYi;i9:

(a1) Each H(i;i9 contains only AgA;-edges andBB;.-edges.

(a2) All edges ofHYi;i9 lie in G[Ag[ Ai;Bo[ Bio].

(a3) eHYi;i9) = (es(A%BY 4" maxfn;es(A%BYg)=K?.

(a4) dH o(i;i 0) (V) = ( dG[AO;B 0](V) 2"n):K2 for all v2 \o.

(as) do(iio(V) =(ds(v) 4'n)=K?2forall v2 V.

Proof. First we decomposeG into K 2 “random' edge-disjoint spanning subgraphs
G(i;i9 (one for all i;i® K) as follows:
Initially set V(G(i;i9) := V(G) and E(G(i;i9) := ; forall i;i® K.
Add all the A;Bjo-edges ofG to G(i;i9).
Choose a partition of E(Ag; Bo) into K ? setsU;;o (one for all i;i® K)
whose sizes are as equal as possible. Add the edgegjno to G(i;i 9.
Foralli K, choose a random partition ofE (Ag; Ai) into K setsUQ of
equal size (one for each® K) and add the edges inU3 to G(i;i9. (If
e(Ao; Aj) is not divisible by K, rstdistributeupto K 1 edges arbitrarily
among the U3 to achieve divisibility.) For all i® K proceed similarly to
distribute each edge inE (Bo; Bio) to G(i;i9 for somei K.
For all i° K, choose a random partition of E(Ag; Bjo) into K sets U2
of equal size (one for each  K) and add the edges inU®to G(i;i9.
(If e(Ao;Bjo) is not divisible by K, rst distribute up to K 1 edges
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arbitrarily among the U%to achieve divisibility.) For all i K proceed

similarly to distribute each edge in E(Bo;A;) to G(i;i 9 for somei® K.
Thus every edge ofG is added to precisely one of the subgraph&(i;i9. Set
H(i;19 = G(i;i9[AY + G(i;i 9B and HYi;i9 := G(i;i Y[A%BY. So conditions
(a1) and (ay) hold. Fix any i;i® K and setH := H(i;i% and H®:= HYi;i9. To
verify (a3), note that

e(H9) = eno(Ai;Bio) + &o(Ag; Bo) + ero(Ag; Bio) + eno(BosAj)
= ec(Ai;Bio) + e (Ao; Bo)=K? + eg(Ao; Bio)=K + eg(Bo;Ai)=K 3
_ ec(A;B)+ eg(Ao;Bo) + ec(Ag;B) + es(Bo;A) 3"maxfes(A%BY;ng 3
= 7
_ e(A%B9 4"maxfes(A%B9;ng.
= 7 :
Here the third equality follows from (ESchb).

To prove (as), suppose rst that v 2 Ag. If dg(v;Bjo) "n=K 2 then clearly
0 dyoiio(v) "n=K2+jVoj 2'n=K 2. Further by (ESch4) we havedg(v;B)
Kdg(v;Bio)+ "n = "n=K + "n: Sodg(v;B% 2'n. Together this shows that (a,)
is satis ed.

So assume thatd(;3 (v;Bio) "n=K 2. Proposition I.Z.4 implies that with prob-
ability atleast 1 e " (with room to spare) we have

(25.1) doiio(V;Bio) = (de(v;Bio) "n=2K)=K T=" (dg(v;B) 3'n=2)=K%
Since
Arogio(v) = do i o) (Vi Bio) + dgii 0y(Vs Bo) = dggisi oy (Vi Bijo)  "on

@50 (ds(viBY  2'n)=K?;

it follows that v satis es (a4). The argument forptrle case whenv 2 By is similar.
Thus (a4) holds with probability at least1 ne ". o

Similarly as (Z5.1) one can show that with probability at least 1 ne " we
have dgi; o (V; Ai) = (ds(V;A) 3'n=2)=K? for all v 2 Ag and da i o) (Vi Bio) =
(ds(v;B) 3'n=2)=K?forall v2 By. Together with the fact that eg(Ao); es(Bo) =
0 and (a4) this now implies (as).

The next lemma rst applies the previous one to construct localized sibgraphs
G(i;i9 and then applies LemmaZ5.1 to nd many Hamilton exceptional systans
within each of the localized slicesG(i;i 9. Altogether, this yields many localized
Hamilton exceptional systems inG.

Lemma 2.5.3 Suppose that0 < 1=n "0 " ; 1=K 1 and that
n;K;m; (1=4 )n=K? 2 N. Suppose that(G; A; A;B;B) is an ("o; K )-framework
with jGj = n, (G) n=2 and such thatdg(v;A% dg(v)=2 for all v 2 A® and
de(v;B9 dg(v)=2for all v2 B% Suppose thatP = fAg;Aq;:::; Ak ;Bo;B1;:::;
Bk g is a re nement of the partition A;Ag;B;Bg such that(G G[A] G[B];P) is
a (K;m;" o;")-exceptional scheme. Then there is a set of (1=4 )n edge-disjoint
Hamilton exceptional systems with parametet'y in G such that, for eachi;i® K,
J contains precisely(1=4  )n=K 2 (i;i 9-HES.
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Proof. Let =(1=4 )=K? and choose a new constant® such that "

"0 ; 1=K. Note that (FR3) implies that jA§ | BY. If jBY < n=2, then
Proposition Z22(i) implies that eg(A%B%9 2B (1 "o)n 3K2n (where
the second inequality follows from (FR3) and there is room to spare inthe nal
inequality). Since dgacg(v)  n=2 for every vertexv 2 V(G), it follows that
es v(A%BY (1=2 "g)n 3K?n=2.IfjBY = n=2, thenjAY = jBY and Propo-
sition Z.Z.1(i) implies that eg(A%B% j BY = n=2 2K?( + "9n. Moreover,
jAY = jBY together with the fact that (G) n=2also implies thatdgaogq(v) 1
for any vertex v 2 V(G). Henceeg (A%B9% n=2 1 3K?2n=2. Thus regard-
less of the size oB? we always have

(2.5.2) ec(A%BY  2K2( +"9Yn

and

(2.5.3) ec v(A%BY 3K?n=2 K2( +"9Yn foranyv2 V(G).

SetG = G G[A] G[B] GJAo] G[Bo]. Note that each vertexv 2 V, satis es
(2.5.4) ds (v) (1=2 "o)n 2K?Z( +"9Yn:

Moreover, both (Z5.2) and (Z5.3) also hold forG , and since G G[A] GIB];P)
is a (K;m;" o;")-exceptional scheme, G ;P) is also a K;m;" o;")-exceptional
scheme. Thus we can apply Lemma 2.5.2 t&G to obtain edge-disjoint span-
ning subgraphsH (i;i9, HYi;i% of G (for all i;i® K) which satisfy (a;){(as) of
LemmalZ5.2. SetG(i;i % := H(i;i9+ HYi;i9 forall i;i® K. We claim that each
G(i;i 9 satis es the following properties:

(i) All edges of G(i;i 9 lie iB G [Ao[ Ai[ Bo[ Bijol].

(i) ec(iio(A%BY) 2( + " )n

(i) eg(io v(A%BY  n forall v2 V.

(iv) dG(i;i 0) (v) 2( + ™n forall Vp2 Vo.

(V) dG(i;i 0) (V;AO) dG(i;i 0) (V; BO) "n for all v 2 Ag and dG(i;i 0) (V; B(b

dG(i;i 0) (V;AO) "n for all v2 Bo.

Indeed, (i) follows from (a;) and (az). To prove (ii), note that eg;; o (A%BY =
e(HYi;i9). Now apply (a3) and ([2.5.2). For (iii), note that (a ;) and ( G[A%BY)
n=2 imply that for all v 2 V,

dG(i;i O[ACB 0](V) = dH oiii 0) (V) (dG [ACB O] (V) +2"n )=K 2 (1=2 + 2")n=K 2:
If es(A%B9Y n, then (ag) implies that eg(iio(A%BY (1 4")n=K? n +
do(ii oacs q(v) and so (i) follows. If eg(A%B% <n, then for all v 2 Vo
ec(iio v(A%BY) = eHYii9)  diogiio(V)

(as);(aa)

EZ53)
(ec v(AO; BO) 6"[1):K2 n:
So (iii) follows again. (iv) follows from (as) and (Z5.4). For (v), note that (a ;) and
(a2) imply that for v 2 Ay,
(as);(as) " 2
da (i 0 (V;AY) = dg i (V) o oy (V) (ds(v;A)  6'n)=K
(as)
(dG (V; BO) 6"n):K2 dH o(i;i 9) (V) 8'n = dG(i;i 0) (V; B% 8'n:

The second part of (v) follows similarly.
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Note that each (G(i;i9; A;Ag; B;Byg) is an ("o; K )-framework since this hqglds
for (G;A;Aq;B;Byg). Thus for all i;i® K we can apply LemmalZ51l (with™ ™
playing the role of ") to the ("o; K )-framework (G(i;i 9;A; Ao; B;By) in order to
obtain n edge-disjoint Hamilton exceptional systems with parameter'q in G(i; i 9.
By (i), we may delete any vertices outsideAq [ Ai[ Bo[ Bjo from these systems
without a ecting their edges. So each of these Hamilton exceptionhsystems is in
fact an (i;i 9-HES. The setJ consisting of all theseK 2 n Hamilton exceptional
systems is as required in the lemma.

Given the appropriate setJ of localized Hamilton exceptional systems, the
next lemma guarantees a set ofJj edge-disjoint Hamilton cycles in a graphG
such that each of them contains one exceptional system frord , provided that G is
su ciently close to the union of two disjoint copies of K,-». The lemma also allows
J to contain matching exceptional systems (each of these will then b extended into
a perfect matching of G). Note that with a suitable J and an appropriate choice of
parameters we can achieve that the “uncovered' graph has dengi2 = 2=K 1,
i.e. we do have an approximate decomposition. We defer the proof dhe lemma
until Chapter §]

Lemma 2.5.4 Suppose that0 < 1=n "y 1=K landO 1,
wheren;K 2 N and K is odd. Suppose thatG is a graph onn vertices andP is
a (K;m;" g)-partition of V(G). Furthermore, suppose that the following conditions
hold:

@ dv;A)=@0 4 4=K)mandd(w;Bij)=(1 4 4=K)mforallv2A,

w2Bandl i K.

(b) There is a setJ which consists of at most(1=4 )n edge-disjoint
exceptional systems with parametefy in G.

(c) J has a partition into K2 setsJj;o (one forall 1 i;i® K) such that

eachJ;; o consists of preciselyjJj =K 2 (i;i 9-ES with respect toP.
(d) If J contains matching exceptional systems thepAY = jBY is even.

the following properties:

For each Hs there is someJs 2J such thatJs Hs.

If Js is a Hamilton exceptional system, therH is a Hamilton cycle of G.
If Js is a matching exceptional system, themH is the edge-disjoint union
of two perfect matchings inG.

Matching exceptional systems do no play any role in the current apfication to
prove Theorem[1.39, but they will occur when we use Lemm&2.5.4 agaiim the
proof of Theorem[1.3.3.

To prove Theorem[I1.3.9, we rst apply Lemmal[Z5.3 to nd suitable localized
Hamilton exceptional systems and then apply LemmdZ.5M to transfom these into
Hamilton cycles.

Proof of Theorem 1.8.9. 1 Choose new constantS'ey, "o, "1, "2, and an odd
number K 2 N such that

1:n0 "ex "O ; 1 "2 1=K "
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Further, we may assume that" 1. Letn ng and let G be any graph onn
vertices such that (G) n=2 and such that G is "¢x-close to two disjoint copies of
K n-2. By modifying  slightly, we may assume that (=4  )n=K? 2 N.

Apply Proposition E2Z.5lto obtain a partition A;Ag;B;Bo of V(G) such that
such that (G;A;Ag;B;By) is an ("o; K)-framework, d(v;A%  d(v)=2 for all v 2
AC and d(v;B9 d(v)=2 for all v 2 B% Let m := jAj=K = jBj=K. Ap-
ply Lemma 242 with "y playing the role of to obtain partitions Ag;:::;Ag

(GJA]+ G[B];P) is a (K;m;" o;"2)-scheme.

(G G[A] G[B];P)is a (K;m;" o;"1)-exceptional scheme.
Apply Lemma 2.5.3 to obtain a setJ of (1=4  )n edge-disjoint Hamilton excep-
tional systems with parameter "o in G such that, for eachi;i® K, J contains
precisely (1=4  )n=K? (i;i 9-HES. Finally, our aim is to apply Lemma 2.5.4 with

:=1=K and := 1=K. So let us check that conditions (a){(c) of LemmalZ.5.4

hold (note that (d) is not relevant). Clearly (b) and (c) hold. To ver ify (a) note
that (Sch3) implies that for all v 2 A we haved(v;A;) (1 "2)m (1 1=K)m
@ 4 4=K)m. Similarly, for all w2 B we haved(w;B;j) (1 4 4=K)m.
So we can apply Lemmd2.5}4 to obtaindj (1=4 ")n edge-disjoint Hamilton
cycles.

2.6. Eliminating the Edges inside Ag and Bg

This and the remaining sections of the chapter are all devoted to tle proof of
Theorem[1.3:3. Suppose thatG is a D-regular graph and G; A;Ag;B;Bg) is an
"o0; K)-framework with ( G[A%BY) D=2. The aim of this section is to construct
a small number of Hamilton cycles (and perfect matchings if appropiate) which
together cover all the edges ofG[Ag] and G[By]. The rst step is to construct a
small number of exceptional systems containing all the edges @&[A] and G[Bo].

Lemma 2.6.1 Suppose thatO< 1=n " 1 and that n; n;D;K 2 N.
Let G be aD-regular graph onn vertices withD n  2bn=4c 1. Suppose that
(G;A;Ap;B;By) is an ("o; K )-framework with ( G[A%BY) D=2. Let

(
maxf0;D eg(A%BO9g 2n +1 if D is odd,
= and n .= . .
2 2n if D is even.

Let wi and w; be vertices ofG such thatdgjaog oq(W1) dgpacso(W2)  dgjacs (V)

for all v 2 V(G) nfwp;w,g. Then there exist n + 1 edge-disjoint subgraphs
Jo;J1;:::; 3y of G which cover all the edges InG[Ag] + G[Bo] and satisfy the
following properties:

(i) If D is odd, thenJg is a perfect matching in G with e;,(A%B% 1. If D
is even, thenJg is empty.

(i) Js is a matching exceptional system with parametefy for all 1 s
minf’; n g.

(i) Js is a Hamilton exceptional system with parameter”y; and such that
e (A%B9 =2 forall "<s n.
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(iv) Let J be the union of all theJs and let H := G[A%B9 J . Then
e; (A%B9 n andd;(v) = n forall v2 V. Moreover, e(H ) is
even.

(V) dy (w1) (D n)=2. Furthermore, if D = n=2 1 then dy (wy)
(D n)=22

(vi) If eg(A%BY<D,theneH ) D n and ( H) eH )=2.

As indicated in Section[2.1, the main proof of Theoreni_1.3]13 splits into thee
cases: (a) the non-critical case witheg (A% B9 D, (b) the critical case with
ecs(A%B9% D and (c) the case with eg(A%B% < D. The formal de nition of
“critical' and a more detailed discussion of the di erent cases is given irsection2.7.

The above lemma will be used in all three cases. In these dierent c&s, we
will need that the Hamilton cycles or perfect matchings produced bythe lemma
use appropriate edges betweed® and B (and thus the leftover' H has suitable
properties). In particular, (v) will ensure that we can apply Lemma [2.7.4 in case
(b). Similarly, (vi) will ensure that we can apply Lemma E.7.5]in case (c). (ii) and
(vi) will only be relevant in case (c).

Proof of Lemma 2611 SetH := G[A%BY and W := fw;;w,g. First, we
construct Jg. If D is even, then (i) is trivial, so we may assume thatD is odd (and
son is even). We will construct Jo such that it satis es (i) as well as the following
additional property:

(i9 If wiw, is an edge inG[AY + G[BY, then wyw, lies in Jo. Moreover,
e, (A%B9 =1if jAY is odd ande;,(A%B9 =0 if jAY is even.

Suppose rst that jAY is even (and sojBY is even as well). Since our assumptions
imply that (G[A?9) d D=2e 3"¢n, there exists a matchingM 2 in G[AY of size at
most jAoj+2 covering all the vertices of Ag[ (A% W). Moreover, if w;w, is an edge
in G[AY, then we can ensure thatw;w, 2 M 2. Note that A%:= A°nv (M) is a
subset ofA and jA% is even. (FR4) implies that (G[A%]) D "on 2(jAgj+2)
jA%=2. Therefore, there exists a perfect matchingM 2°in G[A% (e.g. by Dirac's
theorem). Hence,M := M2 + M {Cis a perfect matching in G[A9. Similarly, there
is a perfect matchingM g in G[B Y such that if w;ws, is an edge inG[B Y], then w;w,
isin Mg. SetJg:= Ma + M.

Next assume thatjAY is odd. If D b n=2c, then Proposition 2.2.3 implies that
eH W)>0.1fD=n=2 1,thenn=0 (mod4)andsojBY n=2 1 since
jAY is odd. Together with Proposition [Z.2Z(ii) this implies that e(H) n=2 1.
Since in this case we also have that (H) b D=2c = n=4 1, it follows that
eH W) eH) 2(H)> 0. Thus in both cases there exists an edgab in
H W with a2 A%and b2 B° Note that both jA°n fagj and jB°n fbgj are even.
Moreover, (G[A%fag]) d D=2e 1 3"'gnand (G[B°nfbg]) d D=2e 1 3"on.
Thus we can argue as in the case whejAY is even to nd perfect matchings M a
and Mg in G[A°nfag] and G[B°n fbg] respectively such that if wyw; is an edge in
G[AO_|+ G[Bo_l then wiw, 2 Ma + Mp. Setdg:= Mpa + Mg + ahb

This completes the construction ofJg. (If D is even we setly = ;.) So (i)
and (i% hold. Let G°:= G JpandH?:= GYA%BY. SincejAoj+jBoj "on n,
Vizing's theorem implies that we can decomposeG9Ay] + GYBo] into n edge-
disjoint (possibly empty) matchings My;:::;M , . By relabeling these matchings
if necessary, we may assume that ifvy;w, 2 Ego(Ag) or wiw, 2 Ego(Bo), then
wiw, 2 M.
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Case 1: ¢(H) D.

Note that in this case " =0 and eH% D 1. Foreachs=1;:::;n in turn

we will extend M into a Hamilton exceptional system Js with e;_(A%B% =2 and

such that Js and Js are edge-disjoint for all 0 s®<'s. In order to do this, we
will rst extend Mg into a Hamilton exceptional system candidate Fs by adding
two independent A%B %-edgesf s and f 2. We will then use LemmalZ3.2 to extendFs

into a Hamilton exceptional system Js. For all swith1 s n, we will choose
these edges and sets to satisfy the following:

( 1) Js is a Hamilton exceptional system with parameter "¢ such that
er(AO; BO) =2.

( 2) Suppose thatdy (w1) 2n . Then w; is an endpoint of f.

( 3) Suppose thatdy (W) 2n . Then w, is an endpoint of f 2, unless both
s=1 and WiWo 2 M.

( 4) Js contains Ms as well as the edgeds and f2. Js Ms fs f2
only contains ApA-edges andByB-edges ofG. Js is edge-disjoint from

First suppose thatw;w, 2 M 1. We construct J; satisfying the above. Our assump-
tion means that wiw; is an edge inG[A9+ G[BY, soD is even (or elsew;w, 2 Jg
by (i9). Moreover, H°= H and D b n=2c by [L31)) and the fact that D is even.
Together with Proposition 2223 this implies that e(H® W)= eH W) > 0. Pick
an AB%edgefin H® W. Let U; be the connected component irM; + f 2 con-
taining f2. SojU;j 4andw; 2 U;. If dy(wy) 2n, wecan nd an AB%edgef;
such that w; is one endpoint off 1 and the other endpoint of f ; does not lie inU;. If
dy (w1) < 2n, then the choice ofw; implies that ( H) 2n . So there exists an
ABCedgef,in H® V(U))=H V(U;)sincee(H V(Up) eH) | Uj( H)
eH) 8n> 0. SetF;:= M+ f;+ 2 Note that f, satises ( ,) and that F; is
a Hamilton exceptional system candidate wither, (A% B9 = 2. By Lemma 3.2,
we can extendF; into a Hamilton exceptional system J; with parameter "¢ in G
such that F; J; and such thatJ; F; only contains ApgA-edges andBoB -edges
of G.

Next, suppose that for some 1 s n we have already constru'gtedJo; i
Js 1 satisfying ( 1){( 4). Sos 2 if wyw, 2 My. Let Gs = G j”:SMj

jszol J; and Hs := Gs[A%BY. Note that

(2.6.1) eHs) eH) 2(s 1) 1 D 2n:

Moreover, note that dg_(v;A) de(v;A) 2(s 1) 1 P "on for all v2 Ay and
ds. (v; B) "on for all v2 By.

We rst pick the edge f Qas follows. Ifdy (w2) 2n ,thendy, (Wp)  dy (Wp)
s n. So we can pick anAB%edgef ? of Hs such that w, is an endpoint of f
and the connected componentJs of M + f2 containing f 2 does not containw;.. If
dy (W2) < 2n , then pick an A’B%edgef 0 of Hs such that the connected component
Us of Mg+ f O containing f 2 does not containw;. To see that such an edge exists, note
that in this case the neighbourw{ of w; in Mg satises dy (W)  dy (w2) < 2n
(if w? exists) and that (Z6.1) implies that e(Hs) D 2n >D= 2+2n
dy (wy) +2 n . Observe that in both casesUsj 4.

We now pick the edgef s as follows. Ifdy (w1) 2n,thendy, (wi)  dy(wy)
s n. Sowe can nd an A®B%edgefs of Hs such that w; is one endpoint off s
and the other endpoint of f s does notlie inUs. If dy (w1) < 2n,then ( H) 2n
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and thus (Z.6.1) implies that
eHs V(Us) D 2n 2njUsj L

So there exists anA®B %edgefs in Hs  V(Us).

In all cases the edge$s and f 2 satisfy ( ;) and ( 3). SetFs:= Mg+ fg+ f2.
Clearly, Fsisa Hapmilton exceptional system candidate %vitheps (A%B% = 2. Recall
that dg,(v;A) "on for all v2 Ap and dg, (v;B) "on for all v 2 Bg. Thus
by Lemma[Z3.2, we can extendFs into a Hamilton exceptional system Js with
parameter "o such that Fs Js Gg + Fs and such that Js Fs only contains

( 1){( 4). So (iii) holds. Note (ii) and (vi) are vacuously true.

To verify (iv), recallthat J = Jo[ [ Jn, andH = G[A%BY J . Forall
1 s n we havee; (A%B9 = 2 by (iii). Moreover, (i) and (i 9 together imply
that e;, (A% B9 = 1if and only if both jAY and D are odd. Therefore,e; (A% B9
n . Moreover, sincee(H )= e(H) 2n e;,(A%B9, Proposition ZZZ2(i) implies
that e(H ) is even. Thus (iv) holds.

To verify (v), note that if dy (wi) 2n thenclearlydy (wi) 2n (D
n)=2. 1fdy(w1) 2n then( 2)impliesthat dy jaogo(wi)=1foralll s n.
Hencedy (w;) b D=2c n =(D n )=2. Now suppose thatD = n=2 1and so
n =0 (mod 4) by (L.31). Thus D is odd and so (P) implies that if wyw, is an edge
in G[A9 + G[BY, then wiw, 2 Jg. In particular wyw, 2 M. (Note that if wiw, 2
G[A%BY, then wiw, is not contained in M, either sinceM;  G[Ag] + G[Bo].)
Thus in the case whendy (w2)  2n, ( 3) implies that dj jaogo(W2) = 1 for all
1 s n.Hencedy (wp) bD=2c n =(D n)=2. Ifdy(w2) 2n then
clearlydy (w2) 2n (D n)=2. Therefore (v) holds.

Case 2: ¢(H)<D

Together with Proposition P.2.((ii) this implies that n =0 (mod 4), D = n=2 1
and jAY = n=2 = jBY. SoD is odd andjAY is even. In particular, by Propo-
sition Z2Z2(i) e(H) is even and by (i) and (i% Jo is a perfect matching with
e;,(A%B9 = 0. Moreover, Proposition 2224 implies that ( H)  e(H)=2 in
this case (recall thatH := G[A%BY).

Note that each M ¢ is a matching exceptional system candidate. By Lemma2.3]2,
foreachl s minf’; n ginturn, we can extend Mg into a matching exceptional
systemJs with parameter "¢ in G°= G Jo such that Mg Js, and such that Js
and Jso are edge-disjoint whenever 1 s®<s  minf’; n g. Thus (i) holds.

If n,theneH) D 2n =D n +1. Butsince e¢H) is even and
D n +1is odd this means that e(H) D n. Thus ( H) eH)=2
(D n)=2. Moreover,d; (V) =2 n + dj,(v) = n forall v2 Vy. Hence (iv){(vi)
hold sinceH = H. ((iii) is vacuously true.)

Therefore, we may assume that < n . Using a similar argument as in Case 1,
forall " <s n we can extend the matchingsMs into edge-disjoint Hamil-
ton exceptional systemsJg satisfying ( 1){( 4) and which are edge-disjoint from
Jo;:::;J. Indeed, suppose that for® < s n we have already constructed
Jos1; i ds 1 satisfying ( 1){( 4). (Note that (i 9 implies that the exception
in ( 3) is not relevant.) The fact that D is odd and e(H) is even implies that
"=(D eMH) 1)=2. Then de ning Hs analogously to Case 1, we have

eHs) eH) 2(s 1 )=D 2 D 2n;
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where in the rst inequality we use that e;,(A%B% =0 by (i 9. So the analogue
of (2.6.1) holds. Hence we can proceed exactly as in Case 1 to constt Js (the
remaining calculations go through as before). Thus (ii) holds.

To verify (iv), note that e; (A%B9=2(n ). So

26.2) eH )=eH) 2(n H)=¢H) 2n +(D eH) 1)=D n:

In particular, e(H ) is even ande; (A%B% = e(H) eH )< n . So (iv) holds.
In order to verify (vi), recall that ( H) e(H)=2. Moreover, note that ( ;)
implies that if dy (w1) 2n, then dj jaogo(wi) =1forall “<s n . Hence

dy (W)= du(w1) (n )=(C H) n+~
eH)=2 n +(D eH) 1=2=(D n)=2%E? g )=

Similarly if dy (ws2) 2n, then dy (wy) e(H )=2. If dy(wy) 2n, then
dqy (w1) 2n  e(H )=2 by (Z6.2) and the analogue also holds fow,. Thus in
all casesdy (w1);dy (Ww2) e(H )=2. Our choice ofw; and w, implies that for all
v2 V(G) nW we have

dq(v) (e(H)+3)=3 (D+ 3)=3(2:§2] e(H )=2
Therefore, (H ) e(H )=2. Together with (£26.2) this implies (vi) and thus (v).

The next lemma implies that each of the exceptional systemsg guaranteed by
LemmalZ.6.1 can be extended into a Hamilton cycle (ifls is a Hamilton exceptional
system) or into two perfect matchings (if Js is a matching exceptional system and
both jAY and jBY are even).

