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Active screen plasma surface co-alloying treatments of 316 stainless steel 

with nitrogen and silver for fuel cell bipolar plates  

Kaijie Lin*, Xiaoying Li, Linhai Tian, Hanshan Dong 

School of Metallurgy and Materials, The University of Birmingham, Birmingham 

B15 2TT, UK 

Abstract 

Due to their good mechanical and corrosion properties, relatively low cost and ease of 

manufacture, 316 austenitic stainless steel has been researched as a promising 

candidate material for bipolar plates in proton exchange membrane fuel cells. 

However, its interfacial contact resistance (ICR) is about 16 times higher than that of 

the Department of Energy target(10 mΩ cm
2
), which leads to undesirable fuel cell 

performance. In this work, active screen plasma (ASP)surface co-alloying treatments 

with both nitrogen and silver were developed to modify the surface of 316 stainless 

steel to reduce its ICR required for high-performance bipolar plates. The treated 

surfaces were fully studied by means of scanning electron microscopy, X-ray 

diffraction, glow discharge optical emission spectroscopy and energy dispersive 

spectroscopy. The experimental results demonstrated that a duplex surface layer 

structure consisting of an Ag-rich surface deposition layer supported by an S-phase 

case was generated by the ASP surface co-alloying treatment. TheASP co-alloying 

treated surfaces showedincreased corrosion potential andreduced corrosion current 

density, and significantly improved surface electrical conductivity. This could be 

attributed to the introduction of metallic Ag particles by this novel surface plasma 

treatment. 

Keywords: active screen plasma, 316 stainless steel, co-alloying, nitrogen, silver, 

bipolar plate  
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1 Introduction 

Because of the ever-increasing concerns over the depletion of fossil fuel and the aggravation 

of greenhouse gas emission, considerable research has recently been conductedto develop 

alternative methods of power generation. Among them, the proton exchange membrane fuel 

cell (PEMFC) has been considered as one of the most promising candidate in stationary and 

transportation applications due to itshigh efficiency, near zero emission, low working 

temperature and fast start-stop behaviour[1].  

Bipolar plates are the key multi-functional components in PEMFCs and graphite has been 

currently employed to makethe bipolar platesdueto its good corrosion resistance and electrical 

conductivity in PEMFC working conditions. However, the inherent poor mechanical 

propertiesand the unacceptably high manufacturing cost are barriersto their widespread use.  

Comparedwith graphite, stainless steels (SS) exhibit a much higher mechanical strength and a 

much lowermanufacturing cost, and have attracted massiveinterest for bipolar plate 

applications[2][3][4]. It is known that stainless steels possess satisfactory corrosion resistance 

for many applications. The inherent passive film formed on the stainless steel surface, 

however,greatly increases the interfacial conduct resistance (ICR), leading to the degradation 

of output power of fuel cells.Therefore, surface modification is needed to improve thesurface 

conductivityof stainless steels[5]. 

Silver is well known for its excellent electrical conductivity and chemical stability, and it has 

beenapplied to improve the surface properties of stainless steel bipolar plates via surface 

modification technologies. Ag coated 316 SS bipolar plates by electrodeposition methods [6] 

[7] show significantly improved surface electrical conductivity. The unavoidable defects 

(such as pin-holes) in the coating, however, are found to act as the short-cut for the 

penetration of corrosive solution to reach the substrate in the acidic environment, resulting in 
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the failure of Ag coatings. In view of the shortcoming of coating technology, Feng 

[8]alloysthe 316 SS surfacesby ion implantation method and the Ag implanted 316L SS 

shows enhanced corrosion resistance and polarization resistance. The ICR value is reduced 

after the treatment, butit is still much higher than the target set by the Department of Energy 

(DOE), mainly due to the formation of silver oxide. 

Recently, the authors have explored the possibility of improving the surface electrical 

conductivity of 316 SS by low-temperature active-screen plasma nitriding (ASPN)[9]. The 

ASPN treatment can significantly reduce the ICR from 158 mΩ cm
2
 for the untreated 316 SS 

to 33 mΩcm
2
, which is still higher than the DOE target of 10 mΩ cm

2
. In the present work, a 

new active screen plasma co-alloying technologyhas beendeveloped to introduce both 

nitrogen and silver into 316 stainless steel surfaces aiming at further improving the surface 

electrical conductivityof 316 SS. 