Lemma 2.6.2 Suppose thaD< 1=n " landthatn; n;K 2 N. Sup-
pose that(G;A; Ao; B;Byg) is an ("o; K )-framework such that (G[A]) 4jAj=5 and
(G[B]) 4jBj=b. Let J1;:::;J be exceptional systems with parametety. Sup-
pose thatG and J;;:::;Jn arepoa|rW|se edge-disjoint. Then there are edge-disjoint

subgraphsHy;:::;Hy in G+ _; Js which satisfy the following properties:
(i) Js HsandE(Hs Js) E(G[A]+G[B])foralll s n.
(i) If Js is a Hamilton exceptional system, thenHs is a Hamilton cycle on
V(G).
(i) If Jg is a matching exceptional system, themds is an union of a Hamilton
cycle onA%= A[ Ag and a Hamilton cycle onB°= B [ Bo.

Proof. Recall that, given an exceptional systemJ, we have de ned matchingsJ,,
Jg andJ = J,+Jg in Section[Z3. We will write Js, = (Js), andJgg = (Js)g -
Foreachs n inturn, we will nd a subgraph H of G[A]+ G[B]+ J, containing
J; such that Hy is edge-disjoint fromH;:::;H, ;. Moreover,H will be the union
of two cycIesCA and Cg such that Ca is a Hamilton cycle onA WhICh is consistent
with Jg., and Cg is a Hamilton cycle on B which is consistent with J 5 . (Recall
from Section[Z.3 that we always view di erent J; as being edge-disjoint from each

other. So askingH to be edge-disjoint from Hl; g H.S , is the same as asking
H, J, to be edge-disjoint fromH; J;;:::;Hg 1 Jg 1)
Suppose that for some 1 s n we have already foundH;:::;H, ;. For

ali<s,letH;j == H, J +Ji. Let Gs .= G (Hi[ [ Hs 1). First we
construct C as follows. Recall from [2.3.11) thatJ., is a matching of size at most
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2p "on. Note that (Gs[A]) (Gl[)A]) 2s  (4=5 5n)jAj. So we can greedily
nd a path Pa of length at most 6™ "on in Gs[A]+ Jg., such that P, is consistent
with Jg., . Let u and v denote the endpoints ofPA . Let G4 be the graph obtained
from Gs[A] V(Pa) by adding a new vertexw whose neighbourhood is precisely
(NG, (u) \ Ng.(v)) nV(Pa). Note that (G%) | GAj=2 (with room to spare).
Thus G4 contains a Hamilton cycle C? by Dirac's theorem. But C2 corresponds
to a Hamilton cycle Ca of Gs[A] + Jg 4 that is consistent with Jg., . Similarly, we
can nd a Hamilton cycle Cg of Gs[B] + Jgp that is consistent with J. . Let

Foreachl s n wetakeHs:= Hy J + Js. Then (i) holds. Proposi-
tion 2231 implies (ii) and (iii).

By combining Lemmas[Z.6.1 and_Z.612 we obtain the following result, which
guarantees a set of edge-disjoint Hamilton cycles covering all edgeof G[A,] and
G[Bo].

Lemma 2.6.3 Suppose that0 < 1=n "o 1 and that D;n; (D
n)=2;K 2 N. Let G be aD-regular graph onn vertices withD n 2bn=4c 1.
Suppose that(G; A;Ag;B;Bo) is an ("o; K )-framework with ( G[A%B9) D=2.
Let w; and w; be (xed) vertices of G such thatdgaogo(W1)  dgacs o(W2)
dgaogo(v) for all v 2 V(G) nfwi;wyg. Then there exists a n -regular spanning
subgraphGy of G which satis es the following properties:

() GlAo]+ G[Bo] Go.

(i) es,(A%B9Y n andes c,(A%B9 is even.

(i) Go can be decomposed intdeg, (A% B%=2c Hamilton cycles and n
2beg, (A% B9=2c perfect matchings. Moreover, ifeg(A%BY% D, then
this decomposition of Gy usesbn= 2c Hamilton cycles and one perfect
matching if D is odd.

(iv) Let H = G[A%BY9 Gop. Thendy (wi) (D n)=2. Furthermore, if
D=n=2 1lthendy (w2) (D n)=2

(v) If eg(A%BY<D,then (H) eH)=2 (D n)=2

Proof. Let

... maxfo;D es(A%B9g and N = bn= 2c = (n 1)=2 if D is odd,

2 n=2 if D is even.

(The last equality holds since our assumption that © n )=22 N implies that D
is odd if and only if n is odd.) So*, and are asin LemmaZ&ll. Thus we can

there. Let G°be the graph obtained fromG[AY + G[BY by removing all the edges
inJo[ [ Jn . Recallthat Jg is either a perfect matching in G or empty. Since

forall1 s n,itfollowsthat (GYA]) (GIA) 1 4jAj=5, where the nal
inequality follows from (FR3) and (FR4). Similarly (GYB]) 4jBj=5. So we can
apply Lemma[Z6.2 with G° playing the role of ('-I_‘, in order to extend Ji;:::;Jq
into edge-disjoint subgraphsHq;:::;H,, of G+ S”:1 Js such that
(@) Hs is a Hamilton cycle onV (G) which contains precisely two A% %-edges
forall “<s n;
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(b) Hs is the union of a Hamilton cycle onA° and a Hamilton cycle onB° for
all s minf’; ng.

Indeed, the property eHSQAQ,BO) = 2 in (a) follows from Lemma E&.I(iii) and
[Z62(). Let Go := Jo+ ., Hs. Then (i) holds since by LemmalZ6.1 all the
Jo;:::;Jn together cover all edges inG[Ap] and G[Bo]. Let Jyc be the union
of all Js with ~ <'s n and let J be the union of all J5 with 0 s n.
The de nition of Gg, LemmalZ&.1(ii),(ii) and Lemma Z6.2(i) together imply that
Go[A%B = J[A%BY = JH[A%Bq+ Jpc[A%BY and so

(2.6.3) ec,(A%BY = ¢; (A%BY
(2.6.4) e, (A%BY +2(maxf0o; n “g):

Together with Lemma[Z6.1(iv), (26.3) implies (ii). Moreover, the graph H de ned
in (iv) is the same as the graphH de ned in Lemma [Z6&.7(iv). Thus (iv) and (v)
follow from Lemmal[Z6.1(v) and (vi).

So it remains to verify (iii). Note that if ~ > 0 then eg(A%B% < D and so
n=0 (mod4), D=n=2 1andjAY = n=2 = jBY by Proposition Z21(ii). In
particular, both A°andB®are evenandsoforalll s ° the graphHs can be de-
composed into two edge-disjoint perfect matchings. Recall that g LemmalZ6.1(i)
the graph Jo is a perfect matching if D is odd and empty if D is even. Thus,
if n, then Go can be decomposed inton ° edge-disjoint Hamilton cycles
and nmaen  €dge-disjoint perfect matchings, wherenmaen = 2° if D is even and
Nmateh = 2 + 1 if D is odd. In particular, this implies the “'moreover part' of
(iii) (since * = 0 if eg(A%B9 D). Also, (Z.6.4) together with the fact that
e;,(A%B9 1 by LemmalZE.1(i) implies that n = beg,(A%B%=2c and so
n  2bes,(A%B9Y=2c = npawn . Thus (iii) holds in this case. If *> n , then (a)
implies that there are no Hamilton cycles at all in the decomposition. Alo (2.6.4)
implies that bes,(A%B9=2c = 0, as required in (iii). Similarly, (b) implies that
Nmatch = 2 N if D is even andnmaien = 2 n + 1 if D is odd, which also agrees
with (iii).

2.7. Constructing Localized Exceptional Systems

Suppose that G; A; Ag; B; Bo) is an ("o; K )-framework and that Gy is the span-
ning subgraph of our given D-regular graph G obtained by Lemmal[2Z.6.3. Set
G%:= G Gyp. (So G°has no edges insidé\ or By.) Roughly speaking, the aim
of this section is to decomposeG® GYA] GYB] into edge-disjoint exceptional
systems. Each of these exceptional systemk will then be extended into a Hamil-
ton cycle (in the case whenJ is a Hamilton exceptional system) or into two perfect
matchings (in the case whenJ is a matching exceptional system). We will ensure
that all but a small number of these exceptional systems are localid (with respect
to some K;m;" o)-partition P of V(G) re ning the partition A;Ao;B;B). More-
over,foralll i;i® K, the number of (i;i 9-localized exceptional systems in our
decomposition will be the same. (Recall that (;i 9-localized exceptional systems
were de ned in Section[Z.3.)

However, rather than decomposing the above ‘leftoverG® GJA] GY9B]in
a single step, we actually need to proceed in two steps: initially, we nda small
number of exceptional systemsJ which have some additional useful properties
(e.g. the number of AB%edges ofJ is either zero or two). These exceptional
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systems will be used to construct the robustly decomposable grapG™. (Recall
that the role of G was discussed in Section 211.) LeG®:= G Gy G™. Some
of the additional properties of the exceptional systems containg in G then allow
us to nd the desired decomposition of G = G G%A] G%B]. (We need to
proceed in two steps rather than one as we have little control ovethe structure of
Grob )

Recall that in order to construct the required (localized) exceptional systems,
we will distinguish three cases:

(a) the case whenG is “non-critical' and contains at leastD A% “edges (see
LemmalZ.7.3);

(b) the case whenG is ‘critical' and contains at least D A% %edges (see
LemmalZZ.3);

(c) the case whenG contains less thanD A% %edges (see LemmaZ.2.5).

Each of the three lemmas above is formulated in such a way that we ecaapply
it twice: rstly to obtain the small number of exceptional systems needed for the
robustly decomposable graphG™® and secondly for the decomposition of the graph
G into exceptional systems. The proofs of all the results in this seddon are deferred
until Chapter 8]

2.7.1. Critical Graphs.  Roughly speaking,G is critical if most of its AB%
edges are incident to only a few vertices. More precisely, given a pétion A% BO of
V(G) and D 2 N, we say that G is critical (with respect to A% B?%and D) if both
of the following hold:

( GIA%BY) 11D=40;

e(H) 41D=40 for all subgraphsH of G[A% B9 with ( H) 11D=40.
Note that the property of G being critical depends only onD and the partition
A= A[ Ap and B®= B[ Bg of V(G), which is xed after we have applied
Proposition 225 to obtain a framework (G; A; Ag; B; By). In particular, it does not
depend on the choice of the K; m;" g)-partition P of V(G) re ning A;Ao;B;Bo.
(In the proof of Theorem[1.3.3 we will x a framework (G; A; Ag; B;By), but will
then choose two di erent partitions re ning A;Ag;B;Bg.)

One example of a critical graph is the following: Gt consists of two disjoint
cligues on 0 1)=2 vertices with vertex set A and B respectively, wheren = 1
(mod 4). In addition, there is a vertex a which is adjacent to exactly half of the
vertices in each ofA and B. Also, add a perfect matchingM between those vertices
of A and those vertices inB not adjacent to a. Let A%:= A[f ag, B°:= B and
D :=(n 1)=2. Then Gg; is critical, and D-regular with (A%B% = D. Note
that (M) = D=2. To obtain a Hamilton decomposition of G, we will need
to decomposeGe it [A%BY into D=2 Hamilton exceptional system candidatesJs
(which need to be matchings of size exactly two in this case). In this xample, this
decomposition is essentially unique: everyls has to consist of exactly one edge in
M and one edge incident toa. Note that in this way, every edge betweena and B
yields a “connection' (i.e. a maximal path) betweenA® and B° required in (ESCA4).

The following lemma (proved in Section[3.1) collects some properties afritical
graphs. In particular, there is a setW consisting of between one and three vertices
with many neighbours in both A and B. We will need to use A%B %edges incident
to one or two vertices of W to provide ‘connections' betweenA°® and B° when
constructing the Hamilton exceptional system candidates in the citical case (b).
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Lemma 2.7.1 Suppose thatO < 1=n 1 and that D;n 2 Nwith D n
2bn=4c 1. Let G be aD-regular graph onn vertices and letA% B° be a partition
of V(G) with jAY;jBG D=2and ( G[A%BY) D=2. Suppose thatG is critical.
Let W be the set of verticesv 2 V(G) such thatdgjaogo(w) 11D=40. Then the
following properties are satis ed:

M1 jwj 3
(i) Either D =(n 1)=2andn =1 (mod4),or D =n=2 1landn=0
(mod 4). Furthermore, if n =1 (mod 4), then jWj=1.
(i) es(A%BY% 17D=10+5<n.

Recall from Proposition [ZZ71(ii) that we have eg(A%B% D unlessD =
n=2 1,n =0 (mod 4) and jAj = jBj = n=2. Together with Lemma [Z.Z1(ii)
this shows that in order to nd the decomposition into exceptional systems, we can
distinguish the following three cases.

Corollary 2.7.2 Suppose thatO < 1=n 1 and that D;n 2 N with D
n 2bn=4c 1. Let G be aD-regular graph onn vertices and letA% B?be a partition
of V(G) with jAY;jBG D=2 and ( G[A%BY) D=2. Then exactly one of the
following holds:
(@) ec(A%B9% D and G is not critical.
(b) es(A%BY D and G is critical. In particular, eg(A%B9 <n and either
D=(n 1)=2andn=1 (mod4),orD=n=2 1landn=0 (mod 4).
(c) ec(A%B9 < D. In particular, D = n=2 1, n =0 (mod 4) and jAj =
jBj = n=2.

2.7.2. Decomposition into Exceptional Systems. Recall from the begin-
ning of Section[2.T that our aim is to nd a decomposition of G Gy G[A] G[B]
into suitable exceptional systems (in particular, most of these exeptional systems
have to be localized). The following lemma (proved in Sectiofi 312) state that this
can be done if we are in Case (a) of Corollary_2.712, i.e. i6 is not critical and
ec(A%B9 D.

Lemma 2.7.3 Suppose that0< 1=-n "o, " ;1=K 1, that D n=3
that 0 1and thatD;n;K;m; n=K 2;(D n )=(2K?) 2 N. Suppose that the
following conditions hold:

(i) G is a D-regular graph onn vertices.
(i) P isa(K;m;" o)-partition of V(G) such thatD eg(A%B?% "gn? and
( GIA%B9) D=2. Furthermore, G is not critical.
(i) Gp is a subgraph ofG such that G[A¢] + G[Bo] Go, €5,(A%B9 n
and dg,(v) = n for all v2 V.
(iv) Let G = G GJA] G[B] Gop. eg (A%B9 is even and(G ;P) is a
(K;m;" o;")-exceptional scheme.
Then there exists a set] consisting of (D  n )=2 edge-disjoint Hamilton excep-
tional systems with parameter"y in G which satis es the following properties:
(a) Together all the Hamilton exceptional systems i cover all edges ofs .
(b) Forall 1 i;i® K,thesetd contains(D ( +2 )n)=(2K ?) (i;i9-HES.
Moreover, n=K 2 of these(i;i9-HES J are such thate; (A%B% =2.

Note that (b) implies that J contains n Hamilton exceptional systems which
might not be localized. This will make them less useful for our purposg and we
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extend them into Hamilton cycles in a separate step. On the other had, the lemma
is ‘robust' in the sense that we can remove a sparse subgrapgh, before we nd
the decompositionJ into Hamilton exceptional systems. In our rst application of
LemmalZ.Z.3 (i.e. to construct the exceptional systems for the robstly decompos-
able graph G™®), we will let Go be the graph obtained from LemmalZ.6.B. In the
second application,G also includesG™® . In our rst application of Lemma Z.7.3]
we will only use the (i;i 9-HES J with e; (A%B9 = 2.

The next lemma is an analogue of Lemm&=Z.713 for the case whe is critical
andeg(A%BY% D. By Corollary E27.2(b) we know that in this caseD = (n 1)=2
or D = n=2 1. (Again we defer the proof to Section"3.B.)

Lemma 2.7.4 Suppose thatO0 < 1=n "o " ; 1=K 1, that D
n 2bn=4c 1, that 0 1 and that n;K;m; n=K 2;(D  n )=(400K 2) 2 N.
Suppose that the following conditions hold:
(i) G is a D-regular graph onn vertices.
(i) P isa(K;m;" o)-partition of V(G) such thateg(A%B% D and
( G[A%BY) D=2. Furthermore, G is critical. In particular, eg(A%B9
<nandD =(n 1)=2or D = n=2 1 by Lemmal3.1.1(ii) and (iii).
(i) Go is a subgraph ofG such that G[Ao] + G[Bo] Go, €5,(A%B9 n
and dg,(v) = n for all v2 V.
(iv) Let G = G G[A] G[B] Go. eg (A%B9 is even and(G ;P) is a
(K;m;" o;")-exceptional scheme.
(v) Letw; andw; be ( xed) vertices such thatdgaogo(W1)  dgjacs o (W2)
dgaogo(v) for all v2 V(G) nfwi;wyg. Suppose that

(2.7.1) dg [aog(W1);dg [aogo(w2) (D n)=2

Then there exists a set] consisting of (D  n )=2 edge-disjoint Hamilton excep-
tional systems with parameter'y in G which satis es the following properties:

(a) Together the Hamilton exceptional systems inJ cover all edges ofG .
(b) Foreachl i;i® K, the setd contains (D ( +2 )n)=(2K?) (i;i9-
HES. Moreover, n=K 2 of these(i;i9-HES are such that
(b1) & (A%B9 =2 and
(b2) djjaogo(w) =1 for all w2 fwg;weg with dgjaogo(w) 11D=40.

Similarly as for Lemma[2.Z7.3, (b) implies that J contains n Hamilton ex-
ceptional systems which might not be localized. Another similarity is that when
constructing the robustly decomposable graphG™®, we only use those Hamilton
exceptional systemsJ which have some additional useful properties, namely (b
and (by) in this case. This guarantees that [Z.7.1) will be satis ed in the secoad
application of Lemmal[Z. 7.3 (i.e. after the removal ofG™P), by “tracking' the de-
grees of the high degree verticesv; and wz. Indeed, if dgjaogo(w2)  11D=40,
then (b2) will imply that dgro (aog o (W) is large fori = 1;2. This in turn means
that after removing G™®, in the leftover graph G , dg (Ao (W) is comparatively
small, i.e. condition (2.7.3) will hold in the second application of LemmaZ. 7.4

Condition (E7.7) itself is natural for the following reason: suppose ér example
that it is violated for w; and that w; 2 Ap. Then for some Hamilton exceptional
system J returned by the lemma, both edges of] incident to w; will have their
other endpoint in B So (the edges at\w; cannot be used as a ‘connection' between
Aland B?in the Hamilton cycle which will extend J, and it may be impossible to
nd these connections elsewhere.
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The next lemma is an analogue of Lemm&2.713 for the case whexg (A% B9 <
D. (Again we defer the proof to Section’3.#.) Recall that Proposition 22.7(ii) (or
Corollary E.7.2) implies that in this case we haven =0 (mod 4), D = n=2 1 and
jAY = jBY = n=2. In particular, jAY and jBY are both even. This agrees with
the fact that the decomposition may also involve matching exceptioml systems in
the current case: we will later extend each such system to a cyclganning A° and
one spanningB% As jAY and jBY are both even, these cycles correspond to two
edge-disjoint perfect matchings inG.

Lemma 2.7.5 Suppose thatO< 1=-n "o " ;1=K 1, that O 1
and that n=4;K;m; n=K 2;(n=2 1 n )=(2K?) 2 N. Suppose that the following
conditions hold:

(i) Gisan (n=2 1)-regular graph onn vertices.
(i) P is a (K;m;" ¢)-partition of V(G) such that ( G[A%BY9) n=4 and
jAY = jBY = n=2.

(iii) Go is a subgraph ofG such thatG[Ao]+ G[By] Go anddg,(v) = n for

al v2 V.
(iv) Let G = G G[A] G[B] Go. eg (A%B9 is even and(G ;P) is a
(K;m;" o;")-exceptional scheme.
() ( G[A%BY) e (A%B9Y=2 (n=2 1 n)=2
Then there exists a set] consisting of (n=2 1 n )=2 edge-disjoint exceptional
systems inG which satis es the following properties:

(a) Together the exceptional systems id cover all edges ofs . EachJ in J
is either a Hamilton exceptional system withe; (A% B9 =2 or a matching
exceptional system.

(b) Forall 1 i;i® K, the setd contains (n=2 1 (n +2 ))=(2K?)
(i;i9-ES.

As in the other two cases, we will use the exceptional systems in (ip construct
the robustly decomposable graphG™® . Unlike the critical case with eg(A% B9
D, there is no need to ‘track' the degrees of the verticesy; of high degree in
G[A% B this time. Indeed, let G°%= G Gy G™, whereGg is the graph de ned
by Lemma[Z6.3. ThenG%A%BY is the union of all thoseJ in J (from the rst
application of Lemmal[Z.Z.5) not used in the construction ofG™ . So (a) implies
that G°JA% B9 is a union of matchings of size two. So (v) will be trivially satis ed
when we apply LemmalZ.Z_5 for the second time (i.e. withGy + G™ playing the
role of Gy).

2.8. Special Factors and Exceptional Factors

As discussed in the proof sketch, the main proof proceeds as follew First
we remove a sparse ‘robustly decomposable’ grapB™° from the original graph
G. Then we nd an approximate decomposition of G G™. Finally we nd
a decomposition of G + G® where G° is the (very sparse) leftover from the
approximate decomposition.

Both the approximate decomposition as well as the actual decompsition step
assume that we work with a graph with two components, one orA and the other
on B. So in both steps, we would needAq [ Bo to be empty, which we clearly
cannot assume. We build on the ideas of Section 2.3 to deal with this mblem.
In both steps, one can choose “exceptional path systems' i@ with the following
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crucial property: one can replace each such exceptional path siem EP S with a
path systemEPS so that

( 1) EPS can be partitioned into EPS, and EP Sy with the vertex sets of
EPS, and EP Sy being contained in A and B respectively;

( 2) the union of any Hamilton cycle C, in G, = G[A] EPS+ EPS,
containing EPS, and any Hamilton cycle Cg in Gy := G[B] EPS+
EPSg containing EPSg corresponds to either a Hamilton cycle ofG
containing EP S or to the union of two edge-disjoint perfect matchings in
G containing EPS.

Each exceptional path systemEP S will contain one of the exceptional systems]
constructed in Section[2.Y.EPS will then be obtained from EP S by replacing J
by J . (Recall that J was de ned in Section[Z.3 and that we view the edges aof
as " ctive edges' which are di erent from the edges ofG.) So G, is obtained from
G[A] by adding J, = J [A]. Furthermore, J determines which of the cases in (2)
holds: If J is a Hamilton exceptional system, then ( ») will give a Hamilton cycle
of G, while in the case whenJ is a matching exceptional system, ( ) will give the
union of two edge-disjoint perfect matchings inG.

So, roughly speaking, this allows us to work withG, and Gg rather than G
in the two steps. A convenient way of handling these exceptional pt systems is
to combine many of them into an “exceptional factor'EF (see Sectiori 2.8]2 for the
de nition).

One complication is that the “robust decomposition lemma' (LemmaZ.9.Mwe
use from 1] deals with digraphs rather than undirected graphs. So in order tobe
able to apply it, we need to suitably orient the edges ofG and so we will actually
consider a directed path systenEP S, instead of theEPS above (the exceptional
path system EP S itself will still be undirected). Moreover, we have to apply the
robust decomposition lemma twice, once tdG, and once t0Gg.

The formulation of the robust decomposition lemma is quite general ad rather
than guaranteeing ( ») directly, it assumes the existence of certain directed “spe-
cial paths systems'SP S which are combined into “special factors'SF. These are
introduced in Section[2.8.]1. Each of the Hamilton cycles produced bytte lemma
then contains exactly one of these special path systems. So to ply the lemma, it
su ces to check that each of our exceptional path systemsEP S corresponds to two
path systemsgP S,. 4, and EP Sg. 4, which both satisfy the conditions required of
a special path system.

2.8.1. Special Path Systems and Special Factors. As mentioned above,
the robust decomposition lemma requires “special path systems' @n'special factors'
as an input when constructing the robustly decomposable graph. Tfiese are de ned
in this subsection.

Let K;m 2 N. A (K;m)-equipartition Q of a setV of vertices is a partition
of V into sets Vp;:::;Vk such that jVij = m for all i K. The V; are called

So QP consists of theKL clustersV; .
Let (Q; Q9 be a (K;L; m )-equipartition of V. Consider a spanning cycleC =
Vi :::Vk onthe clusters ofQ. Given an integerf dividing K, the canonical interval
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partition | of C into f intervals consists of the intervals

Vi nk=f +1 Vi nksf +2 10 Vikst 41
foralli f (with addition modulo K).

Suppose thatG is a digraph onV andh L. Let | = VjVj+1 :::Vjo be an
interval in | . A special path systemSP S of style h in G spanning the interval |
consists ofm=L vertex-disjoint directed paths Py;:::;Py=_ such that the following
conditions hold:

(SPS1) EveryPs has its initial vertex in Vi, and its nal vertex in Vo
(SPS2) SP S contains a matching Fict(SP S) such that all the edges in Fict(SP S)
avoid the endclustersV, and Vjo of I and such that E(Ps) nFict(SP S)
E(G).
(SPS3) The vertex set of SPSis Vin [ Visan [ [ Vion.
The edges in Fict(SP S) are called ctive edges of SPS.

Let | = flg;:::;1g. A special factor SF with parameters (L;f ) in G (with
respect to C, QY is a 1-regular digraph onV which is the union of Lf digraphs
SPSh (one for all j f and h L) such that each SPS;, is a special path

system of styleh in G which spansl;. We write Fict( SF) for the union of the sets
Fict(SPS;x)overallj f andh L and call the edges in FictSF) ctive edges
of SF.

We will always view ctive edges as being distinct from each other and fom the
edges in other digraphs. So if we say that special factorSFy;:::; SF, are pairwise
edge-disjoint from each other and from some digrapl@ on V, then this means that
Q and all the SF;  Fict( SF;) are pairwise edge-disjoint, but for example there
could be an edge fromx to y in Q as well as in Fict(SF;) for several indicesi r.
But these are the only instances of multiedges that we allow, i.e. if thee is more
than one edge fromx to y, then all but at most one of these edges are ctive edges.

2.8.2. Exceptional Path Systems and Exceptional Factors. We now
introduce “exceptional path systems' which will be combined into “exeptional fac-
tors'. These will satisfy the requirements of special path systemand special factors
respectively. So they can be used as an “input' for the robust decgposition lemma.
Moreover, they will satisfy the properties ( 1) and ( 2) described at the beginning
of Section[Z.8 (see Propositio[ZZ&ll). More precisely, suppose that

= fAp;A1;:::;AK;Bo;B1;:ii; Bk g

isaK;m;" 0)-partit|on of a vertex set V and L;m=L 2 N. We say that (P;P9 is
a (K;L;m;" o)-partition of V if P%is obtained from P by partitioning each cluster

A; of P into L setsA;.1;:::; AL of sizem=L and partitioning each cluster B; of P
into L setsB;.1;:::;B;. of sizem=L. (So P°consists of the exceptional seto,
Bo, the KL clusters A;; and the KL clustersBj; .) Set
(2.8.1) Qa = fAL 1A G QR = fALL AL G

Qg = fBy;:1;Bk G; Qg = fBu1a;:i5; Bkl O
Note that (Qa; Q%) and (Qs; Q é are (K;L;m)- eoéupartmons of A and B respec-
tively (where we recallthat A= ., AjandB = 1, Bj).

Suppose thatJ is a Hamilton exceptional system (for the partition A; Ag; B;Bo)
with e; (A% B9 = 2. Thus J contains precisely twoAB -paths. Let Py = a;:::ly
and P, = a,:::p be these two paths, wherea;;a, 2 A and by; b, 2 B. Recall from
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Section[2.3 thatJ, is the matching consisting of the edgea;a, and an edge between
any two verticesa; a’2 A for which J contains a path P,40 whose endvertices ara

and a% We also de ned a matchingJg in a similar way and setJ = J, [ Jg. We

say that an orientation of J is good if every path in J is oriented consistently and

one of the pathsP;, P, is oriented towards B while the other is oriented towards

A. Given a good orientation Jgir of J, the orientation Jg, of J induced byJg is

de ned as follows:

For every path Paq0 in J whose endverticesa; a° both belong to A, we
orient the edgeaa’ of J towards its endpoint of the (oriented) path Pgao
in Jdir -

If in Jgir the path Py is oriented towards by (and thus P, is oriented
towards a,), then we orient the edgea;a, of J towards a, and the edge
b, of J towards b;. The analogue holds ifP; is oriented towards a;
(and thus P, is oriented towards by).

If J is a matching exceptional system, we de ne good orientations off and the
corresponding induced orientations ofJ in a similar way.

We now de ne exceptional path systems. As mentioned at the begining of
Section[Z.8, each such exceptional path systeBP S will correspond to two directed
path systemsEPS,. 4 and EPSg. 4, satisfying the conditions of a special path
system (for (Qa; Q%) and (Qs; Q%) respectively).

Let (P; P9 be a (K;L;m;" o)-partition of a vertex set V. Suppose thatK=f 2

consists of the intervals
f(i LDK=f +1;( DK=f +2;:::;iK=f +1¢g

foralli f (with addition modulo K).
Suppose thatG is an oriented graph onA[ B such that G = G[A]+ G[B]. Let

disjoint undirected paths Po; PJ;P{;:::;PA  [;PE;:::;PB. |; such that the
following conditions hold:

(EPS1) V(P£) A and P/ has one endvertex inAj, and its other endvertex in
Ajon (forall1 s <m=L). The analogue holds for everyPZ.

(EPS2) Each ofPy and P§ has one endvertex inA;h [ Bjn and its other endvertex
in A]' 0h [ Bjo;h-

(EPS3) J := EPS EPS[A] EPSIB]is either a Hamilton exceptional system
with e; (A% B9 = 2 or a matching exceptional system (with respect to the
partition A;Aq;B;Byo). Moreover E(J) E(Po) [ E(P) and no edge of
J has an endvertex inAjn [ Ajon [ Bjn [ Bjon.

(EPS4) Let Po,gir and PQ;, be the paths obtained by orienting Py and Pg towards
their endvertices in Ajon [ Bjon. Then the orientation Jg; of J obtained
in this way is good. LetJ, be the orientation of J induced by Jgir . Then
(Pogir + PQgir)  Jair + Jg; consists of two vertex-disjoint paths P4y, and
P&y such that V(Pgy,) A, Ply has one endvertex inAj, and its
other endvertex in Ajo;, and such that the analogue holds forP{; .

(EPS5) The vertex set of EPS isVo[ Ajn [ Aj+1n [ Ajon[ Bin [ Bj+zn [
Bjon.
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Aj 0:h Bjo;h

PZB PZ/_}dir PZZdir
:LA;dir P:Igdir
PC? Podir Ajsin Bjern Po.dir
Ain ) Bjn
(i) EPSg;

Figure 2.8.1. An example of an exceptional path systemEP S
and the corresponding directed versionEP S, in the case when
jAoj =2, Bp=;, m=L =3 and jlj = 6. The thick edges indicate
J and J;, respectively.

(EPS6) For each 1 s < m=L, let Psﬁdir be the path obtained by orienting
P2 towards its endvertex in Ajo,. Dene P2, in a similar way. Then
E(Plqir) NEdir); E(PGg ) NE(Jar)  E(G) and E(PLy; ): E(PEy;)
E(G) forevery1 s<m=L.

We call EPS a Hamilton exceptional path systemif J (as de ned in (EPS3))
is a Hamilton exceptional system, and amatching exceptional path systemoth-
erwise. Let EPS, y be the (directed) path system consisting of Py ; P{y; ;
:::;Pn’i:L 1.dir - Then EP S, is a special path system of styleh in G[A] which
spans the interval Aj Aj.1 :::Ajo of the cycleA; :::Ax and satis es Fict(EP S, ;)
= Jg [A]. Dene EPSg. 4, similarly and let EP Sy, := EPS,. 4 + EP S, 4, and
Fict(EP Sy, ) := Fict( EP S, 4, ) [ Fict(EP Sg. 4, ) (see Figure[2.8.1).

for G (with respect to (P;P9) is the union of Lf edge-disjoint undirected graphs
EPSjh (one for all j f and h L) such that each EP S, is an exceptional
path system of style h for G which spanslj. We write EF ,.y for the union of
EP Sjpa; or Over all j f and h L. Note that EF,. 4 is a special factor
with parameters (L;f ) in G[A] (with respect to C = A;:::Ak, Q%) such that
Fict(EF 4. g ) is the union of J;,. 4 [A]overallj f andh L, whereJj, isthe
exceptional system contained inEP S, (see condition (EPS3)). De ne EFg. 4

similarly and let EFy, = EF, 4, + EFg. 4, and Fict(EF ;) := Fict( EF 5. ;) [

Fict(EFg. 4, ). Note that EF, is a 1-regular directed graph onA [ B while in

EF is an undirected graph onV with

(2.8.2) dgg(v)=2 forall v2V nVy and dge (v)=2Lf forall v2 V:
Given an exceptional path systemEP S, let J be as in (EPS3) and let
EPS = EPS J+J; EPS,:=EPS [A] and EPS; := EPS [BI:
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(HenceEPS , EPS, and EP S are the undirected graphs obtained fromEP S, ,
EPS, g and EPSg. 4, by ignoring the orientations of all edges.) The follow-
ing result is an immediate consequence of (EPS3), (EPS4) and Progdion 2.3.1.
Roughly speaking, it implies that to nd a Hamilton cycle in the “original' gr aph
with vertex set V, it su ces to nd a Hamilton cycle on A and one onB, containing
(the edges corresponding to) an exceptional path system.

Proposition  2.8.1 Let (P;P9 be a(K;L;m;" ()-partition of a vertex set V.
Suppose thatG is a graph onV nVp, that Gy is an orientation of G[A] + G[B]
and that EP S is an exceptional path system forGy;. Let J be as in (EPS3) and
J, as dened in Section[23. LetCs and Cg be two cycles such that

Ca is a Hamilton cycle on A which containsEP S, ;
Cg is a Hamilton cycle on B which containsEP Sg .

Then the following assertions hold.

(i) If EPS is a Hamilton exceptional path system, therCy + Cg  EPS +
EPS is a Hamilton cycle on V.

(i) If EPS is a matching exceptional path system, thel€a + Cg EPS +
EPS is the union of a Hamilton cycle onA° and a Hamilton cycle onB°.
In particular, if both jAY andjBY are even, thenCa + Cg  EPS +EPS
is the union of two edge-disjoint perfect matchings orV.

Proof. Note that CA + Cg EPS + EPS=Ca+Cg J +J. Recall that J,g
was de ned in Section[Z.3. (EPS3) implies thatjE (J,)NE(Jag )i 1. Recall from
Section[Z3 that a path P is said to consistent with J, if P contains J, and (there
is an orientation of P which) visits the endvertices of the edges irE(J,) NE(Jag )
in a prescribed order. SinceE(J,) nE(J,g ) contains at most one edge, any path
containing J, is also consistent with J,. Therefore, Ca is consistent with J,
and, by a similar argument, Cg is consistent with J5. So the proposition follows
immediately from Proposition 231

2.8.3. Finding Exceptional Factors in a Scheme. The next lemma (Lem-
malZ.8.2) will allow us to extend a suitable exceptional systend into an exceptional
path system. In particular, we assume thatJ is “localized'. This allows us to choose
the path system in such a way that it spans only a few clusters. Thetsucture within
which we nd the path system is called a “scheme'. Roughly speaking, fis is the
structure we obtain from G[A]+ G[B] (i.e. the union of two almost complete graphs)
by considering a random equipartition of A and B and a random orientation of its
edges.

We now de ne this “oriented' version of the (undirected) schemes Wwich were
introduced in Section[Z2. Given an oriented graphG and partitions P and P%of a
vertex setV, we call (G;P;P9 a [K;L;m;" ¢;"]-schemeif the following conditions
hold:

(Sch1) (P;P9Yis a (K;L;m;" o)-partition of V.

(Sch®) V(G)= A[ B andeg(A;B) =0.

(Sch®) G[Aj; ; Aiojo] and G[Bi; ; Bjo;o] are ['; 1=2]-superregular for alli;i® K
and all j;j° L such that (i;j) 6 (i%]9. Moreover, G[A;;Ac] and
G[Bi;Bjd] are ['; 1=2]-superregular for alli 6 i° K.
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(Sch®) NS (X)\ Ng(V)\ Ajjj (1=5 ")m=Lforall x;y 2 A,alli K and all
j L. Similarly, NS (x)\ Ng(y)\ Bijj (15 ")m=L forall x;y 2 B,
ali Kandallj L.
Note thatif L =1 (andso P = P9, then (Sch19) just says that P is a (K; m;" )-
partition of V.
Suppose thatJ is an (i;i 9-ES with respect to P. Given h L, we say that J
has style h (with respect to the (K;L;m;" o)-partition (P;P9) if all the edges ofJ
have their endvertices inVp [ Ain [ Bion.

Lemma 2.8.2 Suppose thatK;L;n;m=L 2 N, that 0< 1=n ";"y 1and
"o 1=K;1=L. Let (G;P;P9 be a[K;L;m;" ¢;"]-scheme withjV(G) [ Voj = n.
Let | = fj;j +1;:::;j% [K] be an integer interval withjlj 4. Let J be either
an (i1;i2)-HES of styleh L with e;(A%B% =2 oran (i1;i»)-MES of styleh L
(with respect to (P;P9)), for someiq;i 2fj +1;::::j° 1g. Then there exists an
exceptional path system of styldn for G which spans the intervall and contains all
edges of].

Proof. Let Jgir be a good orientation of] and let J; be the induced orientation of

fj+1;:::;j° 1g. We will only consider the case wheri; +1 2fj +1;:::;j° 1g.
(The argument for the other case is similar.)

Our assumption that "g 1=K; 1=L implies that "on=  m=100L (say). To-
gether with (Sch4 this ensures that for every 1 r < s9 we can pick a ver-
tex wy 2 Aj,+1:n such that xorw, and w,xzr+1 are (directed) edges inG and

the path X1XaW1X3XaWa @i Xas0 1X2s0Wso. Thus Qg is a directed path from A;, ., to
Ai,+1n in G+ Jg, which contains all edges ofl,. . Note that jV (Qo)\ Aj,;nj =2s°
and jV(Qo) \ Ai,+1:nj = s® Moreover,V(Qo)\ A; = ; foralli2fi;i; +1gand
V(Qo)\ B = ;.

Pick a vertex wo 2 Ajn so that wox; is an edge ofG. Find a path Q8 from wgo
to Ajo;n in G such that the vertex set of QJ consists ofwso and precisely one vertex

ensures that this can be done greedily. De nePgly, to be the concatenation of
Wox1, Qo and QJ. Note that P{; is a directed path from Aj, to Ajop in G+ Jg;
which contains J,. 4, . Moreover,

8

51 fori 2fj;:::;j Ynfigia+10,
250 fori = iq,

§so fori =i +1,

"0 otherwise,

IV(PEai )\ Ainj=

while V(P8 )\ B = ; and V(P{y )\ Ajno = ; foralli K andall h®6 h.

in G such that the following conditions hold:
Forall1 r< 280 P2, is a path from Ajn to Ajon.

r; dir
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Forall1 r s°% P2y contains precisely one vertex inAi, for each
i 2fj;:::;) %9 nfiig and no other vertices.

For aII s° <r< 250 PR contains preC|ser one vertex inA; for each

Let Q be the union of P&airi i1 Poo 1.4y - Thus Q is a path system consisting
of 2s° vertex-disjoint directed paths from A,h to A,oh Moreover, V (Q) consists
of precisely &° vertices in A, for every | [ 9 and no other vertices. Set
Al = Ajp nV(Q) forall i K. Note that

M o0 Mo Mg Py m
(283) jAlhj = L 2s L 4"on L 10"omK (1 0) L
since "y 1=K; 1=L. Pick a new constant "% such that ":" "0 1. Then

Proposition [LZ1, (Sch®) and @383) together imply that G[A,; Al 4] is stil
['% 1=2]-superregular and so by PropositioriEZ we can nd a perfect mah-

ing in G[AIh AL, 1] for all j i <j % The union Q° of all these matchings
forms m=L  2s° vertex-disjoint directed paths Pleogirs i1 Pho 1.qir- Note that
Plair s Plgirs 15 Pm L 1.4 @re pairwise vertex-disjoint and together cover precisely
the vertices in { j Ain . Moreover, P&qr contains J,. g -

Similarly, we nd m=L vertex-disjoint directed paths Py ;Pfq ;i
PS.. 1qr from Bjn to Bjon such that Pgy, contains Jg. 4 and together the

paths cover precisely the vertices in J.Z, Bin. Foreachl r < m=L, let PA
and P? be the undirected paths obtained fromP/;, and P2, by ignoring the
directions of all the edges.

SinceJp gy Plar and Jg. g P&y, and sincely, is the orientation of J
induced by Jg;, it follows that Py, + P8y Jgr + Jair consists of two vertex-
disjoint paths Pg.q4ir and P0 gir from Ajn [ Bjn to Ajon [ Bjon with V(Poqir) [
V(PQgi) = Vol V(P§ar) [ V(P& ). Let Py and P§ be the undirected paths
obtained from Po: dir and P0 dir by ignoring the directions of all the edges. Let

EPS be the union of Po; P$; P2 ;i PA, [ PE;:i; PR, . Then EPS is an
exceptional path system for G, as required. To see this, note that] = EPS
EPS[A] EPS[B] since e;(A);e;(B) = 0 by the de nition of an exceptional

system (see (EC3) in Sectiorf 2]3).

The next lemma uses the previous one to show that we can obtain manedge-
disjoint exceptional factors by extending exceptional systems wth suitable proper-
ties.

Lemma 2.8.3 Suppose thatL;f;q;n;m=L;K=f 2 N, that K=f 3, that
0< 1=n "o 1, that "¢ 1=K; 1=L and Lg=m 1. Let (G;P;P9 be a
[K;L;m;" o;"]-scheme withjV(G) [ Voj = n. Suppose that there exists a sel of
Lfg edge-disjoint exceptional systems satisfying the follomg conditions:

() EachJ 2J is either a Hamilton exceptional system withe; (A% B9 =2
or a matching exceptional system.

(i) Foralli f andallh L, J contains preciselyq (il;iz) -ES of styleh
(with respect to (P;P9) for which iy;i» 2f (i  1)K=f +2;:::;iK=f g.
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Then there exist q edge-disjoint exceptional @ctors with parametergqL;f ) for G
(with respect to (P;P9) covering all edges in~ J .

Recall that the canonical interval partition | (f;K ) of [K]into f intervals con-
sists of the intervalsf (i  1)K=f +1;:::;iK=f +1gforalli f. So (ii) ensures
that for each interval 1 2 | (f;K ) and eachh L, the setJ contains precisely
g exceptional systems of styleh whose edges are only incident to vertices invg
and vertices belonging to clustersA;, and B;, for which both i; and i, lie in the
interior of I. We will use LemmalZ.8.2 to extend each such exceptional system into
an exceptional path system of styleh spanning| .

Proof of Lemma 28331 Choose a new constant®with ";Lqg=m "% 1. Let
J1;::1;Jq be a partition of J such thatforallj o h L andi f,the setJ;
contains precisely one(1;i2)-ES of style h with iq;i, 2f (i 1)K=f +2;:::;iK=f g.
Thus eachJ; consists ofLf exceptional systems. For eactj  qin turn, we will
choose an exceptional factorEF; with parameters (L;f ) for G (with respect to
(P;P9) such that EF; and EFj. are edge-disjoint for allj°<j and EF; contains
all edges of the exceptional systems inJ;. Assume that for some 1 | q
we have already constructedEF;:::;EF; 1. In order to construct EF;, we will

precisely one of the exceptional systems iJj. Suppose that we have already
chosen some of these exceptional path systems and that next weish to choose
an exceptional path system of styleh which spans the interval | of the canonical
interval partition | (f;K ) and contains J 2 J;j. Let G° be the oriented graph
obtained from G by deleting all the edges in the path systems already chosen for

Thus ( G G% 2j< 3qby (2.82). Together with Proposition [LZ.1 this implies
that (G%P;P9 is still a [K;L;m;" ¢;"9-scheme. (Here we use that (G G9 <
3g=3Lg=m m=L and ";Lg=m "® 1.) So we can apply Lemm& 2.8]2 with
"0 playing the role of " to obtain an exceptional path system of styleh for G° (and
thus for G) which spans| and contains all edges ofl. This completes the proof of
the lemma.

2.9. The Robust Decomposition Lemma

The aim of this section is to state the robust decomposition lemma (Len-
malZ9.34). This is the key lemma proved in21] and guarantees the existence of a
“robustly decomposable' digraphG° within a “setup'. For our purposes, we will
then derive an undirected version in CorollarylZ.9.5 to construct a rdoustly decom-
posable graphG™ . Then G™® + H will have a Hamilton decomposition for any
sparse regular graphH which is edge-disjoint from G™. The crucial ingredient
of a setup is a "universal walk', which we introduce in the next subsedabn. The
(proof of the) robust decomposition lemma then uses edges guamteed by this uni-
versal walk to “balance out' edges of the graphd when constructing the Hamilton
decomposition ofG™ + H.

2.9.1. Chord Sequences and Universal Walks. Let R be a digraph whose

(Later on the vertices of R will be clusters. So we denote them by capital letters.)
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A chord sequence€CS(V;; V;) from V; to V; in R is an ordered sequence of edges
of the form

whereVi, = Vi, Vi,,, =V; and the edgeV,, .Vi,,, belongs toR for eachs t.

If i = j then we consider the empty set to be a chord sequence froW to V.
Without loss of generality, we may assume thatCS(V;;V,) does not contain any
edges ofC. (Indeed, suppose thatVi, 1Vi,,, is an edge ofC. Then is = iss+1 and
so we can obtain a chord sequence frord; to V; with fewer edges.) For example,
if Vi 1Vi«1 2 E(R), then the edgeV; 1Vi+1 is a chord sequence fronV; to Vi.; .

The crucial property of chord sequences is that they satisfy a “lcad balance'
condition. Suppose thatCS is obtained by concatenating several chord sequences

sothat Vi, = Vi, . Then for every clusterV;, the number of edges oCS leavingV; 1
equals the number of edges enteringy;. We will not use this property explicitly,
but it underlies the proof of the robust decomposition lemma (LemmaZ39.3) that
we apply and appears implicitly e.g. in (U3).

A closed walkU in R is auniversal walk for C with parameter “?if the following

conditions hold:

(U1l) Foreveryi k thereis a chord sequenc&CS(V;; Vi+1 ) from V; to Vis
such that U contains all edges of all these chord sequences (counted with
multiplicities) and all remaining edges ofU lie on C.

(U2) Each ECS(V;;Vi+1 ) consists of at most =2 edges.

(U3) U enters eachV; exactly *°times and leaves eachV; exactly *°times.

Note that condition (U1) means that if an edge V;V; 2 E(R) nE(C) occurs in total

a (di erent) occurrence of ViV; in U. Note that the edges of ECS(V;;Vi+1 ) are
allowed to appear in a di erent order within ECS(V;; Vi+1 ) and within U.

V1:::V is a Hamilton cycle of R and that ViVi., 2 E(R) foreveryl i k. Let
‘0 4 be an integer. LetU-o the multiset obtained from° 1 copies of E(C) by
adding ViVi+2 2 E(R) for every 1 i k. Then the edges inU-. can be ordered

so that the resulting sequence forms a universal walk f& with parameter “°.

In the remainder of this section, we will also write U-o for the universal walk
guaranteed by LemmaZ.9.1.

Proof. Let us rst show that the edges in U-o can be ordered so that the result-
ing sequence forms a closed walk iR. To see this, consider the multidigraph U
obtained from U-o by deleting one copy ofE(C). Then U is (° 1)-regular and
thus has a decomposition into 1-factors. We order the edges df-o as follows: We
rst traverse all cycles of the 1-factor decomposition ofU which contain the cluster
V1. Next, we traverse the edgeViV, of C. Next we traverse all those cycles of the
1-factor decomposition which containV, and which have not been traversed so far.
Next we traverse the edgeV,V3; of C and so on until we reachV; again.

Recall that, foreach 1 i k, the edgeV, 1Vi+1 is a chord sequence fronv,
to Viz1. Thus we can takeECS(Vi;Vi+1) = Vi 1Vis1. Then U satis es (U1){
(U3).
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2.9.2. Setups and the Robust Decomposition Lemma. The aim of this
subsection is to state the robust decomposition lemma (LemmaZ.9.4roved in [21])
and derive Corollary [29.5, which we shall use later on in order to proveTheo-
rem[1.3.3. The robust decomposition lemma guarantees the existeaof a “robustly
decomposable' digraphGI2® within a “setup’. Roughly speaking, a setup is a di-
graph G together with its ‘reduced digraph' R, which contains a Hamilton cycle
C and a universal walk U. In our application, we will have two setups: G[A] and
G[B] will play the role of G, and R will be the complete digraph in both cases. To
de ne a setup formally, we rst need to de ne certain ‘re nements' of partitions.

size, we say that a partition P% of V is an *%“re nement of P if P%is obtained by
splitting each V; into " subclusters of equal size. (S®° consists of % clusters.)
PC%is an "-uniform “-re nement of P if it is an “-re nement of P which satis es
the following condition: Whenever x is a vertex of G, V is a cluster in P and
ING(X)\ V) "jVjthen NE(X)\ VJ = (@1 ")iNS(x)\ Vj=" for each cluster
V02 POwith VO V. The inneighbourhoods of the vertices ofG satisfy an
analogous condition. We need the following simple observation from2L]. The
proof proceeds by considering a random partition to obtain a unifom re nement.

Lemma 2.9.2 Suppose that0 < 1=m 1=k;" "0d;1=" 1 and that
n;k;;m=" 2 N. Suppose thatG is a digraph onn = km vertices and that P
is a partition of V(G) into k clusters of sizem. Then there exists an"-uniform
*-re nement of P. Moreover, any "-uniform -re nement P° of P automatically
satis es the following condition:

Suppose thatV, W are clusters in P and V% W? are clusters in P9 with
VO VandW°® W. If G[V;W]is [";d9-superregular for somed® d
then GIV% WY is ['% d9-superregular.

We will also need the following de nition from [21]. (G;P;P%R;C;U;U9 is
called an (%k; m;"; d)-setup if the following properties are satis ed:

(ST1) G and R are digraphs. P is a partition of V(G) into k clusters of sizem.
The vertex set of R consists of these clusters.

(ST2) For every edge VW of R the corresponding pair G[V; W] is ("; d)-
regular.

(ST3) C is a Hamilton cycle of R and for every edgeV W of C the corresponding
pair G[V;W]is['; d]-superregular.

(ST4) U is a universal walk for C with parameter “° and P° is an "-uniform
*%re nement of P.

(ST5) Suppose thatC = V;:::V and let le; n ;\/j‘0 denote the clusters inP°
which are contained inV; (foreach 1 j k). Then UCis a closed walk
on the clusters in P? which is obtained from U as follows: WhenU visits
V; for the ath time, we let U° visit the subcluster V2 (forall1 a 9.

(ST6) Each edge ofU° corresponds to an[;  d]-superregular pair in G.

In [21], in a setup, the digraph G could also contain an exceptional set, but since

we are only using the de nition in the case when there is no such excejnal set,
we have only stated it in this special case.
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Suppose that'%m="°2 N with "° 4. Let Q% be an"-uniform *%re nement of
Qa. Let Ra be the complete digraph whose vertices are the clusters i@a. Let
Ua: o be a universal walk forCa with parameter “°as de ned in LemmalZ9.]. Let
UAO;\ o be the closed walk obtained fromUa o as described in (ST5). We will call

(GIAL; Qa; Q%; Ra; Ca; Uas ;U o)

the A-setup associated tqG; P;P9. De ne Qf, Rg, Ug; o and UZ.- , similarly. We
will call

(G[B]; Qs Q2 Rs;Cs; Us: 0; US- o)
the B-setup associated to(G;P;P9. The following lemma shows that both the

A-setup and the B-setup indeed satisfy all the conditions in the de nition of a
setup.

Lemma 2.9.3 Suppose thatl=m  1=K;"q;" "01="0and K;L;m=L;" ¢
m="92 N with *° 4. Suppose that(G;P;P9 is a [K;L;m;" ¢;"]-scheme. Then
each of

(GIAL; Qa;QR:RA:CasUn; 0;UR-0) and (G[B];Qs;Qg:Re:Ce:Us; o Ug: o)
is an (% K;m;" % 1=2)-setup.

Proof. It su ces to show that ( G[A]; Qa; Q2 ;Ra;Ca;Ua; o;UR. o) is an (% K;m;
"0 1=2)-setup. Clearly, (ST1) holds. (Sch3®) implies that (ST2) and (ST3) hold.
Lemma[29.1 implies (ST4). (ST5) follows from the de nition of UR-,. (ST6)
follows from LemmalZ9.2 sinceQ? is an "-uniform “%re nement of Qa.

We now state the robust decomposition lemma from[21]. Recall that this
guarantees the existence of a “robustly decomposable' digrapB/2°, whose crucial
property is that H + GI2® has a Hamilton decomposition for any sparse regular
digraph H which is edge-disjoint from G2 .

G{,?P consists of digraphsCAg; (r) (the “chord absorber’) and P CAgj (r) (the
“parity extended cycle switcher’) together with some special factcs. G{,‘i’f’ is con-
structed in two steps: given a suitable setSF of special factors, the lemma rst
“constructs' CAgj (r) and then, given another suitable setSF ° of special factors, the
lemma “constructs' P CAg;r (r). The reason for having two separate steps is that
in [21], it is not clear how to construct CAgj (r) after constructing SF° (rather
than before), as the removal ofSF° from the digraph under consideration a ects
its properties considerably.

Lemma 2.9.4 Suppose that0 < 1=m 1=k
d 1="%1=g 1andthatrk? m. Let

1=q 1=f r{=m

r, =96 %°%kr; ra:=rfk=q; r =ri+ra+r (q 1rs; U= rfk +7r

and suppose thak=14; k=f; k=g; q=Ff; m=4"Cfm=q; 2fk=3g(g 1) 2 N. Suppose that
(G;P;P%R;C;U;U% is an (% k;m;";d)-setup andC = V; ::: V. Suppose thatP

with parameters (g=f;f ) with respect toC, P in G. Let SF := SF;+ + SF,.
Then there exists a digraphCAg; (r) for which the following holds:
(i) CAgir (r) is an (ry + ry)-regular spanning subdigraph ofG which is edge-
disjoint from SF.
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respect toC, P in G which are edge-disjoint from each other and from

CAgir (r)+ SF. Let SF%:= SFP+ + SF?. Then there exists a digraph

P CAgir (r) for which the following holds:

(@) PCAGgi (r) is a 5r -regular spanning subdigraph ofG which is edge-
disjoint from CAg; (r) + SF + SF°.