 

2 Experimental 

Commercial 316austenitic stainless steel wasused in this study as the substrate material and 

its chemical composition (wt%) is 0.06C, 17.20Cr, 1.30Mn, 2.20Mo, 11.70Ni, 0.014S, 0.026P, 

0.60Si, with Fe balanced. Samples of 6mm in thickness and 25.4 mm in diameter werecut 

from hot rolled bars. The surfaces of the samples to be treated werewet ground from #120 up 

to #1200 grit using SiC emery paper, followed by polishing using diamond paste from 6μm 

down to 1μm.Prior to plasma treatment, the polished samples were degreased with acetone in 

an ultrasonic bath for 10 min and finally dried with flowing hot air. 

Cross sections were cut from the treated samples and mounted in conductive backlite, 

followed by the same preparation procedures as described above. An etching agent containing 

25% H2O+25% HNO3+50% HCl was used to reveal the micro-structure of the cross sections. 
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Active screen plasma co-alloying with nitrogen and silver 

(ASPA(N&Ag))treatmentswerecarried out in a 40 kW Klöckner conventional DC plasma 

nitriding furnace with a laboratory active screen set-up, the details of which could be found 

elsewhere [10]. However, in order to achieve co-alloying with not only N but also Ag, the lid 

of the metal mesh cylinder (i.e. active screen) wasfabricated by hot isostatic pressing 

(HIP),using the powdermixture of 95% 316L stainless steel and 5% silver. The active screen 

plasma co-alloying treatmentswereconducted at 450 °Cin a gas mixture of 25%N2 + 75%H2 

under 4mbar.These optimal parameters are identified from the previous ASPN treatments 

reported [9]. This is because the ICR decreases with increasing the ASPN temperature but 

when the treatment temperature is above 450 °C, the formation of Cr precipitation will take 

place, thus leading to the serious degradation of corrosion resistance[11][12]. The treatment 

durationswere set for 7and 15h.In order to show the effect of Ag, normal ASPN treatment (i.e. 

ASP alloying with N) was also conducted with the same treatment conditions as for the 

ASPA(N&Ag) co-alloying treatments but only for 7 h. 

After the plasma alloying treatments, scanning electron microscopy(SEM, Jeol 7000) and X-

ray diffraction (XRD, Bruker D8 Advance) with Cu Kα radiation (λ=0.154nm)wereemployed 

to characterise the surface morphology and microstructure of the treated surfaces. Elemental 

depthprofiles weredetermined by glow discharge optical emission spectroscopy(GDOES).  

The corrosion performance of both the treated and the untreated samples for comparison was 

evaluated by potentio-dynamic polarisation tests. A standard three-electrode system was used 

with a saturated calomel electrode (SCE) as the reference electrode. The electrolyte used was 

a sulphuric acid aqueous solution (0.5M H2SO4 + 2 ppm HF), and all the corrosion tests were 

conducted at room temperature.More details of the polarisation tests can be found in the 

previous publication [9].The surface electrical conductivity of all the samples was measured 
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using interfacial contact resistance (ICR) according to Wang’s method [13] and the 

compaction pressureused for the ICR measurement was 1.4 MPa (140 N/cm
2
). 

3 Results 

3.1 Surface morphology 

The surface morphology of ASPA(N&Ag) and ASPN treated samples wereobserved by SEM.  

It can be seen from the low magnification images (Figure 1(a)(c)(e))that the surfaces are 

roughened after treatments with surface relief.Thisis a typical characteristic of the formation 

of S-phase mainly due to lattice expansion of grains with different orientations caused by the 

supersaturation of nitrogen[14].Under low magnification, the whole surface of 7h treated 

ASPN (Figure 1(a)) and 15h treated ASPA(N&Ag) (Figure 1(e)) is covered by fine white 

particles butit is interesting to find that only some areasof the 7h ASPA(N&Ag) treated 

surface are covered by the fine white particles, whichseem to correspond to the surface 

reliefor grains (denoted by white dash line in Figure 1 (c)). 

The above varying contrast with grains observed on 7h ASPA(N&Ag) treated samples could 

be explained using the mechanism proposed by Corujeira Gallo & Dong [15].In their work, 

similar varying contrast with grains was observed under certain ASPN treatment conditions. 

This is mainly because the mass transfer of nitrogen in active screen plasma nitriding follows 

the following steps: deposition of iron nitride – their decomposition – inward diffusion of N. 

The diffusion of nitrogen in austenite grains and hence the decomposition of the deposited 

fine iron nitride particles on different grains is orientation dependent; the competetion 

between the deposition rate and the diffusion rate determine the resulted surafce morphology. 