(b) Let SPS be the set consisting of all thes® special path systems con-
tained in SF + SF° Suppose thatH is an r-regular digraph onV (G)
which is edge-disjoint fromG[,‘i’rb = CAgir (N+ PCAgi (r)+ SF+ SF°
Then H + G has a decomposition intos® edge-disjoint Hamilton
cycles Cq;:::;Cs. Moreover, C; contains one of the special path
systems fromSPS, for eachi s

Recall from Section[Z.8.1 that we always view ctive edges in special f2ors as
being distinct from each other and from the edges in other graphsSo for example,
saying that CAy; (r) and SF are edge-disjoint in Lemmal[2Z.9# still allows for a
ctive edge xy in SF to occur in CAgi (r) as well (but CAg; (r) will avoid all
non- ctive edges in SF).

In the proof of Theorem[1.3.3 we will use the following “undirected' cosequence
of LemmalZ.9.3.

Corollary 2.9.5 Suppose that0 < 1=m  "¢;1=K " 1=L 1=f
ri=m 1="%1=g 1andthatrK 2 m. Let

r:=96"%%Kr;, ra:=rK=L; r =ry+r,+r (Lf 1Drg; s%:=rfK +7r

and suppose thatk=14; K=f; K=g;m=4%m=L; 2fK=3g(g 1) 2 N. Suppose that
(Gair ;P; P9 is a[K;L;m;" o;"]-scheme and letG° denote the underlying undirected

parameters (L;f ) for Ggi; (with respect to (P;PY). Let EF := EF + + EF,,.
Then there exists a graphCA(r) for which the following holds:
(i) CA(r)is a2(ri+ry)-regular spanning subgraph o5° which is edge-disjoint
from EF.

for Ggir (with respect to (P; P)) which are edge-disjoint from each other

and from CA(r) + EF. Let EF?:= EF?+ + EF?. Then there exists

a graph PCA(r) for which the following holds:

(@) PCA(r) is a 10r -regular spanning subgraph ofG° which is edge-
disjoint from CA(r) + EF + EF°.

(b) Let EPS be the set consisting of all thes® exceptional path systems
cont%'ned in EF + EF®. Suppose thatH, is a 2r§egular graph on
A= iKzl A; and Hg is a 2r-regular graph onB = iKzl Bi. Suppose
that H := Ha + Hg is edge-disjoint from G™ := CA(r)+ PCA(r)+
EF+EF® Then H+ G™ has a decomposition intos® edge-disjoint 2-

path systems fromEPS. Moreover, for each i s® the following

assertions hold:

(b1) If the exceptional path system contained inH; is a Hamil-
ton exceptional path system, therH; is a Hamilton cycle on
V(Gdir)[ Vo.
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(b2) If the exceptional path system contained inH; is a matching
exceptional path system, therH; is the union of a Hamilton
cycle onA°= A[ Ao and a Hamilton cycle onB%= B [ Bo.
In particular, if both jAY9 and jBY are even, thenH; is the
union of two edge-disjoint perfect matchings oV (Ggir ) [ Vo.

We remark that, as usual, in Corollary[2.9.53 we write Ap and By for the excep-

Note that the vertex set of each of EF, EF® G™" includes V, while that of Gy,
CA(r), PCA(r), H does not.

Moreover, note that matching exceptional systems are only contsucted if both
jAY and jBY are even. Indeed, we only construct matching exceptional systas in
the case wheneg (A%B9 < D . But by Proposition Z2Z.11ii), in this case we have
that n =0 (mod 4) and jAY = jBY = n=2. Therefore, Corollary[Z.3.5(ii)(b) implies
that H + G™ has a decomposition into Hamilton cycles and perfect matchings.
The proportion of Hamilton cycles (and perfect matchings) in this decomposition
is determined by EF + EF° and does not depend orH .

Proof of Corollary 2.95. ] Choose new constants®d such that " "% 1=L
andr;=m d 1="%1=g Consider the A-setup (Gair [A]; Qa; Q%;Ra;Ca;Ua: o;
UR- o) associated to Ggir; P;P9. By Lemma [Z3.3, this is an (%K;m;" % 1=2)-
setup and thus also an {%K; m;"  d)-setup.

Recall that P?is obtained from P by partitioning each cluster A; of P into

role of Qf in (ZB.1).) Let EF;, 4 be as dened in Section[Z8P. Recall from
there that, for eachi  r3, EF;. g IS @ special factor with parameters (;f)

with respect to Ca = Ap:::Ax, QR in Ggi[A] such that Fict(EF,,. 4 ) is the

union of J [A] over all the Lf exceptional systemsJ contained in EF;. Thus we

can apply Lemmal[Z9.4 to Gair [Al; Qa; QR ;RA; Ca;Ua; o; UL o) with K, Lf, "0

playing the roles ofk, g, " in order to obtain a spanning subdigraphCAa. gir (r) of

Ggir [A] which satis es LemmalZ.9.4(i). Similarly, we obtain a spanning subdigrgh

CAg. gir (r) of Ggir [B] which satis es Lemmal[Z.9.4(i) (with Gg;r [B] playing the role

of G). Thus the underlying undirected graph CA(r) of CAa.gir (r) + CAg. gir (1)

satis es Corollary ZZ9.5(i).

Similarly as before, for eachi r, (EFiO)A; q4ir 1S @ special factor with param-
eters (1, 7) with respect to Ca, Qa in Ggir [A] such that Fict(( EFiO)A; qir) 1S the
union of J [A] over all the 7 exceptional systems) contained in EF . Thus we
can apply Lemmal2.9.4 (with Gy [A] playing the role of G) to obtain a spanning
subdigraph P CAa. gir (r) of Ggir [A] which satis es Lemmal[Z.9.4(ii)(a) and (ii)(b).

Similarly, we obtain a spanning subdigraph P CAg. 4ir (r) of Ggir [B] which satis-
es Lemma[Z.9.4(ii)(a) and (ii))(b) (with Gg; [B] playing the role of G). Thus the
underlying undirected graph P CA(r) of P CAa. gir (r)+ P CAg. 4ir (r) satis es Corol-
lary 2Z9.5(ii)(a).

It remains to check that Corollary E29.5(ii)(b) holds too. Thuslet H = Ha+Hp
be as described in Corollaryf 2.95(ii)(b). LetHa. 4 be anr-regular orientation of
Ha. (To see that such an orientation exists, apply Petersen's theonm, i.e. Theo-
rem [1.3.70, to obtain a decomposition ofH, into 2-factors and then orient each
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2-factor to obtain a (directed) 1-factor.) Let EF . g = EF o g +  + EF A gir
and let (EF9)a g = (EFdaar +  +(EF?)aqr- Then Lemma [Z9:4(ii)(b)
implies that Ha; gir + CAa; dir (1) + P CAa; gir (1) + EF . gir +( EFO)A qir Nas a decom-
position into s° edge-disjoint (directed) Hamilton cycles ClA A CSOA such that
eachC?, contains EP S, 4, for some exceptional path systemEP Sjo 2 EPS.
Similarly, let Hg. 4 be anr-regular orientation of Hg . Then Hg. gir + CAg. gir (1) +
P CAg;dir (1) + EFg. i +( EFO)B 4 has a decomposition intos® edge-disjoint (di-
rected) Hamilton cyclesCJg ;:::;Cg such that eachCY% contains EP S,ooB dir
for some exceptional path systemEPSjo 2 EPS. By relabehng the C% and
CY if necessary, we may assume tha€? contains EPS;,. 4 and C% contams
EPSig. gr- Let Cia and Cig be the undlrected cycles obtained fromC and
C,OB by ignoring the directions of all the edges. ScCia contains EP S; , and Cis
containsEP S,z . Let Hj := Cia + Cig  EPS; + EPS;. Then Proposmon[ZSZI]
(applied with GO playing the role of G) implies that Hi1;:::;Heo is a decomposition
of H + G = H + CA(r) + PCA(r) + EF + EF%into edge-disjoint 2-factors sat-
isfying Corollary Z9.5(ii)(b 1) and (b2).

2.10. Proof of Theorem 1.83 ]

Before we can prove Theoreri 1.313, we need the following two obsations. Re-
callthat a (K;m;" o;")-scheme was de ned in Sectioi 2J4 and that a{; L; m;" ¢;"9-
scheme was de ned in Sectiol 2.8]3.

Proposition  2.10.1 Suppose tha®< 1=m ™", "9 1=K;1=L 1land
that K;L;m=L 2 N. Suppose that(G;P9 is a (KL;m=L;" ¢;")-scheme. Suppose
that P is a (K;m;" o)-partition such that P%is an L-re nement of P. Then there
exists an orientation Gg;; of G such that (Ggi ;P; P9 is a [K;L;m;" o;"9-scheme.

Proof. Randomly orient every edge inG to obtain an oriented graph Gg;r. (So
given any edgexy in G with probability 1 =2, xy 2 E(Gg;jr ) and with probability 1 =2,
yx 2 E(Ggir).) (Sch19 and (Sch2) follow |mmed|% ly from (Sch1) and (Sch2).

Note that (Sch3) imply that G[AIJ ;Biojo]is[L "~ "]-superregular with density at
least1 ",foralli;i® K andj;j©® L. Using this, (Sch3) follows easily from the
large deviation bound in Proposition[T.4.4. (Sché) follows from Proposition [.4.4
in a similar way.

Proposition  2.10.2 Suppose thatG is a D-regular graph onn vertices which
is "-close to the union of two disjoint copies ofK ,=,. Then D  (1=2+4")n.

Proof. Let B V(G) with jBj = bn=2c be such that &B;V (G) nB) "n2.
Note that B exists sinceG is "-close to the union of two disjoint copies ofK -».
Let A= V(G)nB. If D> (1=2+4")n, then Proposition [ZZ21(i) implies that
e(A;B) >"n 2, a contradiction.

We can now put everything together and prove Theoreni1.313 in thedllowing
steps. We choose the (localized) exceptional systems needed as aput' for Corol-
lary ZZ9.5 to construct the robustly decomposable graptG™ in Step 3. For this, we
rst choose appropriate constants and a suitable vertex partition in Steps 1 and 2
respectively (in Step 1, we also nd some Hamilton cycles covering "baadges). In
Step 4, we then apply Corollary[Z.95 to nd G™. Similarly, we then choose the
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(localized) exceptional systems needed as an “input' for the “appranate decom-
position lemma’' (Lemmal[2.5.4) in Step 6 (in this step, we also nd some Hailton
cycles which extend those exceptional systems which are not locaéid). For Step 6,
we rst choose a suitable vertex partition in Step 5. In Step 7, we nd an approxi-
mate decomposition using Lemma2.5]4 and in Step 8, we decompose thaion of
the leftover' and G™ via Corollary 2295,

Proof of Theorem 1.8.3 ]

Step 1: Choosing the constants and a framework. Chooseng 2 N to be
su ciently large compared to 1="¢x. Let G and D be as in Theorem1.31B. By
Proposition 2.10.2

(2.10.1) n=2 1 D (1=2+4"g)n:
De ne new constants such that
0<1=ng "ex "0 o " "0 ? K, 1=K; 1=K,
"0 1= 1sf 1 =g "%k "L

whereK 1;K,;L;f;g 2 N and K, is odd. Note that we can choose the constants
such that

D on . kN kN Ky 2K, _
400K ,LK 22’ 7 (K;L)2’ KZ '14g'3g9(g 1)

Apply Proposition P.Z.5lto obtain a partition A;Ag;B;Bo of V(G) such that
(G;A;Ap;B;By) is an ("o; 4gK1LK ,)-framework with ( G[A%B?) D=2 (where
Al:= A[ ApandB?:= B[ By). Let w; and w, be two vertices of G such that
dG[AO;B 0](W1) dg[AO;B 0](W2) dg[AO;B 0](V) for all v 2 V(G) n le;Wzg. Note
that the partition A;Ag;B;Bo of V(G) and the two vertices w; and w, are xed
throughout the proof. Moreover, in the remainder of the proof, given a graphH
on V(G), we will always write H for H H[A] HI[B].

Next we apply Lemmal[2.6.3 with o and 4gK,LK , playing the roles of and
K to nd a spanning subgraph H} of G. Let G; := G H 2. Thus the following
properties are satis ed:

(2.10.2)

( 1) G[Ao]+ G[Bo] H $andH?is a gn-regular spanning graph ofG.
( 2) eno(A%B9Y  onandeg, (A%BY is even.
( 3) The edges ofH? can be decomposed intdoey o (A% B %=2c Hamilton cycles
and on  2beyo (A% B9=2c perfect matchings. Moreover, ifeg (A% B9
D, then this decomposition consists ofb on=2c Hamilton cycles and one
perfect matching if D is odd.
( 4) dg,ja0sq(w1) (D on)=2. Furthermore, if D = n=2 1 then
dGl[AO;B 0](W2) (D on):2.
( 5) If eg(A%BY <D, then ( G1[A%BY) e(G1[A%B)=2 (D  (n)=2.
Let H; be the cgllection of Hamilton cycles and perfect matchings guaranted by
( 3). (SOoH?= "H;.) Note that

(2.10.3) D;:=D on

is even (since [2.10) implies thatD and on have the same parity) and that G;
is Di-regular. Moreover, (G1;A;Ag;B;Byg) is an ("o; 4gK;LK ,)-framework with



58 2. THE TWO CLIQUES CASE

( Gi[A®BY) D=2. Let

A B
my= =Bl s m = 96K
K1 K1
K
rs .= rL_l; r =ry+ro+r (Lf 1)I’3;
W]
2.104) my:= Nl 5 - p owfrg+7r):
Ks Ky
Note that (FR3) implies m;=L 2 N. Moreover,
(2.10.5) roirs  2my; g r=2 r 2

Furthermore, by changing ; ; slightly, we may assume thatr=400LK 2;r;=400K 2
2 N. This implies that r,=400K 2;r3=400K 2;r =400K 3 2 N. Together with the
fact that D;=400K2 = (D  on)=400K % 2 N by (ZI0.2), this in turn implies that

(2.10.6) D4=400K 2 2 N:

Step 2: Choosing a (Ki;L;my;"o)-partition (P1;PY). We now prepare the
ground for the construction of the robustly decomposable graphG™®, which we
will obtain via the robust decomposition lemma (Corollary ZZ8.5) in Step 4

Since G1;A;Ag;B;Bo)is an ("o; 4gK1LK »)-framework, it is also an ("o; K 1L)-
framework. Recall that G; is Di-regular and D; = D on (1 3 g)n=2 (as
D n=2 1). Apply Lemma .42 with G1, my=L, 3 o, KiL, " , " playing the

of B into sets of sizem;=L such that the following properties are satis ed:
(S1a) Together with Ag and By all these setsA? and B form a (K 1L; m1=L;"o)-
partition P? of V(Gy).
(Sib) (Gi[A]+ Gi[B];PD) is a (KiL;m1=L;"o;" )-scheme.
(S10) (Gy;PD) is a (KiL;m4=L;"¢;" )-exceptional scheme (whereG; := G;
Gi[A] G2[B]).

Note that (1 "g)n n j Ao Boj =2Kim; n by (FR3). For all i K1
and all h L, let Ain = A?i HL+h- (%o this is just a relabtging of the sets
A?.) Dene Bjy similarly and let A; .= | | Ajp and B; == | | Bin. Let

partition of V(G). Thus (Py;P?) is a (K1;L;my;"o)-partition of V(G), as de ned
in Section[Z.8.2.

Step 3: Exceptional systems for the robustly decomposable g raph. In
order to be able to apply Corollary[Z.9.5 to obtain the robustly decommsable graph
G™, we rst need to construct suitable exceptional systems with paameter ".
The construction of these exceptional systems depends on whedr G is critical and
whether eg (A%B9 D. First we show that in each case, for all 1 i%;i9 KiL,
we can always nd setsJjo;o of . n=(K1L)? (i9;i9)-ES with respect to P?.
Case 1: es(A%B9% D and G is not critical.  Our aim is to apply Lemmal[2.7.3
to G with HY, my=L, KL, P, ", o, «,_ playing the roles of Go, m, K, P,
", , . First we verify that Lemma E7.3[i){(iv) are satis ed. Lemma Z.7.3(j)
holds trivially. (FR2) implies that eg(A%B% "on2. Moreover, recall from (S,a)
that P{ is a (KiL;m;=L;"o)-partition of V(G) and that A° and B were chosen
(by Proposition 2.2.5) such that ( G[A%BY) D=2. Altogether this shows that
Lemma [Z.7.3(ii) holds. Lemma[Z.Z.B(iii) follows from ( 1) and ( 2). To verify
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LemmalZ7.3(iv), note that G, plays the role ofG in LemmalZ7.3 andG,[A% B =
G1[A%BY. Soeg, (A% B9 is even by ( 2). Together with the fact that ( G,; P9) is
a (KiL;m=L;"o;" )-exceptional scheme by ($c), this implies LemmalZ.Z.3(iv).
By Lemmal[Z.7.3, we obtain asetl of g, n edge-disjoint Hamilton exceptional
systemsJ in G, such that e; (A% B9 = 2 for each J 2 J and such that for all
1 i%i9  KiL the setJ contains precisely , n=(K1L)? (i9;i9)-HES with
respect to the partition PP. Forall 1 i%;iJ KiL, let Jjo o be the set of these
k,LN=(K1L)? (i;i9)-HES in J . SoJ is the union of all the setsJjo;io. (Note
that the set J here is a subset of the sefl in LemmalZZ3, i.e. we do not use all
the Hamilton exceptional systems constructed by Lemmd 2.7]13. So evdo not need
the full strength of Lemma [Z7.3 at this point.)
Case 2: eg(A%B9 D and G is critical. Recall from LemmalZZ-1(ii) that in
this case we haveD =(n 1)=2 orD = n=2 1. Our aim is to apply Lemma[Z. 7.4
to G with H?, m;=L, K,L,P%, " , o, k,L playing the roles ofGo, m, K, P, ", ,
. Similar arguments as in Case 1 show that LemmaZ.714(i){(iv) hold. Reall that
wy and w; are (xed) vertices in V(G) such that dgjaogo(W1)  dgaogs o(W2)
dopacs (V) for all v 2 V(G) nfwi;weg. Since G,[A%BY = G1[A%BY, ( 4)
implies that dg, (aop o(W1) (D on)=2. Moreover, if D = n=2 1, then
de, (a0B o(W2) (D on)=2. Let W be the set of verticesw 2 V(G) such
that dgjacgo(w)  11D=40, as de ned in Lemmal[Z71. IfD = (n 1)=2, then
jWj =1 by Lemma Z.7.1(ii). This means that w, 2 W and sodg [aop o(W2)
dgiaoso(wz2) 11D=40. Thus in both cases we have that

(2.10.7) de, (a0 q(W1);dg [acso(W2) (D on)=2

Therefore, LemmalZ.7.4(v) holds.

By Lemma [2.7.4, we obtain a set] of g, n edge-disjoint Hamilton excep-
tional systemsJ in G; such that, for all 1 i%;i9 KL, the setJ contains
precisely ,. n=(KL)? (i%;i9)-HES with respect to the partition P. Moreover,
eachJ 2J satises e;(A%B% =2 and djjaogo(w) =1 for all w 2 f wy; wpg with
dojacgo(w)  11D=40. Forall 1 i%;i KL, let Jjo o be the set of these

k,LN=(K1L)? (i2;i9)-HES. SoJ is the union of all the setsJo;0. (So similarly
as in Case 1, we do not use all the Hamilton exceptional systems canscted by
Lemmal2.7.4 at this point.)
Case 3: es(A%B9 < D. Recall from Proposition [Z.22(ii) that in this case we
haveD = n=2 1,n =0 (mod 4) and jA§ = jB§ = n=2. Our aim is to apply
LemmalZ7Z5 toG with H?, m;=L, KL, P$, " , o, «,L playing the roles of Go,
m, K, P,", , . Similar arguments as in Case 1 show that Lemm&Z.715(){(iv)
hold. SinceG,[A%B9 = G;[A%BJandD = n=2 1, LemmalZ.7.5(v) follows from
( s)

By Lemma [Z7.8, G; can be decomposed into a sef © of D;=2 edge-disjoint
exceptional systems such that each of these exceptional systs J is either a Hamil-
ton exceptional system with e; (A% B9 = 2 or a matching exceptional system. (So
J Oplays the role of the set] in Lemmal2.7.5.) Lemma2.7.5(b) guarantees that we
can choose a subset of J ®such that J consists of «,. n edge-disjoint exceptional
systemsJ in G, such that for all 1 i%;i9 KL the setJ contains precisely

k,LN=(K1L)? (i9;19)-ES with respect to the partition P). Forall1 i%;i KL,
let Jjo.i0 be the set of these « 1L n=(K1L)? (i?;i9)-ES. SoJ is the union of all the
setsJjo;i9. (Note that to construct the robustly decomposable graph we will only
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use the exceptional systems ird . However, in order to prove condition ( s) below,
we will also use the fact that G, has a decomposition into edge-disjoint exceptional
systems.)

Thus in each of the three cases] is the union of all the setsJjo.is, where for
alll1 i9;i9 KjL, the setJ consists of precisely k,. n=(KL)? (i2;i9)-ES with
respect to the partition P9. Moreover, all the ,.n exceptional systems inJ are
edge-disjoint.

Our next aim is to choose two disjoint subsetsJca and Jpca of J with the
following properties:

(a) Intotal Jca contains Lfr 3 exceptional systems. For each f and each
h L, Jca contains preciselyrs (i1;i2)-ES of style h (with respect to
the (K 1;L;my;"o)-partition ( P1;P)) such that ij;i, 2 f (i 1)K =f +

(b) In total Jpca contains 7 exceptional systems. For each 7, Jpca
contains preciselyr (i1;i2)-ES (with respect to the partition P;) with
i1;i2 2F (i 1K=7+2;:::;iK 1=70.

(c) Each exceptional systemJ 2 J ca [J pca is either a Hamilton exceptional
system with e; (A% B9 = 2 or a matching exceptional system.

(Recall that we de ned in Section[Z8.3 when an {y;i2)-ES has styleh with respect
to a (K1;L;my;"o)-partition ( P1;P?).) To see that it is possible to choosel ca
and Jpca , split J into two sets J; and J, such that both J; and J, contain
at least , n=3(K.L)? (i%;i9)-ES with respect to P, for all 1 i%;i9 K;L.
Note that, for each i f, there are (K;=f  1)? choices of pairs {1;i,) with
i1;i2 2f (i 1)K =f +2;:::;iK 1=fg. Moreover, for each such pair {(;;i2) and each
h L there is precisely one pair (3;i9) with 1 i%;i9 KL and such that any
(i2;i9)-ES with respect to P is an (i1;i,)-ES of style h with respect to (P1;PY).
Together with the fact that k,L;1=L; 1=f and

3(K1L)? L L
this implies that we can choose a seflca J ; satisfying (a).

Similarly, for each i 7, there are (K1;=7 1)? choices of pairs {1;i,) with
i1;i2 2 f(i  1)Kq1=7+2;:::;iK 1=7g. Moreover, for each such pair {3;i,) there
are L2 distinct pairs (i9;i9) with 1 i%;i9 KL and such that any (i%;i9)-ES
with respect to P{is an (i1;i2)-ES with respect to P;. Together with the fact that

1 KL and

(K]_:? 1)2L2 kK,LN
3(K1L)2

this implies that we can choose a setlpca J 2 satisfying (b). Our choice of
J J ca[J pca guarantees that (c) holds too. Let

(K]_:f 1)2 K,LN n K 1m; rK 1 = ra
- — I3
L

1N 2 1Mmi=2rg r;

[
(2.10.8) 3™ := Jca [J pca; P :=(Lfr 3+7r )=n and G, := G, J b

(In Step 5 below we will de ne a graph G4 which will satisfy G, = G4  Ga[A]
G4[B]. So this will t with our de nition of the operator .) Note that

(2.10.9)
7r @I05) 3r 31m Cator)
E)Ob S1_ 211 1 29 and 2 {)Obn = D1 Dg
n n n K1
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S
Moreover, we claim that ~ J P is a subgraph ofG, G satisfying the following
properties:

(1) & (V)=2(Lfr 3+ 7r )=2 ¥°n for eachv 2 V.

(2) €5m (A%BY 2 Pbnis even.

( 3) J ™ contains exactly °°n exceptional systems, of which precisely
e® 5w (A% B9=2 are Hamilton exceptional systems. Ifeg(A%BY D,
then J ™" consists entirely of Hamilton exceptional systems. 1fJ "° con-
tains a matching exceptional system, thenjA% = jBY = n=2 is even.

(4) If ec(A%B9 D and G is critical, then dS jw (pogo(w) = °n for
all w 2 f wy;wog with dgjaegq(w)  11D=40. Moreover,dg, aop o(W1);
dg,nosq(Wz2) (D ( 0+2 §P)n)=2.

(5) If eg(A%BY) <D, then ( G4[A%BY) e(G,A%BI)=2 D4=2=(D
(o+2 §°)n)=2.

To verify the above, note that J ™" consists of precisely °° n exceptional systems]
(each of which is an exceptional cover). So (1) follows from (EC2). Moreover, each
suchJ is either a Hamilton exceptional system with e; (A% B9 = 2 or a matching
exceptional system (with e; (A% B9 = 0 by (MES)), which implies ( ) and the rst
partof ( 3). If eg(A%B9% D, then we are in Case 1 or 2 and so the second part of
( 3) follows from our construction of J J ™. The rst part of (4) follows from
our construction of J J ™ in Case 2. Since 1D=40< (D ( o+2 ®°)n)=2, we
can combine the rst part of ( 4) with (2.10.7) to obtain the "'moreover part' of ( 4).
Thus it remains to verify ( 5). So suppose thateg (A%B% < D . Recall from Case 3
that G, has a decomposition into a setl © of D=2 edge-disjoint exceptional systems
J, each of which is either a Hamilton exceptional system withe; (A%B% = 2 or
a matching exceptional system. This means thatJ[A% B is either empty or a
matching of size 2. Note thatG,[A% B is precisely the union ofJ[A% BY over all
thoseD;=2  °n = D4=2 exceptional systems] 2J °nJ ™", So ( s) holds.

Step 4: Finding the robustly decomposable graph. Let G, = G1[A]+
G;[B]. Recall from (S;b) that (G,;P?) is a (KiL;m1=L;"o;" )-scheme. Apply
Proposition 2101 with G, Py, P{, K4, my, " , " playing the roles of G, P, P¢,
K, m, ", "Oto obtain an orientation G,.gr of G, such that (G.qir; P1;PY) is a
[K1;L;my;"o;"]-scheme.

Our next aim is to use Lemmal2.8.38 in order to extend the exceptional ygstems
in Jca into r3 edge-disjoint exceptional factors with parameters [;f ) for Go.gir
(with respect to (P1;P9). For this, note that (a) and (c) guarantee that Jca
satis es Lemma [2.8.3(i),(ii) with r3 playing the role of g. Moreover, Lr3=m; =
rK1=m; = K 1. Thus we can indeed apply Lemmd_2.8]3 to G2.4ir ; P1; Pf)
with Jca, my, "0, K1, r3 playing the roles ofJ , m, ", K, g in order to obtain r3

(with resgect to (P1;P?) such that together these exceptional factors cover all
edgesin Jca. Let EFca = EF1 + + EF;,. SinceG,; = G1[A]+ G1[B], we
have (EFca) = Jca. Moreover, each exceptional path system irEFca contains
a unique exceptional system inJ ca (in particular, their numbers are equal).
Note that m;=4g; m;=L 2 N sincem; = jAj=K; andjAj is divisible by 4gK;L as
(G;A;A¢;B;Bo) is an ("o; 4gK ;LK »)-framework. Furthermore, rK 2 = m ;K?
¥2m;  mjy. Thus we can apply Corollary[Z.9.5 to the K1;L;m1;"o;"%-scheme
(Ga.dir ; P1; PY) with K1, my, "% g playing the roles of K, m, ", "° to obtain a
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spanning subgraph CA(r) of G, as described there. (Note thatG, equals the
graph G°de ned in Corollary £.9.51) In particular, CA(r) is 2(ry + r,)-regular and
edge-disjoint from EFca .

Let Gz be the graph obtained from G, by deleting all the edges of CA(r) +
EFca. Thus Gj3 is obtained from G, by deleting at most 2(r1 + ro + r3) 6r; =
6 1m; edges at every vertex inA [ B. Let Gs.qr be the orientation of Gj in
which every edge is oriented in the same way as iG.qir . Since Ga.qir ; P1;PY) is

a [Kq;L;mq;"0;"%-scheme, Propositionl”L.Z1 and the fact that'® ; " imply
that (Gsz.qir ; P1;P1) is a [K1; 1;m1; "0; "]-scheme. Moreover,
(2I05)
r_ ﬁ =2 1 1
miq mi

Together with (b) and (c) this ensures that we can apply LemmaZ.8.80 (G3.qir ; P1;
Py) with Jpca, m1, K1, 1, 7,r playing the roles ofJ , m, K, L, f, qin order to

Gas.gir (With kespect to (P1;P1)) such that together these exceptional factors cover
all edges in~ Jpca . Lt EFpca = EF?+ + EFQ. SinceGs Gi[A]+ G4[B]
we have EFpca) = Jpca . Moreover, each exceptional path system irEFpca
contains a unique exceptional system inl pca .

Apply Corollary £.9.5]to obtain a spanning subgraphP CA(r) of G, as described
there. In particular, PCA(r) is 10r -regular and edge-disjoint fromCA(r)+ EFca +
EFpca .

Let G™ := CA(r)+ PCA(r) + EFca + EFpca . Note that by (2.8:2) all the
vertices in Vo := Ao [ Bo have the same degree[®® := 2(Lfr 3+7r )=2 ©°nin
G™. So
EI105)

rrob 3

(2.10.10) T K ory:

Moreover, (Z.8.2) also implies that all the vertices inA [ B have the same degree
rebin G, wherer™ :=2(rq+ r3)+10r +2r3+2r =2(ri+r,+r3+6r ). So

reb P =2 (Lfrg+r  (ri+ra+rg))=2(Lfrg+r (Lf Drz r3)=2r
0

Note that (G™P) = S(J ca [J pca) = S J b - Recall that the number of Hamil-
ton exceptional path systems inEFca equals the number of Hamilton exceptional
systems inJca, and that the analogue holds forEFpca . Hence, (1), ( 2) and
( 3) imply the follow statements:

(9 dgew (V) = 1P =2 ©Pn forall v2 V.

(9) egn (A%BY = €5 ;m (A%BY P =2 ©Pn s even.

( 9) EFca + EFpca contains exactly °n exceptional path systems (and
each such path system contains a unique exceptional system id P,
where jJ ] = ©°n). Precisely €5 ; w (A%B9=2 of these are Hamil-
ton exceptional path systems. Ifeg(A% B9 D, then every exceptional
path system in EFca + EFpca is @ Hamilton exceptional path system.
If EFca + EFpca contains a matching exceptional path system, then
jAY = jBY = n=2is even.

Step 5: Choosing a (K2;my;"g)-partition P,. We now prepare the ground
for the approximate decomposition step (i.e. to apply Lemma2.54). Br this, we
need to work with a ner partition of A[ B than the previous one (this will ensure
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that the leftover from the approximate decomposition step is su ciently sparse
compared to G™).
SoletG, := Gy G™ (where G; was de ned in Step 1) and note that

(2.10.11) D, # 28 p, o =-p, oo o

So
(2.10.12)
dg,(v) = Dga+2rforallv2 A[ B and dg,(v) = D4 for all v 2 Vp:
Hence
09 0.3
(G4) D 2095 1ob 2109 (0+2 ) (1 6 ©P)n=2

as ® 2 o by (ZZI0.8). Moreover, note that

(EI0I0)
2 obp = pfob 30r; =30 1m; 30 1n=Ky;

S0 [)Ob "9. Since G;A;Ag;B;By) is an ("o; 4gK1LK 2)-framework, (G4; A; Ao;
B;By)is an ("o; K2)-framework. Now apply LemmalZ.4.2 to (Ga; A; Ag; B; B o) with

Ko, mo, 8 ‘2’ 6 {)Ob playing the roles ofK , m, "1, "2, in order to obtain partitions

my; "p)-partition of V(G).
(S2b) (Ga[A]+ Gu[B]; P2) is a (K2;ma; "o; "9)-scheme.
(S20) (G4 P2) is a (Ka;my; "o;"9)-exceptional scheme.
(Recall that G, = G; J ™ was de ned towards dhe end of Step 3. Since
Gs=G; G™,wehave G;) =G, (G°) =G, J " so0 (G,) is indeed
the same asG,.) Moreover, by LemmalZZ.2(iv) we have

(2.10.13)
de,(V;Ai) = (dg,(v;A)  "on)=K; and de,(v;Bi) =(dg,(v;B) "on)=K:
forallv2 V(G)and1 i K,. (Note that the previous partition of A and B

plays no role in the subsequent argument, so denoting the clustetia P, by A; and
B; again will cause no notational con icts.)

Since G4;A;A0;B;Byo) is an ("o; K2)-framework, (FR3) and (FR4) together
imply that each v 2 A satises dg,(V;A0) j Voj "on anddg,(v;B9 "on. So

de,(V;A) = ds,(v) 2'on. Therefore, forallv2 Aandalll i K, we have
(2.10.14)
i dG4(V;A) "on _ dG4(V) 3"on _ dG4(V) 7"0K2m2_
de,(V;A) = = = :
The analogue holds fordg,(v;Bi) (wherev2 B and1 i Kby).
Step 6: Exceptional systems for the approximate decomposit ion. In order

to apply Lemmal[Z.5.4, we rst need to construct suitable exceptiond systems. We
will show that G, can be decomposed completely intd =2 exceptional systems
with parameter "o. Moreover, these exceptional systems can be partitioned into
setsJJ and Ji?;iz (one set for each pair 1 i;;i;  K3) such that the following
conditions hold, whereJ ®denotes the union ofJ %; overall1 iz Ka:
( 1) Each J;%;, consists of precisely D4 2 k,n)=2K 3 (i1;i2)-ES with pa-
rameter "o with respect to the partition P».
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( 2) J{ contains precisely «,n exceptional systems with parameter.

( 3) If es(A%BY D, then all exceptional systems inJ {[J %are Hamilton
exceptional systems.

( 1) If ec(A%B9 < D, then each exceptional systend 2 J JJ %is a Hamilton
exceptional system withe; (A% B9 = 2 or a matching exceptional system.
In particular, J ¢ contains preciselye® ; o(A% B9=2 Hamilton exceptional
systems andJ ®contains preciselye® ; o(A% B9%=2 Hamilton exceptional
systems.

As in Step 3, the construction of J§ and the J %, will depend on whether G is

critical and whether eg(A%B9 D. Recall that G, = G; G™ and note that
D on 2 E)Obn _ D4

2.10.15 =
( ) 200K 2 2002

2N

by (2.10.8).
Case 1: eg(A%B9% D and G is not critical.  Our aim is to apply Lemma[Z.Z.3
to Gwith G Gy, my, Ko, Py, "9, o+2 PP, «, playing the roles of Gg, m, K,
P,", ., . (So G, will play the role of G .) First we verify that the conditions
in Lemma [2.7.3(i){(iv) are satis ed. Clearly, Lemma E.7.3[i) and (ii) hold. Note
that G Gz = HY+ G, s0 (1), ( 2), ( 9) and ( 9) imply Lemma E7.3(ijii).
By ( 2) and ( 9), eg,(A%BY is even. Together with the fact (Sr) that ( G,; P2)
is a (K2;mz;"o;"9)-exceptional scheme, this shows that Lemmd_2.713(iv) holds.
Together with (P.10.15) this ensures that we can indeed apply Lemm&.7.3 to
obtain asetof @ ( o+2 P)n)=2 = D4=2 edge-disjoint Hamilton exceptional
systems with parameter”y in G4. Moreover, these Hamilton exceptional systems
can be partitioned into setsJfand J%;, (forall 1 ij;i2 Kpz) such that ( 1)
( 3) hold.
Case 2: es(A%B% D and G is critical. Our aim is to apply Lemma [2.7.2
to G with G Gy, mp, Ky, Py, "9, o +2 {)"b, K, playing the roles of Go, m,
K,P,", , . (So as before,G, will play the role of G .) Similar arguments
as in Case 1 show that Lemmd—Z.714(i){(iv) hold. ( 4) implies Lemma [Z.7.4(v).
Together with (E.10.15) this ensures that we can indeed apply Lemm#&.7.4 to
obtain a set of D 4,=2 edge-disjoint Hamilton exceptional systems with parameter'q
in G4. Moreover, these Hamilton exceptional systems can be partitiong into sets
JgandJ%;, (for1 i1;iz Kgp) such that ( 1){( 3) hold.
Case 3: eg(A%B9 < D. Recall from Proposition [Z22Z(ii) that in this case we
haveD = n=2 1,n =0 (mod 4) and jAY = jBY = n=2. Our aim is to apply
LemmalZ75 toG with G G4, mp, Ko, P2, "9, o+2 b -, playing the roles of
Go,m,K,P,", , . (So as beforeG, will play the role of G .) Similar arguments
as in Case 1 show that Lemmd—Z.715(i)}{(iv) hold. ( s) implies Lemma[Z.7.4(v).
Together with (EZI0.I5) this ensures that we can indeed apply Lemmd&.7.3 to
obtain a set of D4=2 edge-disjoint exceptional systems inG4. Moreover, these
exceptional systems can be partitioned into sets) 9 and J i?;iz (forall 1 iyg;i>
K2) such that ( 1), ( 2) and ( 4) hold. (In particular, ( 4) implies that each
exceptional system in these sets has parametép.)

Therefore, in each of the three cases we have constructed set§ and J,°,;, (for
alll  iq;ip  Ky) satisfying ( 1){( 4).

We now nd Hamilton cycles and perfect matchings covering the “nonlocalized'
exceptional systems (i.e. the ones il ). Let G} = G4 G,. SoGY is obtained
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from G4 by keeping all edges insideA as well as all edges insidd3, and delet-
ing all other edges. Note that (G3;A;Aq;B;Byg) is an ("o; K,)-framework since
(G4 A;Ag;B;By) is an ("o; K 2)-framework. Apply Lemma 2.6.2 to (G9; A; Ag; B;

that (G4[A] + G4[B];P2) is a (K2;mp;"o;"3)-scheme, so (GJ[A]) = (Ga[A])
4jAj=5 and (Gi[B]) = (G4[B])S 4jBj=5 by (Sch3).) We obtain edge-disjoint
subgraphsHq;:::;Hj; g of G? + ~ JQ such that, writing H, := fH1 110 Hp 90,
the following conditions hold:
( 1) For eachHs 2 H; there is somels 2 J { such that Js  H.
( 2) If Jg is a Hamilton exceptional system, thenHg is a Hamilton cycle on
V (G). If Jg is a matching exceptional system, therH is the edge-disjoint
union of two perfect matchings onV (G).
(3) Let HY:= Hi+ +Hjg. If ec(A%B9 <D, then H; contains precisely
en9 (A% B9Y=2 Hamilton cycles onV (G).
Indeed, ( 1) follows from Lemmal[Z6.2(i)). ( 2) follows from Lemma[Z.6.2(ii),(iii).
(For the second part, note that ( 3) and ( 4) imply that JQ contains matching
exceptional systems only in the case whereg(A%B% < D. But in this case,
Proposition Z2Z1(ii) implies that n = 0 (mod 4) and jAY = jBY = n=2, i.e. jAf
andjBY are even.) For ( 3), note that GJ has noA® “edges and s@® ; ¢(A%B") =
eno(A%B9. Together with ( 2) and ( 4), this now implies ( 3).
Recall that J “is the union ofJ %, overall1 i1;i; K. LetGs:= G4 H 9§
and Ds := Dy 2jH,j= D4 2 k,n. So (ZI0.IR) implies that
(2.10.16)
de,(v) = Ds+2r forallv2 A[ B and de,(v) = Ds forall v2 Vg:

Note that

(2.10.17) Gg:= Gs Gs[A] Gs[B]=G, H 9= G, Jo=" 5@
Sinced; (v) =2 for all v2 Vg and all 3 2J % it follows that

(2.10.18) Ds =2jJ %:

Moreover, since G4[A]+ G4[B]; P2) is a (K 2;m3;"0;"9)-scheme and'J+2 , ,
Proposition 2241 implies that (Gs[A] + Gs5[B]; P2) is a (K2;m3y;"o;")-scheme.

Step 7: Approximate Hamilton cycle decompaosition. Our next aim is to
apply Lemmal[Z.5.4 to obtain an approximate decomposition ofGs. Let
=(r®®  2r)=(4K,my)  and = = (4K 4):

We will apply the lemma with Gs, P,, K2, my, J % " playing the roles of G, P, K,
m, J , ". Clearly, conditions (c) and (d) of Lemmal[Z5.2 hold.
In order to see that condition (a) is satis ed, recall that m;K 1 = jA] = m2Ko.

So

—_— =—= 1L
4K om» 4K om3 4K 1
Therefore, every vertexv 2 A[ B satis es
dGA(V) = Dys+2r = D1 r{)"b +2r = D on 4K,m»

= (1 =2 4"ex)n onh  4Komo

(2.10.19) = @ 4 39 Kamy
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where in the last equality we recall that (1 "¢)n=2 j Aj = Kom, n=2 and
"ol "ex 0. Recall that Gs = G4 H 9 and note that

( H))=2jH3j=2 k,n 5 «,Komy:
Altogether this implies that foreach v2 A andforalll1 i K, we have
des (ViAI) = de,(V;Ai)  dug(viAi) = do, (V;A)) 5 k,Kama
B (45, (v) T'oKam2)=Kz 5 k,Kom;
I (1 4 (3 0+7"0+5 ,K2) My

Since o;"0; K, 1=Ky, it follows that dg,(V;Ai)=(1 4 4=Ky)m,. Similarly
one can show thatdg, (w;B;) = (1 4 4=K;)myforallw 2 B. So LemmdZ.5.4(a)
holds.

To check condition (b), note that r = jAj=K; n=3K;. So

0 Ds Dy@mm D rf® @D n reee
By TET = 5 TE == S +2"eN
2 2 2 4 2
= DMiovn 2komy ¢ Laove @ o) n
- 4 ex 21112 4 ex 0 3K1
1 __ n= 1 n
4 4K, 4

Thus Lemmal[Z5.3(b) holds.

So we can indeed apply Lemm& Z.5l4 to obtain a collectioi 3 of jJ % edge-
disjoint spanning subgraphsH®;:::; ng 0 of Gs which satisfy the following prop-
erties:

("1) For eachH22 H 3 there is somel?2 J ®such that J0  HY.

("2) If 32 is a Hamilton exceptional system thenH? is a Hamilton cycle on

V(G). If J0is a matching exceptional system therH{ is the edge-disjoint
union of two perfect matchings onV (G).

("3) Let H:= HP?+ +HJ o. If ec(A% B9 <D, then H; contains precisely

en9(A% B9=2 Hamilton cycles onV(G).

For ("3), note that (ZI0.17) implies G; = ~ J %and thus we havee’ ; (A% B9 =
en9(A%B9). Together with ("2) and ( 4), this now implies ("3).

Step 8: Decomposing the leftover and the robustly decomposa ble graph.
Finally, we can apply the “robust decomposition property’ of G guaranteed by
Corollary 2.9.5 to obtain a decomposition of the leftover from the previous step
together with G™P into Hamilton cycles (and perfect matchings if applicable).

To achieve this, letH%:= Gs H 9. Thus (210.1I6) and [Z10.1IB) imply that
every vertex in \j is isolated in H °while every vertexv 2 A[ B has degreedg, (V)
2% = Ds+2r 2% =2r in H (the last equality follows from (2.10.18)).
Moregyer, (H9 contains no edges. (This holds since’ 3% H 2 and soH°
Gs J %= Gs Gg by @I0I7).) Now letHa := HJA], Hg := HIB], H =
Ha + Hg. Note that H is the 2r-regular subgraph ofH ° obtained by removing all
the vertices in V. Let

(2104 108 o .

sO=rfK ,+7r = Lfr 3+7r = b .
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Recall from ( g) that each of the s® exceptional path systems inEFca + EFpca
contains a unique exceptional system and) ™ is the set of all theses® excep-
tional systems. Thus Corollary[Z9.5(ii)(b) implies that H + G™ has a decompo-
sition into edge-disjoint spanning subgraphsH £0:::; H % such that, writing Hy :=
fH®:::;H%Y, we have:

( 1) For each H2 H 4 there is some exceptional systend 9°2 J ™ such that

30 H©
( 2) If I%is a Hamilton exceptional system thenH °is a Hamilton cycle on
V(G). If I%%s a matching exceptional system thenH Pis the edge-disjoint
union of two perfect matchings onV (G).
(3) Let H) := H{?+  + HJ. Then Hy contains precisely ey o(A%B%=2
Hamilton cycles onV (G).
Indeed, ( 1) and ( ) follow from Corollary ZZ9.5(ii)(b) (recall that if J P contains
a matching exceptional system, thenjAY = jBY = n=2 is even by ( 9)). For ( 3),
note that ey9(A%BY = egm (A%BY = €5 ;m (A%BY by ( 9). Now ( 3) follows
from ( §) and ( 7).

Note that H1[H 2[H 3[H 4 corresponds to a decomposition o into Hamilton
cycles and perfect matchings. It remains to show that the propotion of Hamilton
cycles in this decomposition is as desired.

First suppose thateg (A%B% D. By ( 3), Hi consists of Hamilton cycles and
one perfect matching ifD is odd. By ( 3), ( 2) and ("2), both H, and H3 consist
of Hamilton cycles. By ( $) and ( ) this also holds forH,. SoH1[H 2[H 3[H 4
consists of Hamilton cycles and one perfect matching iD is odd.

Next suppose that eg(A%B9% < D. Then by ( 3), ( 3), ("3) and ( 3) the
numbers of Hamilton cycles inH, Hy, Hz and Hy are preciselybeHg(AO; B9=2c,
e9(A%B9Y=2, e3(A%BY=2 and ey (A% BY=2. Hence,H1[H 2[H 3[H 4 contains
precisely

enom o 9m 0(A%BY  eg(A%BY F

2 2 2

edge-disjoint Hamilton cycles, whereF is the size of the minimum cut in G. Since
clearly G cannot have more thanbF=2c edge-disjoint Hamilton cycles, it follows
that we have equality in the nal step, as required.







CHAPTER 3

Exceptional systems for the two cliques case

In this chapter we prove all the results that were stated in SectioZ 4. Recall
that the exceptional edges are all those edges incident tdo and By as well as all
those edges joiningA®to BC The results stated in Section[2.Y generated a decom-
position of these exceptional edges into exceptional systems: Elasuch exceptional
system was then extended into a Hamilton cycle. (Recall that actudly, the excep-
tional systems may contain some non-exceptional edges as well.) Ehis the most
di cult part of the construction of the Hamilton cycle decomposition and so forms
the heart of the argument for the two clique case.

Let G be aD-regular graph and let A% B° be a partition of V(G). Recall that
we say that G is critical (with respect to A% B and D) if both of the following
hold:

( GIA%B9) 11D=40;
e(H) 41D=40 for all subgraphsH of G[A% B9 with ( H) 11D=40.
Recall that Lemmas [Z7.3{Z.7.% guarantee our desired decompositionf the
exceptional edges into exceptional systems. Lemm@aZ.7.3 coverset non-critical
case whenG[A% B9 contains many edges, Lemm&Z.714 covers the critical case when

G[A% B9 contains many edges and Lemma 2.7.5 tackles the case wh&A% B
contains only a few edges.

3.1. Proof of Lemma 2.[7.1T ]

The following lemma (which collects some basic properties of critical gaphs)
immediately implies Lemmal[Z.7.1.

Lemma 3.1.1 Suppose that0< 1=n 1 and that D;n 2 N are such that

8
En:Z 1 ifn=0 (mod4),

(3.1.1) D n 2m=ac 1= (" D72 ifn=1 (mod4),
o 3 n=2 if n=2 (mod 4),
"(n+1)=2 ifn=3 (mod 4).

Let G be aD-regular graph onn vertices and letA% B°be a partition of V (G) with
jAY;iBY D=2 and ( G[A%BY) D=2. Suppose thatG is critical. Let W be
the set of verticesw 2 V(G) such thatdgjaogo(w) 11D=40. Then the following
properties are satis ed:

M1 jwj 3

(i) Either D =(n 1)=2andn =1 (mod4),or D =n=2 1andn=0

(mod 4). Furthermore, if n =1 (mod 4), then jWj=1.
(i) ec(A%BY 17D=10+5<n.

69
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(iv)
8
>3D=4+5 ifjwj=1,
ec w(A%B9 _19D=40+5 if jwj=2,
“D=5+5  if jWj=3.
(v) There exists a setw© of vertices such thatw W jw9 3 and for all
w’2 Wland v 2 V(G) nW°we have

21D 11D D
dG[AO;B 0](W0) E; dG[AO;B O](V) E and dG[AO;B 0](W0) dG[AO;B 0](V) %:
Proof. Let wq;:::;ws be vertices ofG such that

dG[AO;B 0](W1) dG[AO;B 0](W4) dG[AO;B 0](V)

21D=80. Let H be a spanning subgraph ofG[A% B such that dy (w;) =
d21D=80efor all i 4 and such that every vertexv 2 V(G) nW, satis es Ny (v)
W,. Thus ( H) = d21D=80e and soe(H) 41D=40 sinceG is critical. On the
other hand, e(H) 4 d21D=80e 4, a contradiction. (Here we subtract four to
account for the edges oH °between vertices inW.) Hence,dg[aog o(W4) < 21D=80
and sojWj 3. But jWj 1 sinceG is critical. So (i) holds.

Let j be minimal such that dgjaogo(w;) 21D=80. So 1< j 4. Choose
an index i with 1 i <] suchthat W f wy;::i;wig and dgpaog o(Wi)
dgiaoso(wi+1) D=240. Then the setW?:= fwy;:::;wig satis es (v).

Let H?be a spanning subgraph ofG[A% B9 such that GJA°nW;B°nwW] H?°
and dyo(w) = b11D=40c for all w 2 W. Similarly as before,e(H% 41D=40 since
G is critical. Thus

41D=40 eH?% eH® W)+ bllD=40cjWj 2
= ez w(A%BY+ bl1D=40cjWj 2:
This in turn implies that
(3.1.2) ec w(A®BY (41 11jWj)D=40+5:

Together with (i) this implies (iv). If D n=2, then by Proposition 223 we
have e w(A%B% D 28. This contradicts (iv). Thus (B.I.I) implies that
D=(n 1)=2andn=1(mod4),or D=n=2 1andn=0 (mod4). If n=1
(mod 4) and D = (n  1)=2, then Proposition 223 implies that ez w (A% B9
D=2 28. Hence, by (iv) we deduce thatjWj = 1 and so (ii) holds. SincejwWj 3
and ( G[A%B9) D=2, we have

jwjD (41 +9jWj)D 17D
2

ec(A%BY e w(A%BY+ 20 +5  So+5<n

(The last inequality follows from (ii).) This implies (iii).

3.2. Non-critical Case with  e(A%B9 D.

In this section we prove LemmaZ.7.B. Recall that Lemm&2.7]3 gives a dem-
position of the exceptional edges into exceptional systems in thean-critical case
whene(A%B% D. The proof splits into the following four steps:
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Step 1 We rst decompose G into edge-disjoint ‘localized' subgraphsH (i;i 9
and HYi;i9 (where 1 i;i® K). More precisely, eachH (i;i 9 only
contains AgA; -edges andBoB;.-edges ofG while all edges ofH Xi;i9 lie
in G [Ao[ Ai;Bo[ Bio], and all the edges ofG are distributed evenly
amongst theH (i;i% and H ;19 (see LemmdZ5.R). We will then move a
small number of A% %-edges between théd i; i 9 in order to obtain graphs
HOQi;i9 such that e(H ;i 9) is even (see Lemmd 3.2]1).

Step 2 We decompose eactd °¢i;i9 into (D n )=(2K ?) Hamilton exceptional
system candidates (see Lemma_3.2.3).

Step 3 Most of the Hamilton exceptional system candidates constructedn Step 2
will be extended into an (i;i 9-HES (see Lemmd 3.ZH4).

Step 4 The remaining Hamilton exceptional system candidates will be extendd
into Hamilton exceptional systems, which need not be localized (seedm-
mal3.2.5). (Altogether, these will be the n Hamilton exceptional systems
in J which are not mentioned in LemmalZ.7.3(b).)

3.2.1. Step 1: Constructing the Graphs ~ H%i;i 9. Let H(i;i % and Hi;i 9
be the graphs obtained by applying Lemmd 2.5 toG . We would like to decom-
pose eactH Xi; i 9 into Hamilton exceptional system candidates. In order to do this,
e(H ;i 9) must be even. The next lemma shows that we can ensure this pragty
without destroying the other properties of the H Xi; i 9 too much by moving a small
number of edges between théd 4i; i 9.