If the deposition rate is much higher than the decomposition rate even for grains with most 

favourable (001) oriantationfor diffusion, more and more deposited particles will be piled 

up.Eventutally, a thick deposition layer covers the whole surafce, leading to the bright 
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contrast on the low magnification SEM pictures (Figures 1(a) and (c)); on the other hand, if 

the deposition rate is lower than the decomposition rate even for grains with least(111) 

favourable oriantation for diffusion, no large deposited particles would leave on the surface, 

thus leading to the dark constrast when observed under low magnification SEM. Only at a 

specific deposition rate, some grains are covered by such white deposited particles because 

they had unfavourable (111) oriantation for diffusion.  

The deposition rate and the decompostiton rate are governed by many different aspects, such 

as the treatment temperature, duration and the chemical composition of the lid. For example, 

when treated under the same temperature (450C) for the same time (7h), the deposition rate 

of iron nitride is faster in ASPN using a 316 SS screen than in ASPA(N&Ag) using a 

composites screen consisting of 316L SS doped with Agbecause of the presence of Ag in the 

lid and hence in the deposited layer. Hence, the whole surafce of the former was covered by 

the white particles whilst only some surafce areas of the latter showed similar white particles. 

The different surafce morphologies observed for 7h and 15h ASPA(N&Ag) treated 

surfacesmight be explainedby the longer time for the latter than for the former. This is 

because the diffusion coefficient of nitrogen in 316 SSwas found toreduce with the increase of 

low-temperature plasma treatment duration [16]and hence the amount of deposited particles 

would be expected to increase with prolonged treatment time. 

The detailed surfaces morphology taken from the rectanglesshown in Figure 1 can be found in 

the high magnification SEM images (Figure 1 (b) (d) (f)). Many fine particles were observed 

on the surface of the 7h ASPN treated sample with the shape of polyhedron and the size of 

about 250nm in diameter (Figure 1 (b)).  Particles can also be found on the surface of the 7h 

ASPA(N&Ag) treated surface; however, their size reduces to about 130nm in diameter. With 

the increase of the treatment duration to 15h, the size of the particles becomes un-even and the 
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average size increases to around 250nm on the surface of the 15h ASPA(N&Ag) treated 

sample. 

The high magnification backscatter surface image of 15h ASPA(N&Ag) treated 316 SS 

(Figure 2 (a)) revealstwo different materials deposited on the surface, which can be deduced 

from the different contrasts. The EDS spectrums taken from the two areas with different 

contrasts (Figure 2 (b)), reveal that the bright area (Spectrum 1) is rich in Ag whilst the dark 

area (Spectrum 2) is rich in Fe. Considering the spatial resolution of EDS (≈1 µm) is larger 

than the thickness of the surface deposition layer (<0.5 µm), the EDS peaks of Fe, Cr, Ni and 

Si might come from the S-phase case underneath. Therefore, these bright particles might be 

metallic Ag particles as revealed from previous TEM observation [17]. 

3.2 Surface layer structure 

3.2.1 XRD phase identification 

The phase constituent of ASPA(N&Ag)and ASPN treated samples were analysed by 

XRD(Figure 3). The typical peaks of S-phase can be seen from the XRD charts of all the 

plasma treated samples. Comparedwith the peaks from the austenitic substrate, the peaks of S-

phase areshifted to the lower angles because of the super-saturation of nitrogen in the 

austenite matrix.  

Apart from S-phase, the peaks of silver and iron nitrides could also be identified from the 

ASPA(N&Ag) treated samples. The silver and iron were sputtered from the active screen lid 

and the iron reacted with nitrogen ions to form iron nitrides before deposited onto the sample 

surfaces. With the increase of the treatment duration, the surface deposition layer becomes 

thicker, thus contributing to the stronger peak intensity of silver and iron nitrides.However, no 

iron nitride peaks could be identified from theXRD chart for 7h ASPN treated 316 SS. 
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The above difference could be explained by the fact that the Ag particles in the deposition 

layer may have retarded the diffusion and hence decomposition of deposited iron nitrides. 

Hence, the peaks of silver and iron nitrides could be identified from the ASPA(N&Ag) treated 

samples; on the other hand, no peaks from the deposited iron nitride layer on ASPN 316 

surface could be detected by XRDeither because the superficial layer of deposited particles is 

too thin to be detected by XRD or the observed surface particles would be the decomposition 

product of the deposited iron nitrides according to the deposition-decomposition-diffusion 

mechanism of active screen plasma processes. 