Lemma 3.2.1 Suppose thatO < 1=n "0 " "0 ; 1=K 1, that
D n=3, that 0 1and that D;n;K;m; (D n)=(2K?)2 N. Dene by
D n 2
(321) 2n = T and let = F:

Suppose that the following conditions hold:

(i) G is a D-regular graph onn vertices.
(i) P isa(K;m;" o)-partition of V(G) such thatD eg(A%B?% "gn? and
( GI[A%BY) D=2. Furthermore, G is not critical.
(i) Go is a subgraph ofG such that G[Ag] + G[Bo] Go, €c,(A%BY n
and dg,(v) = n for all v2 V.
(iv) Let G = G G[A] G[B] Go. eg (A%B9 is even and(G ;P) is a
(K;m;" o;")-exceptional scheme.
Then G can be decomposed into edge-disjoint spanning subgraphs(i;i 9 and
HO;i% of G (for all 1 i;i® K) such that the following properties hold,
where GYi;i9 := H(i;i%+ H;i 9:
(b1) EachH(i;i% contains only ApA;-edges andBB;.-edges.
(b2) HRi;i9 G [A%BY. Moreover, all but at most"% edges ofH °(i;i 9 lie
in G [Ao[ Ai;Bo[ Bjo.
(b3) e(H;i9) is even and2n  e(H%i;i9) 11"on?=(10K ?).
(bs) ( HOQi:i%) 31n= 30.
(b5) dGO(i;i 0) (V) = (2 "O) n for all v2 V.
(be) Let ¥ be any spanning subgraph dfl °(i;i 9 which maximisese(l8) under
the constraints that ( 18) 3n=5, HXi;i9[A;Bo] 1§ and e(18) is
even. Thene(8) 2n.
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Proof. Since 1=3 D=n, we deduce that

(3.2.2)
1=(7K?); (1 14) < and " "0 ;1=K;; 1:

Note that (ii) and (iii) together imply that

) (m
(3.2.3) ec (A%BY D n 2K2n n=4:

By (i) and (iii), each v 2 V; satis es

(3.2.4) ds (VW=D n @ZKZn:

Apply Lemma 2.5.2 to decomposeG into subgraphsH (i;i 9, HYi;i 9 (for all 1
i;i% K) satisfying the following properties, whereG(i;i9 := H(i;i9)+ HYi;i9:
(@9) Each H (i;i9 contains only AgA;-edges andBoB;o-edges.
(@9) All edges of HYi;i9 lie in G [Ao[ Ai;Bo[ Bidl.
@) eHY;i9) =@ 16"es (A%B9Y=K?2. In particular,

20 16)n  eHY;iY) (1+16")"on%=K?2:

(ag) o¥ o(i;i 0) (V) = ( dg [AOB 0](V) 2"n)=K2 forall v 2 V.
(@) dggiio(v)=(2 4"=K ?)n for all v 2 V.
Indeed, (&) follows from B23), LemmalZ5.2(a) and (i), while (a ) follows from
@BZ3) and LemmalZ5.2(8). We now move someA®B %edges ofG between the
HYi;i9 such that the graphs H%i;i 9 obtained in this way satisfy the following
conditions:
Each H °(i; i& is obtained from Hi;i9 by adding or removing at most
32K?"n n edges.
e(HNi;i% 2n ande(H%i;i9) is even.
Note that this is possible by (a9) and since n 2 N and eg (A%B9 2K?n is
even by (iv).
We will show that the graphs H (i;i 9 and H °{i; i 9 satisfy conditions (b1){(b ).
Clearly both (b) and (b2) hold. (a3) implies that
(3.2.5)

eHi9 =1 16es (A%BY=K? (1 "%es (A%BY=K?
Together with (ii) and our choice of the H°{i;i9 thi':‘p implies (bs3). (bs) follows

from (a2) and the fact that dgoii o (V) = dgisi o) (V) ™. Similarly, (a3) implies
that for all v 2 Vp we have

P (B22,E23

(326) dH 00(j;j 0) (V) = ( dG [A%B 0](V) "on)=K2:
Recall that ( G[A%BY) D=2 by (ii). Thus
.o, BZ8 D=2+ "% @zq +2"0 BZ2) 31n
Q. Z .
( HOG;i9) & togz N 0
so (by) holds.
So it remains to verify (bg). Todothis, x1  i;i® K andsetH%:= H%i:i9).

Let 18 be a subgraph ofH “°as de ned in (bg). We need to show thate(l#) 2n .
Suppose the contrary that e(l8) < 2n . We will show that this contradicts the
assumption that G is not critical. Roughly speaking, the argument will be that if
18 is sparse, then so iH% This in turn implies that G is also sparse, and thus
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any subgraph of G[A% B9 of comparatively small maximum degree is also sparse,
which leads to a contradiction.

Let X be the set of all those verticex for which dg (x) 3n=5 2. SoX
by (iv) and (ESch3). Note that if X = ;, then 18 = H%and soe(l8) 2n by (ba).
If j Xj 4,thene(l¥) 4@3Bn=5 2) 4 2n by BZ2). Hence 1l j Xj 3.
Note that ¥ X contains all but at most one edge fromH® X . Together with
the fact that I9[X ] contains at most two edges (sincgXj 3 and 9 is bipartite)
this implies that |

X
2n>e (8) e X)+ dig (X) 2

x2X
e(H x)2 1+jXjBn=5 2) 2
e(H% dyoo(X) + jXj3n=5 2) 3
X
(3.2.7) = eH% (dhoo(x) 3n=5+2) 3
x2 X
and so
320 X d : + "N
(32.8) eHYN < 2n + G[A"'BE(ZX) 3n=5+2 +3:
x2 X

Note that (b ;) and (3.2.7) together imply thatif e H%) 4n thene(!d) eHY%
jiXj81n=30 3n=5+2) 3 2n. ThuseH% < 4n and by 3Z3) we have
es (A%BY 4K?n=(1 "9 5K2n 3n. Hence
ec (A%B9 K2e(H% + "%s (A%BY) K2eH+3"h
@23 X
(3.2.9) D n+7"%h+ ds (aogo(x) K?@Bn=5) :
x2 X

Let G° be any subgraph ofG [A% B9 which maximisese(G° under the constraint
that ( G9 K?@B=5+2"9n. Note that if dg (aogq(v) K?2(@B=5+2"9n, then
v 2 Vg (by (iv) and (ESch3)) and so dyoo(v) > 3n=5 by @.2.8). This in turn
implies that v 2 X . Hence

X
e(GY ec (A%B9 ds (aogo(x) K?@B=5+2"9n +2
X2 X
BZ3)
(3.2.10) D n +7K?%;
Note that (B.Z.6) together with the fact that X 6 ; implies that

( GIABY) (G [A®BY) K2@Bn=5 2) "% ; 11D=40;

SinceG is not critical this means that there exists a subgraphG®of G[A% B9 such
that ( G 11D=40 K?2(3=5+2"9n and &(G% 41D=40. Thus
@ZI0
D n +7K?MHh e(GY) eGY eg,(A%BY 41D=40 n;

which is a contradiction. Therefore, we must havee(l#) 2n . Hence () is
satis ed.
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3.2.2. Step 2: Decomposing H%{i;i9 into Hamilton Exceptional Sys-
tem Candidates. Our next aim is to decompose eactH i;i 9 into n Hamilton
exceptional system candidates (this will follow from Lemma3.2.8). Béore we can
do this, we need the following result on decompositions of bipartite gaphs into
“even matchings'. We say that a matching iseven if it contains an even number of
edges, otherwise it isodd

Proposition  3.2.2 Suppose thatO < 1=n 1andthatn; n 2 N. Let
H be a bipartite graph onn vertices with ( H) 2 n=3 and wheree(H) 2n is
even. ThenH can be decomposed inton edge-disjoint non-empty even matchings,
each of size at mosBe(H)=(n).

Proof. First note that since e(H) 2n, it suces to show that H can be
decomposed into at most n edge-disjoint non-empty even matchings, each of size
at most 3e(H)=( n). Indeed, by splitting these matchings further if necessary, one
can obtain precisely n non-empty even matchings.

Set n® := b2 n=3c. Kenig's theorem implies that 9qH) n% So Proposi-
tion LZ.5 implies that there is a decomposition ofH into n® edge-disjoint matchings

My;:::;Mpo such that je(Ms) e(Ms)j 1foralls;s® n° Hence we have
e(H) e(H) 3e(H)
2 S5 1 eMy) -l =

forall s n® Sincee(H) is even, there are an even number of odd matchings. Let
Ms and Mg be two odd matchings. Soe(Ms);e(Mg) 3 and thus there exist two
disjoint edgese 2 M and €2 M. Hence,Ms e Mg €%andfe;€y are three
even matchings. Thus, by pairing o the odd matchings and repeatirg this process,
the proposition follows.

Lemma 3.2.3 Suppose that0 < 1=n " < 1,that + %< 1 and that
n; n; % 2 N. Let H be a bipartite graph onn vertices with vertex classesA[_Ag
and B[ Bg, wherejApj + jBoj "on. Suppose that

(i) e(H)iseven, ( H) 16n=15and ( H[A;B]) < (3=5 "g)n.
Let HO be a spanning subgraph off which maximisese(H 9 under the constraints
that ( H9) 3n=5 H[A0;Bo] H%ande(HY is even. Suppose that

(ii)2( + O9n eHY 10, n?Z
Then there exists a decomposition ofH into edge-disjoint Hamilton exceptional
system candidatesFy;:::;Fpn ;F2 11 F%, with parameter "o such thate(F9) = 2
foralls .

Since we are in the non-critical case with many edges betwee® and B® we
will be able to assume that the subgraphH ° satis es (ii).

Roughly speaking, the idea of the proof of Lemm&3.2]3 is to apply the y@vious
proposition to decomposeH ° into a suitable number of even matchingsM; (using
the fact that it has small maximum degree). We then extend these matchings into
Hamilton exceptional system candidates to cover all edges dfl. The additional
edges added to eactiM; will be vertex-disjoint from M; and form vertex-disjoint
2-paths uvw with v 2 V. So the number of connections fromA®to B° remains the
same (asH is bipartite). Each matching M; will already be a Hamilton exceptional
system candidate, which means thatM; and its extension will have the correct
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number of connections fromA° to B? (which makes this part of the argument
simpler than in the critical case).

Proof of Lemma 3231 SetA%:= Ag[ AandB%:= Bo[ B. We rst construct
the FQ. If 9=0, there is nothing to do. So suppose that °> 0. Note that each
F2 has to be a matching of size 2 (this follows from the de nition of a Hamilton
exceptional system candidate and the fact thate(FJ) = 2). Since H? is bipartite
and so

eH9) _ eHY 2( + 9n . 10

' CEEEEE) 3n=5 3’
we can nd a 2-matching FQ in H®% Delete the edges inF? from H and choose
another 2-matching F. We repeat this process until we have chosenh edge-

be obtained from H and H° by removing all the edges inF{:::;F%,. So now
2n eHY) 109 n?2 and both e(H;) and e(H?) are even. Thus Proposi-
tion B:Z-2 implies that there is a decomposition ofH ? into edge-disjoint non-empty

Note that each M; is a Hamilton exceptional system candidate with parame-
ter"o. SoifH? = Hy, then we are done by settingFs := M foreachs n. Hence,
we may assume thatH %= H; H{=H HPOcontains edges. LetX be the set of
all those verticesx 2 Ag[ By for which dyo(x) > 0. Note that eachx 2 X satis es
Nho(X) A[ B (sinceH[Ag;Bo] HPOY. This implies that each x 2 X satis es
dyo(x) b 3n=5c 1 ordyow(x)=1. (Indeed, suppose thatdyo(x) b 3n=5c 2
and dyw(x) 2. Then we can move two edges incident tox from H%to H® The
nal assumption in (i) and the assumption on dy o(x) together imply that we would
still have ( H9 3 n=5, a contradiction.) Since ( H) 16 n=15 by (i) this in
turn implies that dyo(x) 7n=15+2forall x 2 X.

pendently with probability 2 =3. By Proposition [.Z.4, with high probability, the
following assertions hold:

r:=jMj =(2=3 "p)n
(3.2.11) jfMs2M :1dm,(v)=1gj=2duo(V)=3 "on forallv2 V(H):

S r, we will now extend M¢ to a Hamilton exceptional system candidate Fs
with parameter "o by adding edges fromH % Suppose thabfor somel s r
we have already constructedFy;:::;Fs ;. SetH:= H i<s Fi- Let Ws be
the set of all those verticesw 2 X for which dy (w) = 0 and dyo(w)  32'gn
2]A0 [ Boj + e(Ms). Recall that X Ao[ Bo and Nyo(w) Nyo(w) A[ B
for eachw 2 X and thus also for eachw 2 Ws. Thus there are jWsj vertex-disjoint
2-paths uwu® with w 2 Ws and u;u® 2 Nyo(w) nV(Ms). Assign these 2-paths
to Mg and call the resulting graph Fs. Observe that Fs is a Hamilton exceptional

system candidate with parameter"y. Therefore, we have constructedr1;:::; F; by
extending Mq1;:::;M;.
We now construct .y ;:::;F . For this, we rst prove that the above con-

struction implies that the current “leftover’ H%, has small maximum degree. In-
deed, note that if w 2 Ws, then dyo (W) = dye(w) 2. By BZII), for each
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x 2 X, the number of Mg 2 M with du_ (x)=0is

rjf Ms2M tdu,(X)=19gj (2=3 "o)n (2dyo(x)=83+ "o n)
2n=3 2dyo(x)=3 2'gn
2n=3 2=3 b3n=5c 2"'gn
(4=15 2'g) n>d poo(x)=2:

Hence, we havedy» (x) < 32'gn for all x 2 X (as we remove 2 edges at each
time we havedy,(x) = 0 and dyw(x)  32'on). Note that by de nition of H
all but at most one edge in H% must have an endpoint in X. So forx 2 X,
dyoo(X) j Xj+1 j Ao[ Boj+1 "on+1. Therefore, ( H% ) < 32'gn.

Let HOC= H; (F;+ +F;). SoH%ds the union ofH?, and all the M with
r<s n. Since each ofH; and Fi;:::;F; contains an even number of edges,
e(H %% is even. In addition, Mg H%%or eachr<s n,soeH 2(n ).
By (B.Z11), since (H2,) 32'on, we deduce that for every vertexv 2 V (H %%,
we have

d Vv =
Hgg()+" 3n 5+"0n+32"on 2(n3 r

In the second inequality, we used thatdyo(v)  dyo(v). Moreover, we have

0 00o(V) on +( HY

eH=eHX )+ eM;s1 + +My,) 329n2+30"n(Nn 1) 62'9n%

Thus, by Proposition .22 applied with H%and r=n playing the roles of H

and , there exists a decomposition oH%4nto n  r edge-disjoint non-empty even
matchings Fr.1, :::, F, , each of size at most 8 H°¥=(n r) on=2. Thus
each suchFs is a Hamilton exceptional system candidate with parameter'y. This

completes the proof.

3.2.3. Step 3: Constructing the Localized Exceptional Systems. The
next lemma will be used to extend most of the exceptional system aalidates guar-
anteed by Lemmal[3.Z.8 into localized exceptional systems. These exisions are
required to be “faithful' in the following sense. Suppose thatF is an exceptional
system candidate. ThenJ is a faithful extension of F if the following holds:

J contains F and F[A%B9 = J[A%BC.

If F is a Hamilton exceptional system candidate, thenJ is a Hamilton
exceptional system and the analogue holds i is a matching exceptional
system candidate.

Lemma 3.2.4 Suppose that0 < 1=n "o 1, that O 1 and that
n;K;m; n 2 N. Let P be a(K;m;" o)-partition of a set V of n vertices. Let
1 i;i% K. Suppose thatH and Fy;:::;F, are pairwise edge-disjoint graphs

which satisfy the following conditions:
(i) V(H)= V and H contains only AgA;-edges andB(Bj.-edges.
(i) EachFs is an (i;i 9-ESC with parameter "j.
(i) Eachv2 Vp satises dy+P g (V) (2 + " To)n. b
Then there exist edge-disjoint(i;i 9-ES J1;:::;J, with parameter "o in H +  Fs
such that Js is a faithful extension of Fs forall s n.
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Proof. reachs n inturn, we extend Fs into an (i; i 9-ES Js with parameter

"oinH+ Fgsuch that Js and Jso are edge-disjoint for alls®< s. SinceH does not
contain any A% %edges, theJs will automatically satisfy Js[A%B9 = Fs[A%BY.

Suppose thg; forsome 1 s n we have already constructedJq;:::;Js 1. Set
Hs = H <cs Jso. Consider anyv 2 Vp. Sincev has degree at most 2 in an
exceptional system and in an exceptional system candidate, (iii) impes that

di.(v) disP e (W) 20 Pron:

Together with (i) this shows that condition (ii) in Lemma Z3.Z1holds (with Hsg
playing the role of G). SinceP is a (K;m;" o)-partition of V, LemmalZ.3.2(i) holds
too. Hence we can apply Lemmd2.3]2 to obtain an exceptional systerds with

parameter "o in Hg + Fg such that Js is a faithful extension of Fs. (i) and (ii)

ensure that Js is an (i;i9-ES, as required.

3.2.4. Step 4: Constructing the Remaining Exceptional Systems. Due
to condition (iii), Lemma 8.Z.4lcannot be used to extendall the exceptional system
candidates returned by Lemmal3.Z.B into localized exceptional systes. The next
lemma will be used to deal with the remaining exceptional system canidates (the
resulting exceptional systems will not be localized).

Lemma 3.2.5 Suppose that0< 1=n "g "0 1and thatn; n 2 N.
Let A;Ap;B; B be a partition of a setV of n vertices such thatjApj + jBoj "on

satisfy the following conditions:
(i) V(H)= V and H contains only AgA-edges andB B -edges.

(i) Each Fg is an exceptional system candidate with parametet.

(i) For all but at most "% indicess n the graphFs is either a matching
exceptional system candidate withe(Fs) = 0 or a Hamilton exceptional
system candidate withe(Fs) = 2. In particular, all but at most "% of the
Fs satisfy de_(v) 1 forall v2 V.

(iv) All v2 Vg satisfy dy+P g (V)=2n.

(v) All v2 A[ B satisfy dy.+" £ (v) 2"on.

Then there exists a decomposition oH+  Fs into edge-disjoint exceptional systems

Ji;::1;dn with parameter "o such that Js is a faithful extension of F¢ for all
s n
Proof. Let Vp:= Ao[ Bo and let vi;:::;V)y,; denote the vertices ofVy. We will

decomposeH into graphs J? in such a way that the graphsJs := J0+ Fs satisfy
dy.(vi)=2forall i j Vojandd;,(v) 1forallv2 A[ B. Hence eachls will be
an exceptional system with parameter"y. Condition (i) guarantees that Js V\AII be
a faithful extension of Fs. Moreover, the Jg will form a decomposition of H +  Fs.
We construct the decomposition ofH by considering each vertexv; of Ag[ Bg in
turn.

Initially, we set V() = E(J9) = ; forall s n. Suppose that for some
1 i j Voj we have already assigned (and added) all the edges Hff incident with
each ofvy;:::;v; 1 to the JQ. Considerv;. Without loss of generality assume that

Vi 2 Ag. Note that Ny (vi) A by (i). De ne an auxiliary bipartite graph Q; with
vertex classesV; and V, as follows: Vi := Ny (vi) and V, consists of 2 dr_(vi)
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copies ofFg for eachs n . Moreover, Q; contains an edge betweerv 2 V; and
Fs 2 V, if and only if v 2V (Fs + J9).

We now show that Q; contains a perfect matching. For this, note that jV;j =
2n  d® g (Vi) = jVoj by (iv). (v) implies that for each v 2 V; A we have
d” (F+39(V)  dusP (V) 2'n. Sov lies in at most 2'on of the graphs
Fs + J2. Therefore, dg, (V) | Voj 4"on j V,j=2 for all v 2 V;. (The nal
inequality follows since (iii) and (iv) together imply that dy (vi)=2 n d° ¢ (Vi)
2n  (n "%) 2% n=2andsojV,j = jVij n=2.) On the other hand,
since eachFs + JQis an excepti{gmal system cangidate with parameter'y, (ESC3)
implies that jV (Fs + Jg)\ Aj (T To=2+2"g)n "on for eachFs 2 V,. Therefore
do,(Fs) j Vij j V(Fs+ 3\ Aj j Vij=2 for eachFs 2 V,. Thus we can apply
Hall's theorem to nd a perfect matching M in Q;. WheneverM contains an edge
betweenv and Fs, we add the edgev;v to J0. This completes the desired assignment
of the edges ofH at v; to the J2.

3.2.5. Proof of Lemma 2..3] In our proof of Lemma [Z.7.3 we will use
the following result, which is a consequence of Lemmds_3.2.4 ald 3.2.5.ivén a
suitable set of exceptional system candidates in an exceptional Beme, the lemma
extends these into exceptional systems which form a decompositioof the excep-
tional scheme. We prove the lemma in a slightly more general form tha needed
for the current case, as we will also use it in the other two cases.

Lemma 3.2.6 Suppose that0 < 1=n ", " "0 ;1=K 1, that
1=(7K?) < 1=K? andthatn;K;m; n; n=K 22 N. Let

0.—

= and = W:

K2
Suppose that the following conditions hold:

() (G ;P)isa(K;m;"o;")-exceptional scheme withG j = n.

(i) G is the edge-disjoint union of H(i;i%9, Fi(i;i9;:::;F, (i;i9 and
FOi;19;::0F% (519 overall 1 §;i% K.

(i) Each H (i;i 9 contains only AgA;-edges andBoB;.-edges.

(iv) Each Fs(i;i9 is an (i;i 9-ESC with parameter " .

(v) EachFYi;i9 is an exceptional system candidate with parametefy. More-
over, for all but at most"% indicess % the graphFXi;i 9 is either a
matching exceptional system candidate witle(FXi;i %) =0 or a Hamilton
exceptional system candidate withe(FJ(i;i9) =2.

(vi) dg (V)=2K?2n forall v2 V. p

(vii) por all 1 i;i® KletG (i;i9:=H(i;i%+ | Fs(i;i9+
s o FX0;19. Then dg (iio)(v) = (2 "On for all v2 V.
Then G has a decomposition intoK 2 n edge-disjoint exceptional systems
(195530 (1Y and ID(05195:053%, (1519
with parameter "o, where1l i;i® K, such that Js(i;i9 is an (i;i9-ES which is
a faithful extension of Fs(i;i9 forall s n and JX(i;i9 is a faithful extension of
Fi;i9 foralls .

Proof. Fixany i;i® K andsetH := H(i;i% and Fs := Fg(i;i%) foralls n.
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a (i;i 9-HES. (i) and (iv) ensure that conditions (i) and (ii) of Lemma 3.2.4]ho Id.
To verify Lemma B.2.4(iii), note that by (v) and (vii) each v 2 Vj satis es

di+” e, (V)= do o) & o) 2 "On (% "9n 2'%h
=2 ° 29 @ + 7

(Here the rst inequality follows since (v) implies that deogi;io(v) 1 for all but
at most "% indicess ~ h.) Thus we can indeed apply Lemmd 324 to nd edge-
disjoint (i;i9-ES J1(i;i9;:::;3 4 (i;19 with parameter "o in H +  Fs such that
Js(i; 19 is a faithful extension of Fs for all s n . We repeat this procedure for all
1 i;i% K to obtain K2 n edge-disjoint (localized) exceptional systems.

Our next aim is to apply Lemma [3.2.8 in order to construct the J(i;i9. Let
Ho bethe union of H(i;i9 (J1(i;i%+ +J, (i;i%) overall i;i® K. Relabel the
Fi;i% (forall s % andalli;i® K) to obtain exceptional system candidates

(3.2.12) Ouos P Fo(V) = dg (v) 2K?n =2K?n  2K?n =2n:

Thus condition (iv) of Lemma holds with Ho; F2playing the roles ofH; F . (iii)
and (v) imply that conditions (i){(iii) of Lemma 3[Z5 hold with K 2"° playing the
role of "% To verify Lemma B.Z5(v), note that eachv 2 A satis es dy,+ © Fo(v)
de (V;Ag) + dg (v;BY  2"9n by (iii), () and (ESch3). Similarly each v 2 B
satis €s dy,+ " o(v)  2°on. Thus we can apply Lemmal3.26 withHo; F&; K 20
playing the roles of H; Fs;"° to obtain a decomposition of Hg + (F2into n

faithful extension of Ffor all s n . Recall that each FQis a F4(i;i 9 for some
;1% K and somes®  %. Let J%(i;i9 := J2. Then all the Js(i;i 9 and all the
JYi;19 are as required in the lemma.

We now combine Lemma$3.2]1[3.213 and 3.2.6 in order to prove Lemnma 2.l7.3
Proof of Lemma 2[7.3.1 Let G be as dened in LemmalZ.7.8(iv). Choose a

new constant"®such that" "% ; 1=K. Set
D n 2 2
(3.2.13) 2n = <z 1= <z and 0= ek
Similarly as in the proof of Lemmal3.2.1, since 1=3 D=n, we have
(3.2.14)
1=(7K?); (1 14) 1< and " "9 ;1=K;; ;1 L

Apply Lemma B.ZT with ; playing the role of in order to obtain a decomposition
of G into edge-disjoint spanning subgraphsH (i;i %) and H{i;i9 (forall 1 ;i
K ) which satisfy the following properties, whereG%i;i9 := H(i;i9)+ H%i;i9:
(b1) Each H(i;i 9 contains only AgA;-edges andB(B;o-edges.
(b2) Hi;i9 G [A%BY. Moreover, all but at most "% edges ofH °(i;i 9 lie
in G [Ao[ Ai;Bo[ Bio].
(b3) e(HNi;i9)isevenand 2n  eH%i;i%9) 11"gn%=(10K ?).
(bs) ( Hi;i9) 31n=30.
(bs) dGO(i;i 0) (V) = (2 "0) n for all v 2 Vo.
(bs) Let 1| any spanning subgraph ofH °{i;i 9 which maximises e(i#) under
the constraints that ( 18) 3 1n=5, Hi;i9[A;Bo] 1§ and e(18) is
even. Thene(l¥) 2n.
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Fixany 1  i;i® K. SetH := H(i;i% and H%:= H%i;i9. Our next aim
is to decomposeH Pinto suitable ‘localized' Hamilton exceptional system candi-
dates. For this, we will apply Lemma[3:Z3 with H® ;; 9 playing the roles of
H;; % Notethat ( HY 31n=30 16 1n=15 by (bs;) and ZZ13). More-
over, ( HY9A;B)) ( G[A;B])  "on by (iv) and (ESch3). Since e(H% is
even by (bs), it follows that condition (i) of Lemma 3Z.31holds. Condition (ii)
of Lemmal[3.Z3 follows from (3) and the fact that any B as in (bg) satis es
e(l8) eHY  11'on?=(10K?)  10"¢ 1n? (the last inequality follows from
@B.Z.13)). Thus we can indeed apply Lemma_3.2]3 in order to decompogg “°into
n edge-disjoint Hamilton exceptional system candidates;;:::;F ,n;F3:::; Fogn
with parameter " such that e(F) =2 forall s {n. Next we set

0.—

2 = W and 2 = W
Condition (b) ensures that by relabeling the Fs's and F2s we obtain n edge-
disjoint Hamilton exceptional system candidates F1(i;i9;:::;F ,n(i;i9; FXi;i9;

i Fogn(i; i 9 with parameter "o such that properties (&% and (b9 hold:

(@) Fs(i;i9 is an (i;i 9-HESC for everys  ,n. Moreover, at least In of
the Fs(i; i 9 satisfy e(Fs(i;i9) = 2.

(09 e(FXi;i9) = 2 for all but at most "% of the Fi;i9).
Indeed, we can achieve this by relabeling eacks which is a subgraph ofG [Ag [
Ai:Bo[ Bjd] as one of theFso(i;i 9 and eachFs for which is not the case as one of
the Fa(i;i 9.

Our next aim is to apply Lemma [3.28 with G ; ,; 9 playing the roles of
G ;; O Clearly conditions (i) and (ii) of Lemma B:Z.8@ hold. (iii) follows from (b 1).
(iv) and (v) follow from (a 9 and (b9. (vi) follows from Lemma 2.Z.3(i),(iii). Finally,
(vii) follows from (b 5) since G¥(i; i 9 plays the role of G (i;i 9. Thus we can indeed
apply Lemma[3.2.6 to obtain a decomposition ofc into K ? n edge-disjoint Hamil-

rameter "o, where 1 i;i® K, such that Js(i;i9 is an (i;i 9-HES which is a
faithful extension of Fs(i;i9 for all s ,n and JX(i;i9 is a faithful extension of
FJi;i9 forall s 9n. Then the setJ of all these Hamilton exceptional systems
is as required in LemmaZ.7.B.

3.3. Critical Case with e(A%B9% D

The aim of this section is to prove Lemma 2.7 #. Recall that Lemm&Z.7l4iges
a decomposition of the exceptional edges into exceptional systesmnin the critical
case whene(A%B% D. The overall strategy for the proof is similar to that of
LemmalZ73. As before, it consists of four steps. In Step 1, we usemmal[331
instead of Lemmal3.Z.1. In Step 2, we use Lemma_3.3.3 instead of Lemr&aZ.3.
We still use Lemmal3.Z.6 which combines Steps 3 and 4.