In order to investigate the composition and structure of the as-deposited surface layer, ASPN 

and ASPA(N&Ag) treatments were also conducted on Si wafers in order to avoid the direct 

interaction and any mass transfer from the deposited layer to the stainless steel substrate. This 

is because the solid solubility of N in Si is extremely low and the diffusion of N in Si is 

difficult, if not impossible. Hence the composition and structure of the as-deposited layer 

could be retained after the treatment without the influence of the stainless steel substrate. 

From the XRD spectrums of 15h ASPN treated Si wafers (Figure 4), only peaks of iron 

nitrides can be detected from the ASPN treated Si surface, which supports the discussion in 

the last paragraph.For the ASPA(N&Ag) treated Si wafers, apart from the iron nitrides, the 

peaks of Ag could also be found. The XRD results reveal that the main phase constituents in 

the deposition layer of the ASPA(N&Ag) treatments are Ag and iron nitride, but in contrast, 

iron nitride is the only phase in that of the ASPN deposited surface layer. 

3.2.2 GDOES depth profiles 

The depth profiles of the elements across the plasma treated surface layer and the case 

beneath were generated using GDOES and the results are shown in Figure 5. The depth 

profiles of the major elements of 15h ASPA(N&Ag) treated sample are plotted inFigure 5(a). 

The profiles of Fe, N and Ag exhibit a peak in the near surface region, while the Cr profile 
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exhibits a trough in the same region. Beyond this surface region, no silver can be detected but 

the content of nitrogen decreases generally while other elements increases before reaching the 

substrate values.  

The detailed depth distribution of Ag and N as a function of the ASPA(N&Ag) time is re-

plotted in Figure 5 (b) and (c), respectively. The silver profiles of the ASPA(N&Ag) treated 

samples (Figure 5(b)) confirm the presence of silver in the ASPA(N&Ag) treated surfaces, 

and the depth of high-Ag region increases with the increase of treatment duration. The 

nitrogen profiles exhibit typical characteristic of S-phase reported in previous paper [9], and 

the nitrogen content, as well as the depth of high-nitrogen region, increase with the increase of 

treatment duration. When treated for the same duration, the ASPN treated sample exhibits 

higher and deeper nitrogen profile than that of the ASPA(N&Ag) treated sample. 

3.2.3 Cross-sectional SEM images 

TheSEM images of the cross-sectioned samples are shown in Figure 6. The low magnification 

images (Figure 6 (a)(b)(c)) show that featureless plasma modified surface caseswere formed 

after plasma surface treatments and the cases can be easily distinguished from the corroded 

substrate beneath. This implies that the plasmaco-alloyed surface cases are more resistant to 

the etchant used than the substrate. The thickness of these featureless cases correlates well 

with the nitrogen depth profiles shown in Figure 5 (c).Referring to the S-phase determined 

from the XRD results (Figure 3) and the very high nitrogen content, these cases can be 

identified as S-phase. 

From the high magnification images taken from the un-etched cross-sections, a thin layer with 

different thicknesses can be observed on the very surface of the plasma treated samples. For 

the 7h ASPN treated sample (Figure 6(d)), the top surface layer is composed of many small 

particles, whicharepiled up loosely,and the layer thickness is not uniform. However, the top 
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surface layers formed on the surface of the ASPA(N&Ag) samples are dense, almost 

featureless and uniform in thickness. According to the literatures [18–21], the formation of 

these thin surface layerscould be explained according to the principles of active-screen plasma 

treatment: materials are sputtered from the active screen and then deposit onto the surface 

during the treatment.The thickness of the top surface layers matches well with the high silver 

region measured by GDOES (Figure 5(b)), indicating that the surface deposition layer is rich 

in silver.  

The thickness of the surface deposition layer and the S-phase case underneath was measured 

from the cross-sectional SEM images and the results are presented in Figure 7. When treated 

at the same temperature for the same duration, both the surface deposition layer and the 

underneath S-phase case formed on the ASPA(N&Ag) treated sample are slightly thinner than 

that formed on the ASPN treated samples. This points towards different mechanisms involved 

in the ASPN and ASPA(N&Ag), which will be discussed in Section 4.  For the ASPA(N&Ag) 

treated samples, the thickness of both the Ag-rich deposition layer and the S-phase case  

increase with the treatment duration. 