3.3.1. Step 1: Constructing the Graphs  H%{i;i9. The next lemma is an
analogue of Lemmd3.211. We will apply it with the graphG from LemmalZ.7.4(iv)
playing the role of G. Note that instead of assuming that our graph G given
in Lemma [2.7.2 is critical, the lemma assumes thateg (A% B9 2n. This is
a weaker assumption, since ifG is critical, then ez (A%B9) es(A%B9 < n
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by Lemma [311(iii). Using only this weaker assumption has the advantge that
we can also apply the lemma in the proof of Lemmd_2.7]5, i.e. the case whe
es(A%B9Y <D . (b;) is only used in the latter application.

Lemma 3.3.1 Suppose that0 < 1=n "o " 1=K 1 and that
n;K;m 2 N. Let (G;P) be a(K;m;" o;")-exceptional scheme withiGj = n and
ec(Ao);es(Bo) =0. Let Wy be a subset ol of size at most2 such that for each
w 2 Wy, we have

(3.3.1) K? dgpaogqw) es(A%B9=2:

Suppose thateg (A%B9%  2n is even. ThenG can be decomposed into edge-disjoint
spanning subgraphdH (i;i% and H{i;i% of G (for all 1 i;i® K) such that the
following properties hold, whereGYi;i9 := H(i;i%+ H%{;i9:
(b1) EachH(i;i9 contains only ApA;-edges andBB;.-edges.
(bo) Hi;i9  G[A%BY. Moreover, all but at most20'n=K 2 edges oH %i; i 9
lie in G[Ao[ Ai; Bo[ Bio].
(b3) eH®Ri;i9) =2 es(A%BY=(2K?) ore(Hi;i9) =2 eg(A%B9Y=(2K?) .
(b4) o¥ 00(j;ji 0) (V) = ( dG[AO;B O](V) 25"n)=K2 for all v2 V.
(b5) dGO(i;i 0) (V) = ( ds (V) ZS'H)ZKZ for all v2 V.
(be) Eachw 2 Wy satis es dy oy o) (W) = ddgjacs o](w):Kze or dy ogj;j o) (W) =
wG[AO;B 0](W)=K2C.
(b7) Eachw 2 Wy satis es 2dy oisi (W) e(H }i;i 9).

Proof. Sinceeg(A%BY) is even, there exist unique non-negative integerd and q
such that es (A%B9 = 2K ?b+2qand q K ?. Hence, forall 1 i;i® K, there
are integershy;io 2 f 2b;2b+2g such that = ;,  biio = ec(A%B9. In particular,
the number of pairsi;i© for which ko = b+ 2 is precisely g. We will choose the
graphs H°{i;i 9 such that e(H%(i;i%) = b;o. (In particular, this will ensure that
(b3) holds.) The following claim will help to ensure (bg) and (b7).
Claim. For eachw 2 Wy and all i;i® K there is an integera; o = a;; o(w) which
satis es the following properties:

Qjjjo = ddG[AO;B 0](W):K26 or ajjo = mG[Ao;B 0](W):K2C.

gaiio  byio.

o K ajjo = dg[Ao;B O](W).

To prove the claim, note that there are unique non-negative integes a and p such
that dgpaogoq(w) = K2a+ pand p<K 2. Note that a 1 by (3:3.1). Moreover,
(3.3.2) 2(K%a+ p) = 2dgaog g (W) ec(A%BY =2K?2b+2q:
This implies that a b, Recall that b0 2 f2b;2b+F;Zg. So if b > a, then the
claim holds by choosing anya;jo 2 f a;a+1gsuch that ;0 ¢ aiio= dgacs o(W).
Hence we may assume that = b. Then 83.2) implies that p g. Therefore, the
claim holds by setting a;; o := a+ 1 for exactly p pairs i;i° for which b;jo=2b+2
and setting a;; o := a otherwise. This completes the proof of the claim.

Apply Lemma 5.2 to decomposeG into subgraphsH (i;i 9, HYi;i9 (for all i;i°
K ) satisfying the following properties, whereG(i;i%9 = H(i;i 9+ HYi;i9:

(@9) Each H (i;i9 contains only AgA;-edges andBoB;o-edges.

(@9) All edges of HYi;i9 lie in G[Ao[ Ai;Bo[ Biod].
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@) eHYi;i9) = (ec(A%B9 8'n)=K?2

(ag) dH o(i;i 9) (V) = ( dG[AO;B 0](V) 2““):K2 for all v 2 V.

@) dgiio(V) = (da(v) 4M)=K2 for all v 2 Vo.

Indeed, (&) follows from Lemmal[Z5.2(a) and our assumption that eg (A% B9
2n.

Clearly, (a2) implies that the graphs H (i;i 9 satisfy (b;). We will now move
someAB %edges ofG between theH ¥i;i 9 such that the graphs H °{i;i 9 obtained
in this way satisfy the following conditions:

Each H%i;i 9 is obtained from HYi;i9 by adding or removing at most
20'n=K ? edges ofG.

e(H%;i9) = byo.
dy oo(i;i o (W) = & o(w) for eachw 2 Wo, where a;; o(w) are integers satis-
fying the claim.

Write Wy =: fwig if jWoj = 1 and Wpy =: fwy;wog if jWoj = 2. If Wo 6 ;,
then (a3) implies that dy oo (W1) = aijo(wi) (2'n=K 2 +1). For each i;i® K,
we add or remove at most 2n=K 2 + 1 edges incident to w; such that the graphs
HOi;i9 obtained in this way satisfy dyoyijo(W1) = a;io(wi). Note that since
aiio(wi) b dgjaos 0](W1):K2C 1 by 331), we can do this in such a way that
we do not move the edgew;w, (if it exists). Similarly, if jWgj = 2, then for each
i;i® K we add or remove at most 2n=K 2 + 1 edges incident to w, such that the
graphs Hi;i9) obtained in this way satisfy dy ;o (W2) = a;;o(Wz). As before,
we do this in such a way that we do not move the edgeviw; (if it exists).

Thus dH 00(j;ji 0) (Wl) = Qi O(Wl) and dH 00(j;ji 0) (Wz) = & O(Wz) for all 1 i 0
K (if wi;wy exist). In particular, together with the claim, this implies that
Oy onisi o) (W1); diyoogiii 0 (W2) b 0=2. Thus the number of edges ofH °(i;i 9 inci-
dent to Wy is at most

X
(3.3.3) ooz oy (W) bysio:
W2W0

(This holds regardless of the size 0fV,.) On the other hand, (a3) implies that for
alli;i® K we have

e(Hi;i% = (es(A%BY 8'n)=K? 2(2'n=K?+1)= bjo 13n=K 2

Together with (B:3.3) this ensures that we can add or delete at most13'n=K ?
edges which do not intersectW, to or from each H%{i;i9 in order to ensure that
e(Hi;i9) = boforall i;i® K. Hence, (), (bs) and (b7) hold. Moreover,

(3.3.4) eHMi:i9 HYIY) j Woj(2'n=K 2+1)+13"n=K 2 20'n=K %
So () follows from (a9). Finally, (b 4) and (bs) follow from (B:34), (a$) and (a2).

3.3.2. Step 2: Decomposing H{i;i9 into Hamilton Exceptional Sys-
tem Candidates. Before we can prove an analogue of Lemna=3.2.3, we need the
following result. It will allow us to distribute the edges incident to the (up to three)
verticesw; of high degree inG[A% B9 in a suitable way among the localized Hamil-
ton exceptional system candidates=; . The degrees of these high degree verticeg
will play the role of the a;. The ¢ will account for edges (not incident to w;) which
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have already been assigned to thé;. (b) and (c) will be used to ensure (ESC4),
i.e. that the total number of “connections' betweenA® and BCis even and positive.

Lemma 332 Let1 g 3andO < landr;r 2 N. Suppose that

0] B gE & L

(i) qa+ ;,G=201+ )r.

(i) 31r=60 aj;a, r and3lr=60 a3 31r=30.
Then for all i g and all j r there are &; 2 f 0;1;2g such that the following
propertieﬁohold:

@) | p&i T & foralli q. =

(b) g+  qa =4foralj randg+ ;| ja; =2forall r<j r.

(c) Forall j r there are at least2 ¢ indicesi qwith a;; =1.

Proof. We will choosea; 1;:::;a; for eaphi q inF;urn such that the following
properties ( {){( i) hold, where we write cj(') =G+ o ;a0 foreach0 i ¢
(so cj(o) =q):

(i) Ifi 1then P = .

(ya,d

(o1 V<2 thenjc® ) 1foralljjo .

() =

(i) If j rcj(i) 2r, then ¢” 2 for all r andc 2 forall r<j
r

1 1

()1 i gand cj(i Y < 2 for somej r,thena; 2f0;1g.
We will then show that the &; de ned in this way are as required in the lemma.

Moreover, ( o) and ( o) are vacuously true. Suppose that forsome 1 i qwe
have already de ned ajo; for all i°<i and allj r such that ( jo){( o) hold. In
order to dene &; forall j r, we distinguish the following cases.

P .
Case 1: . .Y o,

ior
Recall that in this casec’ Y 2 for allj rby(; 1) Foreachj rinturnwe

choosea;;; 2f0;1;2g as large as possible subject to the constraints that
it cj(i Y 4and
o ai;,- 0 a .

Sincecj(i) = a + cj(i 1), (i) follows from ( ; 1) and our choice of thea;; . ( i)
is vacuously true. To verify ( ;), note that q(') cj(' Vo2 by (i 1) Suppose

that the second part of ( ;) does not hold, i.e. that c(ri])Jrl > 2. This means that

a;n +1 > 0. Together with our choice of the a;; this implies that q(i) = 4 for all
] n. Thus

X 0 X X X X X
20+ Yr=4r +2(r r)< G’ = a; + ajo + G ajo + G

jior jior i0<i jor i i jor
contradicting (ii). Thus the second part of ( ;) holds too. Moreover, c(r?ﬂ =

,iHll) = 2 also means thata;, +1 =0. So jo n @jo= a, i.e. (i) holds. ()is

vacuously true sinceci(i Vo2 by (i 1).

C(
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P .
Case 2: 2r @ j rc](' D<o,
If i 2 f1;2g then together with (iii) this implies that

X
(3.3.5) cj(' Do a:
jor
If i =3 then
X X X 31r
(3.3.6) ¢ aioj = a1+ a o
jior j rio 2
: : P i i
by (iii). In particular, in both cases we have | | ¢ r. Together with ( ; 1)

this implies that cj(i Vofy; 2gforallj r.Let0O r% r be the largestinteger
suchthatcls ¥ =2. Sor%<r and j " Y = r+ 0 Together with (B:3.5) and

r
(B38) this in turn implies that a r + r°(regardless of the value of).
Seta;; :=1forall r°<j r. Note that
X X :
aj =r r°=2r c](' Doog

ro<j r jor

to be a sequence of the form 2::;2;0;:::;0 (in theF;ase whena;
iseven)or2:::;2;1;0;::::0 (in the case ernai rog ¢ & is odd) which is
chosen in such a way that ;| oa;; = a o r & T @& I+ r% This can
be done sincea; r + r%implies that the right hand side isFat most 2r0
Clearly, ( i), ( i)and ( ;) hold. Since (1) = (1)

G Fat g 2r as we

are in Case 2, (;) is vacuously true. Clearly, our choice of thea;; guarantees that
cj(') 2forallj r. Asin Case 1 one can show that:j(') =2forall r<j r.
Thus ( i) holds.

roj o &

P .
Case 3: | rcj(' Deor a.

Note that in this case

X i X X

2r > Vg = ajo + G;
i

ior i jir
and soi < q by (ii). Together with (iii) this implies that a r. Thus for all
j  r we can choosey; 2f0;1g such that ( i){( i) and ( ;) are satised. ( ;) is
vacuously true.

This completes the proof of the existence of numbers;; (for all i g and all
j r) satisfying ( ;){( i). It remains to show that these &;; are as r%quired in
the lemma. Clearly, ( 1){( o) imply that (a) holds. Since C](Q) =g+ gag
the second part of (b) follows from (4). Since cj(q) 4 for eachj r by ( g)
together with (ii) this in turn implies that the rst part of (b) must ho Id too. If
¢ < 2,then ( 1){( q) and (b) together imply that for at least 2 ¢ indicesi we
havea;; = 1. Therefore, (c) holds.
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We can now use the previous lemma to decompose the bipartite grapinduced
by A° and B?into Hamilton exceptional system candidates.

Lemma 3.3.3 Suppose that0 < 1=n " < 1,that O < 199200
and that n; n= 200 n 2 N. Let H be a bipartite graph onn vertices with vertex
classesA[_Ag and B[ By wherejAgj + jBoj  "on. Furthermore, suppose that the
following conditions hold:

(€1) e(H)=2(1+ )n.

(co) There is a setw® V(H) with 1 j WY 3 and such that

eH WY 199n=100anddy(w) 13n=25for all w2 W°

(c3) There exists a setWy, WO with jWoj = minf2;jWYg and such that

dy(w) n forall w2 Wg anddy (W)  41n= 40for all w°2 WonW,.
(c4) Forall w2 W%and allv2 V(H)nW°we havedy (w) dy(v) n= 150
(cs) Forall v2 A[ B we havedy (v) "on.

Then there exists a decomposition ofH into edge-disjoint Hamilton exceptional
system candidatesF;;:::;F, such thate(Fs) = 4 for all s n ande(Fs) =2
forall n<s n . Furthermore, at least n= 200 of the Fs satisfy the following
two properties:

de, (W) =1 for all w2 Wo,
e(Fs)=2.

Roughly speaking, the idea of the proofis rstto nd the Fs which satisfy the
nal two properties. Let H; be the graph obtained fromH by removing the edges
in all these Fs. We will decomposeH; W into matchings M; of size at most two.
Next, we extend these matchings into Hamilton exceptional systencandidates F;
using Lemmal3.3.2. In particular, if e(M;j) < 2, then we will use one or more edges
incident to W°to ensure that the number of A% %-connections is positive and even,
as required by (ESC4). (Note that it does not su ce to ensure that the number of
A% %edges is positive and even for this.)

Proof. SetH%:=H W9 Wy = fwy;wjw,;gand W%=: fwy;:::;wwog. Hence,
if jwG =3, then WonWy = fwszg. Otherwise W%= Wy

We will rst construct ey (W9 Hamilton exceptional system candidatesFs,
such that each of them is a matching of size two and together they aver all edges
in HWY. So suppose thatey (W% > 0. Thus jw9 =2 or jw9 =3. If jw9 =2,
let f denote the unique edge inH [WY. Note that

eH) e(H) (du(w)+du(wz) 1) 2(1+ )n (2n 1) 1

by (c1) and (c3). So there exists an edgd ®in H® Therefore, M := ff;f Q is
a matching. If jw9 = 3, then ey (W9 2 asH is bipartite. Since by (c,) each
w 2 WOsatises dy (w) 13n= 25, it is easy to construct ey (W% 2-matchings
M2M o such that duo(w) =1 for all w2 W%and all s ey (W9 and such
that HIWTY  MP[ M2 (o SetFn sa = MJforalls ey (W9 (regardless
of the size of W9

We now greedily choosen= 200 ey (W9 additional 2-matchings F1gg n= 200+1 ;
25 Fn ey (wo in H which are edge-disjoint from each other and fromF, ;
Fn e (wo+r and such that de,(w) = 1 for all w 2 Wy and all 199n= 200 <
S n eq (W9. To see that this can be done, recall that by (¢) we have
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dy (w)  13n= 25 for allw 2 WP (and thus for all w 2 W;) and that (c1) and (c3)
together imply that e(H W) 2(1+ )n n>n if jWpj=1.

fying the two properties in the “furthermore part' of the lemma. Let H; and H?
be the graphs obtained fromH and H ° by deleting all the n= 100 edges in these
Hamilton exceptional system candidates. Set

(3.3.7) r ;=199 n= 200 and O:= n=r =200=199
Thus 0 9< 1 and we now have
(3.3.8) HiW9=;; eH1)=eH) n=100=2(1+ Yr and eHD 2r

(To verify the last inequality note that e(HY) eH W9 2r by (cp).) Also,
(c2) and (c4) together imply that for all w2 W%and all v2 V(H) nW°we have

(3.3.9) du, (W) n=2 4"n and Ay, (W) du,(v)  2'9n:
Moreover, by (c;) and (c3), eachw 2 W, satis es
3r=60 13n=25 n=200 dy(W) du H,(W)= duy, (W)
(3.3.10) n n=200=r:
Similarly, if jWY =3 and so ws exists, then
3Ir=60 13n=25 n=200 dy(ws) du H,(W3)= du,(W3)
(3.3.11) 41n=40 31r=30:

B.3.9) and (3.3.10) together imply that dyo(v)  du,(v) < dy,(wy) r for all
v2V(H)NWO Thus qHD) ( HY) r. Together with Proposition LZ.5 this

implies that H can be decomposed into edge-disjoint matchingsMy;:::; M, such
that jm; mjoj 1foralll j;j° r, where we setm; := e(M;).

Our next aim is to apply Lemma [3.3.2 with jW9, dw, gwi), m;, °playing the
roles ofq, a;, ¢, (foralli j WYandallj r). Since ,mj = eH) 2

by (3338) and sincejm;  mjoj 1, it follows that m; 2 f 0;1;2g for all j
r. Moreover, by relabeling the matchingsM; if necessary, we may assume that
mi  gne m,. Phus condition (i) of Lemma B.3.2 holds. (ii) holds too
since i wo A, (wi) + joemp = e(H1) =21+ 9r by (B38). Finally, (iii)
follows from (3:3.10) and [3.3.11). Thus we can indeed apply Lemma_3.3i2 order
to obtain numbers a;; 2 f0;1;2g (for all i j WY and j r) which satisfy the
following Igroperties:

@ B = duy(w)forall i j AR P

(09 mj+ woay =4forall j % andm; + ;; wqay =2 forall

Y<j or.

(€9 If mj < 2 then there exist at least 2 m; indicesi such that a;; = 1.

For all j r, our Hamilton exceptional system candidateF; will consist of the

edges inM; as well as ofa;; edges ofH; incident to w; (for eachi j WY). So

let F? := M; forallj r. Foreachi =1;:::;jW9 in turn, we will now assign

the edges ofH; incident with w; to Fi Lo F! 1 such that the resulting graphs
100 Fl osatisfy the following properties:

()i 1 thene(F)) e(F M= ay.
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() Fji is a path system. Every vertexv 2 A[ B is incident to at most one
edge ofF/. For everyv 2 Vo nW°Owe havedFji (v) 2. IfeF) 2, we
even havedFii (v) 1.

(i) Let B be the number of vertex-disjoint maximal paths in F} with one
endpointin A°and the otherin B If a;; =landi 1, thenq' = Iq 11,
Otherwiselj = i *.

We assign the edges of; incident with w; to Fi ;oo FD o Yin two steps. In the
rst step, for each index j r with a;; = 2 in turn, we assign an edge ofH;
betweenw; and Vy to Fji L whenever there is such an edge left. More formally, to
do this, we setNg := Ny, (w;). Foreachj rinturn,if a; =2and N; 1\ Vo 6 ;,
then we choose a vertew 2 N; 1\ Vo and setFjO:: Fji L+ wyy, Nj := N; 1nfvg
and a := 1. Otherwise, we setF%:= F/ ', Nj := N; ;anda) := a .

Therefore, after having dealt with all indicesj r in this way, we have that

(3.3.12) either a,-?j 1 for all f: r or N, \ Vo =; (or both).

Note that by (b9 W(?Dhavee(FjO) mj+ o ,a&o; 4forallj r. Moreover, (&9

implies that jN,j = ; a% . Also, Ny nVp = Ny, (Wi)nVp, and SONy, (wi)nN;

Vo. Hence

(3.3.13) jNrj = jNuy(Wi)j | Nuy(Wi) nNj duy(Wi) J Voj  duy(wi)  "on:
In the second step, we assign the remaining edges b&f; incident with w; to

i

graph.

Claim. De ne a graph Q with vertex classesN, and V° as follows: V° consists of
a); copies of F?for eachj r. Q contains an edge between 2 N, and F°2 VOif
and only v is not an endpoint of an edge inFjO. Then Q has a perfect matchingM .
To prove the claim, note that

. X o .. @353 "
(3.3.14) iVi= &l =Ny du, (Wi)  "on:
jor
Moreover, sinceF? H is bipartite and so every edge ofFj0 has at most one
endpoint in N, it follows that
(3.3.15) do(F% j Nej e(F) j Nij 4

for each FjO 2 VO Consider anyv 2 N;. Clearly, there are at most dy, (v) indices
j  r such that v is an endpoint of an edge 01Fj°. If v2 N, nVy A[ B, then
by (cs), v lies in at most 2dy,(v)  2dy (v)  2"on elements ofVC (The factor 2
accounts for the fact that eachF? occurs inV° preciselya®, 2 times.) So

do(v) j VG 2'on du, (W) 3"on on:
If v2 Ni\ Vp, then (83312) implies that ai?j lforallj r. Thus

: G314 (cene)|
do(v) § VG dui(v) (A, (Wi)  du,(v))  "on 2"on "on = "on:

To summarize, for allv 2 N, we havedg(v) "on. Together with (B:3:15) and the
fact that jN,j = jV9 by B:3.14) this implies that Q contains a perfect matchingM
by Hall's theorem. This proves the claim.
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For eachj r, let Fji be the graph obtained from FjO by adding the edgew;v
whenever the perfect matchingM (as guaranteed by the claim) contains an edge
betweenv and F.

Let us now verify ( i){( i) forall i j W9. Clearly, ( 0){( o) hold and K =
m;j. Now suppose thati 1 and that ( i 1){( i 1) hold. Clearly, ( i) holds by
our construction of F;;:::;F'. Now consider anyj r. If a; =0, then ( ;) and
(i) follow from ( ; 1) and ( i 1). If & =1, then the unique edge in FJ-i Fji !
is vertex-disjoint from any edge ofFji ! (by the de nition of Q) and so ( ;) holds.
Moreover, q = q 1'+1 and so ( ;) holds. So suppose thata;; = 2. Then the
unique two edges inF/ Fji ! form a path P = vw; v®0of length two with internal
vertex w;. Moreover, at least one of the edges o, w;v®say, was added toni !
in the second step of our construction ofFJ-i. Thus dFji (v®9 = 1. The other edge
w; V0 of P was either added in the rst or in the second step. Ifw;v° was added
in the second step, thendFii (v9) = 1. Altogether this shows that in this case ( ;)
holds and ( ;) follows from ( ; 1). So suppose thatw;v® was added toni Lin the
rst step of our ponstruction [gf Fji. Thus V02 Vo nWO But since a;; =2, (b9
implies that e(Fj' hy= m; + o &coj 2. Together with ( ; 1) this shows that
dFji 1(v) 1forallv2 VonWeC HencedFji 1(v9) 1and sodk (V9 2. Together
with ( ; 1) this implies ( ;). (Note that if e(Fji 1) = 0, then the above argument
actually shows that dFii o) 1, as required.) Moreover, the above observations

also guarantee that ( ;) holds. Thus F};:::;F/ satisfy ( ){( ).

After having assigned the edges of; incident with w; for all i j WY, we
have obtained graphsF{Woj;:::;FerOj. Let Fj := FijOj for all j r. Note that
by ( jwq) for all j  r the number of vertex-disjoint maximal A% %paths in F;j is
precisely q‘w L .

We now claim that tJ]WOj is positive and even. To verify this, recall that tf =m;.
Let odd; be the number ofa;; with a; =1andi j WY. So qwoj = m; +odd;.
Together with (c9 this immediately implies that tJ]WOj 2. Moreover, sincea;j 2
f0; 1; 2g we have
_ X
g = m; +odd; = m; + aij
ij WO9; aj; is odd

Together with (b9 this now implies that qwoj is even. This proves the claim.
Together with (@9, (b9 and ( i), ( ;) for all i j WY this in turn shows

system candidates withe(F;) = 4 for all | % ande(Fj)=2forall %<j r.
Recall that % = n by (83.7) and that we have already constructed Hamilton

statement' of the lemma, and thus in particular consist of preciselytwo edges. This

completes the proof of the lemma.

3.3.3. Proof of Lemma 2..Z_1 We will now combine Lemmas[3.311[3.313
and[3.2.8 in order to prove Lemmd2Z.7}. This will complete the construgon of the
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required exceptional sequences in the case whéhis both critical and e(G[A% B?)
D.

Proof of Lemma 2[7Z4.] Let G be as de ned in LemmalZ.Z#(iv). Our rst aim
is to decomposeG into suitable “localized' subgraphs via Lemmd3.3]1. Choose a

new constant"®such that” "° ; 1=K and dene by
D n
Recall from Lemmal[2.74(ii) that D = (n 1)=2 or D = n=2 1. Together with
our assumption that 1 this implies that
1 2=n 2 1 2 v w0 A .

Note that by Lemma 2. 74(ii) and (i) we have eg (A%B% D n =2K?n.
Together with Lemma [.L(iii) this implies that

(3.3.18)

@316 @319
2K2n eg (A®BY es(A%BY 17D=10+5 18K?n=5 < n:

Moreover, recall that by LemmalZ.7.4(i) and (iii) we have
(3.3.19) ds (V)=2K?2n for all v 2 Vp:

Let W be the set of all those verticesv 2 V (G) with dgjaogq(w) 11D=40. SoW
is as de ned in Lemmal3 1 and 1] Wj 3 by Lemma[3.11(i). LetW® V(G)
be as guaranteed by Lemma3.111(v). Thusv =~ WO jwq 3,

(3.3.20)

dgacs 0](W0) 28i([)); dgaog o (V) % and dgjaog 0](W0) dgaog o (V) %)3
for all w02 WP%and all v2 V(G) nWZC In particular, W° Vq. (This follows since
LemmalZ.Z.4(iii),(iv) and (ESch3) together imply that dgaogo(V) = dg [acso(V)+
dooace (V)  "on+ eg,(A%B9Y "on+ n forallv2 A[ B.) Let wi;wp;ws be
vertices of G such that

dg [A%B Q] (w1) dg [A%B Q] (w2) dg [A%B Q] (w3) dg [A%B Q] (v)
forall v 2 V(G)nfwsy; wy; wsg, wherew; andw; are as in LemmdZ.Z#(v). Henc&V

Sincedg, (v) = n for eachv 2 V; (and thus for eachv 2 W), eachw 2 W satis es

3320 @319
(3.3.21) K? 21D=80 n dg (aogo(w) K?2n es (A%BY=2:

(Here the third inequality follows from Lemma 2.7.4(v).) Apply Lemma B.3.7] to
G in order to obtain a decomposition of G into edge-disjoint spanning subgraphs
H(@i;i9and Hi;i9 (forall 1 i;i® K) which satisfy the following properties,
where GYi;i9 := H(i;i9+ HXi;i9:
(b?) Each H (i;i9 contains only AgA;-edges andB,Bj.-edges.
(©9) HR;i9 G [A%B9. Moreover, all but at most 20"n=K 2 edges of
HO((i; [ 0) liein G [Ao [ Ai;Bo [ Bio].
(b) e(HRi;i9) = 2 es (A%BY=(2K?) or eH™Ni;i9)) = 2bes (A%BO=
(2K ?)c. In particular,2 n = eH%i;i9) 19n= 5 by (3.3.18).
(bg) dH 00(jiji 0) (V) = ( dG [A0B 0](V) 25"n):K2 forall v2 V.
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(b2) dgoio(v) = (ds (v) 25)=K? = 2 25'=K? n foral v 2 V

by B3.19).

(b2) Eachw 2 W satis es dy o o (W) d dg [aogq(w)=K?e n by B321).
Our next aim is to apply Lemma[3:3.3 to eachH %{i; i 9 to obtain suitable Hamilton
exceptional system candidates (in particular almost all of them will be “localized").
So consider any 1 i;i® K and let H%:= Hi;i9. We claim that there exists
0 9=10 such that H ®satis es the following conditions (which in turn imply
conditions (cy){(c 5) of Lemma[3.3.3):

) eHY =21+ )n and n 2N.

() eH® W9 199n= 100 anddyow(w) 13n= 25 for all w2 WC

(€9) dyoo(w) n forall w2 Wpanddyo(w®  41n= 40 for all w®2 W°nWy.

(c) Forall w2 W%and allv 2 V(G)nW °we havedyo(w) dyo(v)  n= 150.

(c?) Forall v2 A[ B we havedyo(v) "on.

Clearly, (b9) implies the rst part of (c 9). Sincee(H% is even by (b3) and n 2 N,
it follows that n 2 N. To verify the rst part of (c 9), note that (b9) and (b%)
together imply that

X
eH® wW9=eHY di oo(w) + e(H %W 9)
w2Wwo X
2 es (A%B9=(2K?) (ds (nogo(w) 25'n)=K?+3
w2W?o
(e wo(A%BY+80"n)=K?:
Together with Lemma [3.1.(iv) this implies that
eH® W9 (es wo(A%BY+80"n)=K? ((3D=4+5)+80"n)=K? 199n= 100

To verify the second part of (), note that by (8:3:20) and Lemma[Z.7.4(iii) each
w2 WPsatises dg (aogo(W) dgaogg(w) n  21D=80 n . Together with
(b?) this implies dyoo(w) 26n= 50. Thus () holds. By (b2) we have dy oo(w)

n forall w2 Wo. If w02 W°nWp, then LemmalZZ.4(ii) implies dgac.g o (WO
D=2 51K 2n=50. Thus, dyo(w%  41n=40 by (b3). Altogether this shows
that (c9) holds. (c) follows from B:3.20), (b) and the fact that dg (a0 o(V)
dgaoso(v) n forall v2 V(G) by Lemma [Z7.4(iii). (c?) holds sincedy (V)
dg [(aogo(v) "onforallv2 A[ B by (ESch3).

Now we apply Lemma[3:3:3 in order to decomposéi ©into n edge-disjoint
Hamilton exceptional system candidatesFi;:::;F, such that e(Fs) 2 f 2;4g for
all s n and such that at least n= 200 of Fs satisfy e(Fs) = 2 and de (w) =1
for all w2 Wy. Let

= oz and 0.= 7
Recall that by (b9) all but at most 20"n=K 2 "% edges ofH ®lie in G [Ap [
Ai;Bo [ Bijo]. Together with (B.3.17) this ensures that we can relabel theFs
if necessary to obtain n edge-disjoint Hamilton exceptional system candidates

hold:
(@% Fs(i;i9 is an (i;i 9-HESC for everys  n. Moreover, % of the F(i;i 9
satisfy e(Fs(i;i %) = 2 and de (i (W) =1 for all w2 Wp.
(b9 e(FXi;i9) = 2 for all but at most "% of the Fi;i9).
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(€9 e(Fs(i;19); e(FSi;i9) 2 2;4g.
For (b9 and the “moreover' part of (&%, we use that n=200 "h 2n=K 2=2 .
Our next aim is to apply Lemma[3.Z.8 with G playing the role of G to extend the
above exceptional system candidates into exceptional system<Clearly conditions
() and (ii) of Lemma hold. (i) follows from (b 9). (iv) and (v) follow from
@%(c9. (vi) follows from Lemma Z7.4(j),(iii). Finally, (vii) follows from (b 2)
since GYi;i 9 plays the role of G (i;i%. Thus we can indeed apply Lemma3.216
to obtain a decomposition of G into K2 n edge-disjoint Hamilton exceptional

1 §;i® K, such that Js(i;i9 is an (i;i 9-HES which is a faithful extension of
Fs(i;i% forall s n and JX3i;i9 is a faithful extension of FJi;i9 forall s .
Then the set J of all these exceptional systems is as required in Lemmia_2.T.4.
(Since W, contains fws; wog\ W, the “moreover part' of (%) implies the "moreover
part' of Lemma 2. 7.4(b).)

3.4. The Case when e(A%B9% <D

The aim of this section is to prove Lemmal2.7.b. This lemma provides a de-
composition of the exceptional edges into exceptional systems inhe case when
e(A%B9 <D . In this case, we do not need to prove any auxiliary lemmas rst, as
we can apply those proved in the other two cases (Lemmds_3.2.6 and33T).

Proof of Lemma 2[7.5. ] Let "%be a new constant such that" "0 ; 1=K and
set

_n=2 1 n

=z

Similarly as in the proof of Lemma[Z2.7.4 we have

(3.4.2) om0 1=K 1:

(3.4.1) 2n

We claim that G can be decomposed into edge-disjoint spanning subgraphs(i; i 9
and HUi;i 9 (for all 1 i;i® K) which satisfy the following properties, where
GYi;i9 = H(@;i 9+ HR;i O

(b9) Each H(i;i9 contains only ApA;-edges andB(B;.-edges.

(b)) HO;i9 G [A%BY. Moreover, all but at most "% edges ofH °i; i 9 lie

in G [Ao[ Aj;Bo[ Bio].

(b)) e(H%N;i9) is even ande(H®(i;i%9) 2n .

(bf) ( HXE19)  e(Hi9)=2.

(b2) dgogiio (V) = (2 "On for all v 2 V.
To see this, let us rst consider the case wheneg (A%B9 300'n. Apply
LemmalZ5.2 toG in order to obtain a decomposition of G into edge-disjoint

spanning subgraphsH (i;i9 and HYi;id (for all 1 i;i®  K) which satisfy
Lemma[Z52(a){(as). SetHX{1;1) := ;0 « HYi:i9 = G [A%BY and H%i;i 9
;= ; for all other pairs 1 i;i® K. Then (b?) follows from (a;). (b9) follows

from our de nition of the H%{i;i% and our assumption that eg (A%B% 300'n <
", < n . Together with Lemma Z.7.5(iv) this also implies (b3). (b3) follows from
LemmalZZ5(v). Note that by Lemma [Z7.5(i) and (iii), every v 2 V, satis es
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dec (V)= n=2 1 n =2K?2n. So, writing G(i;i% := H(i;i%+ HYi;i9, (as)
implies that

dGO(i;i 0) (V) = dG(i;i 0) (V) 300n = (2 4"=K 2)n 300n = (2 "O)n:
Thus (b) holds too.

So let us next consider the case wherg (A%BY% > 300'n. Let W, be the

set of all those verticesv 2 V(G) for which dg (acgq(v) 3es (A%B9=8. Then
clearly jWpj 2. Moreover, eachv 2 V(G) nW, satis es

(3.4.3) ds [acso(v)+26™n< 3es (ASBY)=8+es (A%B)=8=es (A%BY)=2

Recall from LemmalZZ5(v) that dg (aogq(W) e (A%B9=2 for eachw 2 Wj.
So we can apply Lemmda 3311 tdG in order to obtain a decomposition of G into
edge-disjoint spanning subgraphdd (i;i 9 and H(i;i9 (forall1  i;i® K) which
satisfy Lemmal3.3.1(h ){(b 7). Then (b1) and (by) imply (b ¢) and (b3). (b3) follows
from (b3), (B4d) and Lemmal[Z7.5(v). Note that (b3), (b4) and B.43) together
imply that
es (A%B9=2 "n  eH%X;i9Y)

K2 2
for all v2 VonWo. Note that eachv 2 A[ B satis €s dy oy 0 (V)  dg aog (V)
"on by Lemma[ZZ.5(iv) and (ESch3). Together with the fact that e(H °{i;i 9)
2b300'n=(2K ?)c  2"gn by (b3), this implies that (§:4.4) also holds for allv 2 A[ B.
Together with (b7) this implies (b2). (b2) follows from (bs) and the fact that by
LemmalZZ5(i) and (iii) every v 2 \p satisesdg (V) = n=2 1 n =2K?n.
So (B)){(b ?) hold in all cases.

We now decompose the localized subgraphd °1i;i 9 into exceptional system
candidates. For this, x i;i°® K and write H%for H%{i;i9. By (b9) we have
(HY  eH=2 and so Y(H?  eH%=2. Apply Proposition with
e(H %§=2 playing the role of m to decomposeH ®into e(H °J=2 edge-disjoint match-
ings, each of size 2. Note thatn  e(H%=2 0 by (b9). So we can add some empty

(344) dH 00(j;j ) (V)

that each My is either empty or has size 2. Let

— 0.— .
= K2 and =Kz

Recall from (b)) that all but at most " % edges ofH ®lie in G [Ag[ Ai;Bo[

Bio]. Hence by relabeling if necessary, we may assume thtds G [Ao[ Ai;Bo]

Bio] for everys n. So by setting Fs(i;i%) := Mg forall s n and FYi;i9 :=

M. forall s % we obtain a decomposition ofH®into edge-disjoint ex-

that the following properties hold:
(@% Fs(i;i9 is an (i;i 9-ESC for everys n.
(b9 Each Fs(i;i 9 is either a Hamilton exceptional system candidate with
e(Fs(i;i9) = 2or a matching exceptional system candidate with e(Fs(i; i 9)
= 0. The analogue holds for eachF%(i; i 9.
Our next aim is to apply Lemma3.:2.8 with G playing the role of G , to extend the
above exceptional system candidates into exceptional system<Clearly conditions
(i) and (ii) of Lemma hold. (i) follows from (b 9). (iv) and (v) follow from
(@% and (b9). (vi) follows from Lemma E.7.5(i),(iii). Finally, (vii) follows from (b 2)
since GY(i;i 9 plays the role of G (i;i9 in Lemma[3.2.8. Thus we can indeed apply
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Lemmal[3.Z6 to obtain a decomposition ofG into K2 n edge-disjoint exceptional
systemsJa(i;i9;:::5 30 (1519 and IX(i;19;:::53%, (5519, where 1 §;i® K, such
that Js(i;i9 is an (i;i 9-ES which is a faithful extension of Fs(i;i9 forall s n
and J(i;i9 is a faithful extension of FXi;i9 for all s %. Then the setJ of all
these exceptional systems is as required in Lemma 2.7.5.






CHAPTER 4

The bipartite case

The aim of this chapter is to prove Theoremd .36 and1.318. Recall thaThe-
orem[1.3.8 guarantees many edge-disjoint Hamilton cycles in a grapB when G has
large minimum degree and is close to bipartite, whilst Theoren{1.315 guantees
a Hamilton decomposition of G when G has su ciently large minimum degree, is
regular and is close to bipartite. In Section[4.1 we give an outline of theproofs.
The results from SectiondZ.2 and 413 are used in both the proofs offieoremd1.3.b
and [I.3:8. In Sectiond” 4} and4]5 we build up machinery for the proof ofhe-
orem[1.35. We then prove Theoren{1.318 in Sectiof 4.6 and Theorem 1.Bi6
Section[4.7.

Unlike in the previous chapters, in this chapter we view a matchingM as a set
of edges. (SgM j for example, denotes the number of edges iM .)

4.1. Overview of the Proofs of Theorems 1.3.6"and| 1.3.§

Note that, unlike in Theorem .35, in Theorem[I.3.8 we do not require a em-
plete decomposition of our graphF into edge-disjoint Hamilton cycles. Therefore,
the proof of Theorem[1.35 is considerably more involved than the prof of The-
orem[1.3.8. Moreover, the ideas in the proof of Theoreri 1.3.8 are allsed in the
proof of Theorem[1.3.% too.

4.1.1. Proof Overview for Theorem 1.3.8__] Let F be a graph onn vertices
with  (F) (1=2 o(1))n which is close to the balanced bipartite graphK == 2.
Further, suppose that G is aD -regular spanning subgraph of as in Theorem1.3.8.
Then there is a partition A, B of V(F) such that A and B are of roughly equal size
and most edges inF go betweenA and B. Our ultimate aim is to construct D=2
edge-disjoint Hamilton cycles inF.

Suppose rst that, in the graph F, both A and B are independent sets of
equal size. SdF is an almost complete balanced bipartite graph. In this case, the
densest spanning even-regular subgrapts of F is also almost complete bipartite.
This means that one can extend existing techniques (developed e.gn [6} 7] 9]
171} 31]) to nd an approximate Hamilton decomposition. (In Chapter %] using
such technigues, we prove an approximate decomposition result @mmal[4.6.1)
which is suitable for our purposes. In particular, Lemma[4.6.1 is su cient to prove
Theorem[1T.38 in this special case.) The real di culties arise when

(i) F is unbalanced (i.e.jAj & jBj);
(il F has vertices having high degree in bothA and B (these are called
exceptional vertices).

To illustrate (i), recall the following example due to Babai (which is the ex-
tremal construction for Corollary [.T.5). Consider the graphF onn = 8k + 2
vertices consisting of one vertex clas#é of size &« +2 containing a perfect matching

95
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and no other edges, one empty vertex clasB of size &, and all possible edges
betweenA and B. Thus the minimum degree ofF is 4k +1 = n=2. Then one can
use Tutte's factor theorem to show that the largest even-regulaspanning subgraph
G of F has degreeD = 2k =(n  2)=4. Note that to prove Theorem[I.3.8 in this
case, each of theD=2 = k Hamilton cycles we nd must contain exactly two of the
2k + 1 edges inA. In this way, we can “balance out' the di erence in the vertex
class sizes.

More generally we will construct our Hamilton cycles in two steps. In the rst
step, we nd a path system J which balances out the vertex class sizes (so in the
above exampleJ would contain two edges inA). Then we extendJ into a Hamilton
cycle using onlyAB -edges inF. It turns out that the rst step is the di cult one.

It is easy to see that a path systemJ will balance out the sizes ofA and B (in the
sense that the number of uncovered vertices i\ and B is the same) if and only if

(4.1.1) e (A) e(B)=jAj j Bj

Note that any Hamilton cycle also satis es this identity. So we need to nd a set
of D=2 path systemsJ satisfying (4.1.1) (where D is the degree ofG). This is
achieved (amongst other things) in Section§ 4.312 and 4.3.3.

As indicated above, our aim is to use Lemm#&4.6]1 (our approximate desnpo-
sition result for the bipartite case) in order to extend each suchJ into a Hamilton
cycle. To apply Lemmal4.6.1 we also need to extend the balancing pathystemsJ
into “balanced exceptional (path) systems' which contain all the exeptional vertices
from (ii). This is achieved in Section[4.3.4. Lemmd4.611 also assumes th#tie path
systems are ‘localized' with respect to a given subpartition ofA; B (i.e. they are
induced by a small number of partition classes). Sectioi 4.3]11 prepas the ground
for this. The balanced exceptional systems are the analogues ohé¢ exceptional
systems which we use in the two cliques case (i.e. in Chaptér 2).

Finding the balanced exceptional systems is extremely di cult if G contains
edges between the sef\y of exceptional vertices inA and the setB of exceptional
vertices in B. So in a preliminary step, we nd and remove a small number of
edge-disjoint Hamilton cycles covering allAgBg-edges in Sectiori_42. We put all
these steps together in Sectio 416. (Sectioris 4.4, 4.5 add ¥.7 arelypmnelevant for
the proof of Theorem[1.35.)

4.1.2. Proof Overview for Theorem 1.3.6._1 The main result of this chapter
is Theorem[1.3%. Suppose thaiG is a D-regular graph satisfying the conditions
of that theorem. Using the approach of the previous subsectionpne can obtain an
approximate decomposition ofG, i.e. a set of edge-disjoint Hamilton cycles covering
almost all edges ofG. However, one does not have any control over the “leftover'
graph H, which makes a complete decomposition seem infeasible. As in the prbo
of Theorem[1.3.3, we use the following strategy to overcome this issuand obtain
a decomposition ofG:

(1) nd a (sparse) robustly decomposable graphG™ in G and let G° denote
the leftover;

(2) nd an approximate Hamilton decomposition of G° and let H denote the
(very sparse) leftover;

(3) nd a Hamilton decomposition of G [ H.

As before, it is of course far from obvious that such a graphG™ exists. By
assumption our graph G can be partitioned into two classesA and B of almost



4.1. OVERVIEW OF THE PROOFS OF THEOREMS 1.35 AND 1138 [ 97

equal size such that almost all the edges irG go betweenA and B. If both A
and B are independent sets of equal size then the “bipartite' version ofhie robust
decomposition lemma of 21] guarantees our desired subgrapls™® of G. Of course,
in general our graphG will contain edges inA and B. Our aim is therefore to replace
such edges with  ctive edges' betwee and B, so that we can apply this version of
the robust decomposition lemma (Lemmd4.5.3). (We note here that emmal4.5.38
is designed to deal with bipartite graphs. So its statement is slightly derent to
the robust decomposition lemma (LemmaZ.9M4) that was applied in the poof of
Theorem[1.3.3.)

More precisely, similarly as in the proof of TheoreniZ1.3.B, we construa collec-
tion of localized balanced exceptional systems. Together these gasystems contain
all the edges inG[A] and G[B]. Again, each balanced exceptional system balances
out the sizes ofA and B and covers the exceptional vertices irG (i.e. those vertices
having high degree into both A and B).

Similarly as in the two cliques case, we now introduce ctive edges. Thigime,
by replacing edges of the balanced exceptional systems with ctivedges, we obtain
from G an auxiliary (multi)graph G which only contains edges betwee\ and B
and which does not contain the exceptional vertices o5. This will allow us to ap-
ply the robust decomposition lemma. In particular this ensures thateach Hamilton
cycle obtained in G contains a collection of ctive edges corresponding to a sin-
gle balanced exceptional system (as before the set-up of the rabt decompaosition
lemma does allow for this). Each such Hamilton cycle inG then corresponds to a
Hamilton cycle in G.

We now give an example of how we introduce ctive edges. Lein be an integer
so that (m 1)=2is even. Setm®:= (m 1)=2 and m°%:= (m + 1) =2. De ne the
graph G as follows: LetA and B be disjoint vertex sets of sizem. Let A;; A, be a
partition of A and B1;B> be a partition of B such that jA1j = jB1j = m% Add all

the vertices of B,. Finally add a vertex v which sends an edge to every vertex
in A1 [ B1. SoG is (m + 1)-regular (and v would be regarded as an exceptional
vertex).

Now pair up each edgee; with the edge e?. Write € = X, 1X3 and e? =
Yoi 1Yo foreach 1 i m%=2. Let A; = fay;:::;amwg and By = fly;:::;bynog
and write f; := ajlh foralll1 i m% Obtain G from G by deleting v together
with the edges inM [ M, and by adding the following ctive edges: addf; for each
1 i m%andaddx;y; foreach1 j m°% Then G is a balanced bipartite
(m + 1)-regular multigraph containing only edges betweenA and B.

First, note that any Hamilton cycle C in G that contains precisely one ctive
edgef; forsome 1 i m®corresponds to a Hamilton cycleC in G, where we
replace the ctive edgef; with ajv and v. Next, consider any Hamilton cycle C
in G that contains precisely three ctive edges;f; forsome 1 i m®together
with Xp; 1Yz 1 and Xy yy for some 1 | m®=2. Further supposeC traverses
the vertices a; ;X5 1;Y2 1;X25;Y2 in this order. Then C corresponds to a
Hamilton cycle C in G, where we replace the ctive edges withajv;hbv; g and qo
(see Figure[4.1.11). Here the path systend formed by the edgesa;v;hv; g and e{)
is an example of a balanced exceptional system. The above ideas dogmalized in
Section[4.3.
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>
o<
K

Figure 4.1.1. Transforming the problem of nding a Hamilton
cycle in G into nding a Hamilton cycle in the balanced bipartite
graph G

We can now summarize the steps leading to proof of Theorein 1.3.5. I8ec-
tion 21 we nd and remove a set of edge-disjoint Hamilton cycles coering all
edges inG[Ag; Bo]. We can then nd the localized balanced exceptional systems
in Section[4.3. After this, we need to extend and combine them into ceain path
systems and factors (which contain ctive edges) in Sectiori 4}4, bfere we can use
them as an “input' for the robust decomposition lemma in Sectior’4Z5. kally, all
these steps are combined in Section 4.7 to prove Theoreim 1.B.5.

4.2. Eliminating Edges between the Exceptional Sets

Suppose thatG is a D-regular graph as in TheorenI.3.6. The purpose of this
section is to prove Corollary[4.Z.T?2. Roughly speaking, giveik 2 N, this corollary
states that one can delete a small number of edge-disjoint Hamiltortycles from G
to obtain a spanning subgraphG° of G and a partition A;Ag;B;B of V(G) such
that (amongst others) the following properties hold:

almost all edges ofG° join A[ A to B [ By;

j Aj = jBj is divisible by K ;

every vertex in A has almost all its neighbours inB [ B and every vertex
in B has almost all its neighbours inA [ Ag;

Ao [ By is small and there are no edges betweeAg and By in G°.

We will call (G%A;Aq;B;By) a bi-framework. (The formal de nition of a bi-
framework is stated before Lemmd4.2.71.) BothA and B will then be split into
K clusters of equal size. Our assumption thaiG is "¢-bipartite easily implies that
there is such a partition A; Ag; B; B o which satis es all these properties apart from
the property that there are no edges betweem and By. So the main part of this
section shows that we can cover the collection of all edges betwedty and B by a
small humber of edge-disjoint Hamilton cycles.

Since Corollary[4.Z.12 will also be used in the proof of Theorein 1.3.8, insad
of working with regular graphs we need to consider so-called balandegraphs. We
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also need to nd the above Hamilton cycles in the graphF G rather than in G
itself (in the proof of Theorem[1.3.3 we will take F to be equal to G).

More precisely, suppose thatG is a graph and that A% BCis a partition of
V(G), where A°= Ag[ A, B%= Bg[ B and A;Ay;B; B are disjoint. Then we say
that G is D-balanced (with respect to(A; Ag;B;By)) if

(B1) es(A9) es(B9)=(jAY j BY)D=2;

(B2) all vertices in Ag[ B have degree exacthyD.

Proposition 423 below implies that wheneverA; Ag; B; B is a partition of the ver-
tex set of aD-regular graphH , then H is D -balanced with respectto (A; Ag; B; B o).
Moreover, note that if G is Dg-balanced with respect to (A; Ag;B;Bo) and H is a
spanning subgraph ofG which is D -balanced with respect to A; Ag; B; Bg), then
G His(Dg Dy)-balanced with respectto (A;Ag;B;By). Furthermore, a graph
G is D-balanced with respect to A; Ag; B;By) if and only if G is D-balanced with
respect to B;Bo; A; Ap).

Proposition  4.2.1 Let H be a graph and letA®, B® be a partition of V (H).
Suppose thatAg, A is a partition of A® and that Bg, B is a partition of B such
that jAj = jBj. Suppose thatdy (v) = D for every v 2 Ag[ Bo and dy (v) = DO for
everyv2 A[ B. Then ey (A% ey (BY=(jAY j BY)D=2:

Proof. Note that X
dy (x;BY = ey (A%BY = du (y; AY:

x2A0 y2B0
Moreover,
X X o
264 (A9= (D du(xBY+ (D° du(x;BY)
X2Ao0 X X2 A
= DjAoj + DYA] du (x;B9
x2 A0
and
X X o
264(BY= (D du(y;AY)+  (D° du(y;AY)
y2Bo X y2B
= DjBoj + DIB] d (y; AY:
y2BO
Therefore

2eq (A9 2ey(BY = D(jAojj Boj)+ DAjAjj Bj)= D(jAojj Boj) = D(AYj BY);
as desired.

The following observation states that balancedness is preservednder suitable
modi cations of the partition.

Proposition 4.2.2 Let H be D-balanced with respect to(A; Ag; B;Bg). Sup-
pose thatA$;BJ is a partition of Ag[ Bo. Then H is D-balanced with respect to
(A;AS8;B;BY).

Proof. Observe that the general result follows if we can show thaH is D -balanced
with respect to (A;AQ;B;B¢), where A = Ag [f vg, B§ = Bonfvgand v 2 Byg.
(B2) is trivially satis ed in this case, so we only need to check (B1) forthe new
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partition. For this, let A%:= Ag[ A andB%:= Bo[ B. Now note that (B1) for the
original partition implies that

eH(AJL A) en(BJ[ B)= en (A + du(v;AY) (eq(BY dwn(V;iBY)
=(jA% j B)D=2+D =(jAS[ Aj j Bg[ Bj)D=2:
Thus (B1) holds for the new partition.

Suppose thatG is a graph andA%BCis a partition of V(G). For every vertex
v 2 A%we call dg(v; A9 the internal degree ofv in G. Similarly, for every vertex
v 2 B%we call dg (v; B9 the internal degree ofv in G.
Given a graphF and a spanning subgraphG of F , we say that (F; G; A; Ag; B;
Bo) is an (;"%K; D )-weak frameworkif the following holds, where A®:= Ag[ A,
BY:= Bo[ B andn := jGj = jFj:
(WF1) A;Ap;B;Bg forms a partition of V(G) = V(F);
(WF2) G is D-balanced with respect to A;Ao;B;Bo);
(WF3) es(A9;es(BY) "n?;
(WF4) jAj = jBj is divisible by K. Moreover,a+ b "n, wherea := jAgj and
b:= jBoj;
(WF5) all vertices in A[ B have internal degree at most'% in F;
(WF6) any vertex v has internal degree at mostdg (v)=2 in G.

Throughout the chapter, when referring to internal degrees witiout mentioning the
partition, we always mean with respect to the partition A°, B®, where A= Ag[ A
and B°= Bo[ B. Moreover, a and b will always denote jAgj and jBoj.

We say that (F; G;A;Aq;B;By) is an (;" % K; D )-pre-framework if it satis es
(WFL1)Y{(WF5). The following observation states that pre-framew orks are preserved
if we remove suitable balanced subgraphs.

Proposition 4.2.3 Let";"%> 0andK;D g;Dy 2 N. Let (F;G;A;Aq;B;By)
be an(";" % K;D g)-pre framework. Suppose thaH is a Dy -regular spanning sub-
graph of F such that G\ H is Dy-balanced with respect to(A;Ag;B;By). Let
FO:= F HandG%:=G H. Then (F% G%A;A(;B;Bg)isan(";"%K;Dg Dy)-
pre framework.

Proof. Note that all required properties except possibly (WF2) are not a ected by
removing edges. ButGP satis es (WF2) since G\ H is Dy -balanced with respect
to (A;Ap;B;Byo).

Lemma 4.2.4 Let0O< 1=n " "0 1=K landletD n=200. Suppose
that F is a graph onn vertices which is "-bipartite and that G is a D-regular
spanning subgraph of. Then there is a partition A;Aq;B;Bo of V(G) = V(F) so
that (F;G;A;Ag;B;Byg) is an ("¥73;"%K; D )-weak framework.

Proof. Let S;;S; be a partition of V(F) which is guaranteed by the assumption
at F is "-bipartite. Let S be the set of all those verticesx 2 S; Fs‘vith dr (X; S1)
"n together with all those vert'kges X 2 S; with de (X;S5) "n. SinceF is
"-bipartite, it follows that jSj 4 ™n.

Given a partition X;Y of V(F), we say thatv 2 X isbad for X;Y if dg(v; X) >
ds(v;Y) and similarly that v 2 Y is bad for X;Y if dg(v;Y) >dg(v; X). Suppose
that there is a vertex v 2 S which is bad for S;, S,. Then we movev into the class
which does not currently contain v to obtain a new partition S¢, S9. We do not
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