3.3 Corrosion performance 

The corrosion behaviour of ASPA(N&Ag) treated 316 SS was evaluated by potentio-dynamic 

polarisation tests. The polarisation curves of the ASPA(N&Ag) treated 316 SS samplesare 

plotted in Figure 8, together with the curves of untreated and 7hASPN treated sample for 

reference. The quantitative corrosion results in terms of corrosion potential and corrosion 

current density, obtainedfrom polarisation curves, aresummarised inTable I. 

From the corrosion potential point of view, these two ASPA(N&Ag) treated samples 

exhibit,to some extent,more positive value than that of the untreated sample and 7h ASPN  

treated sample, which suggeststhe reducedcorrosion tendency, and the 15h ASPA(N&Ag) 
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treated sample showed the highest corrosion potential. It can also be seen from Table I that all 

the plasma treatments, namely ASPN and ASPA(N&Ag), can reduce the corrosion current 

density of 316 SS; furthermore when treated under the same temperature and duration, the 

ASPA(N&Ag) treated sample shows a much lower corrosion current densitythan the ASPN 

treated one. This finding proves that the addition of Ag has a positive effect in the 

improvement of the corrosion properties of 316 SS in terms of reduced corrosion current 

density and increased corrosion potential. 

However, the passive current density of all the plasma treated 316 SS samples is higher than 

that of the untreated material. In general,the passive current density of all the 

samplesincreases in the order of untreated <ASPA(N&Ag)7h< ASPN 7h<ASPA(N&Ag)15h. 

3.4 Surface electrical conductivity 

The interfacial contact resistance (ICR) values of ASPA(N&Ag) treated samples arecompared 

in Figure 9with that of untreated and ASPN treated samples. The roughnessof all these 

measured samples is similar (about 0.12 ~ 0.15 μm). The ICR values of the ASPA(N&Ag) 

treated samples are around 20 mΩ cm
2
, which isalmost one order of magnitude lower than 

that of the untreated one and two-thirdsof the ASPN treated sample. Clearly, the novel plasma 

co-alloying treatment developed from this research can effectively reduce the ICR of 316 

austenitic stainless steel, and the plasma co-alloying with both N and Ag is more effective 

than ASP nitriding (i.e. alloying with N only).   

 

4 Discussion 

As has been reported above, the ASPA(N&Ag) treatments can significantly reduce the ICR 

value of 316 austenitic stainless steel (316 SS) from 157.8mΩ cm
2
 to around 20mΩ cm

2
; the 

ASPA(N&Ag) can also increase the corrosion potential and reduce the corrosion current 
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density of 316 SS. In addition, the ASPA(N&Ag) treated samples exhibit superior surface 

conductivity and corrosion behaviour to that of the ASPN treated sample. Therefore, it is of 

great importance to understand the mechanisms involved. 

It is well-known that the surface conductivity and corrosion performance of a surface are 

closely related to itsstructure and composition. As compared in Figure 6, thesurface 

layerstructure of the ASPN treated and the ASPA(N&Ag) treated samples is similar, 

consisting of a top deposition layer and a underneath S-phase case. Therefore, it is reasonable 

to assume that the difference in surface properties should be related to the difference in the 

surface deposition layer formed by different treatments.  

Naturally, this could be attributed to the essential difference between the ASPN treatment and 

ASPA(N&Ag) treatmentin the composition of the active-screen used. As described in Section 

2, the whole active screen used for the ASPN is made of 316L SS, while for the ASPA(N&Ag) 

treatment, the lid of the active screen is composed of 5% Ag and 95% 316LSS. This should 

have led to the different compositionsand microstructure of the deposition layers. 

From the XRD results shown in Figure 4, the main phase compositions of the 

ASPA(N&Ag)surface deposition layer are iron nitrides and silver particles. It is well known 

that metallic silver has excellent electrical conductivity. The silver particles embedin the 

deposition layer can act as electric current paths, thusfacilitating the flow of electric current 

and contributingto the reduced ICR value.   

It is known that silver has a high standard electrode potential of 0.8V and is therefore 

regarded as a noble metal and possesses superior corrosion resistance[22]. In addition, the 

surface deposition layers on the ASPA(N&Ag) treated samplesare much denser than that of 

the ASPN treated samples (Figure 6), which could provide enhanced protection for the 

substrate against the acidic solution. Hence, the introduction of highly corrosion resistant 
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silver particles is expected to contribute to the increased corrosion potential and reduced 

corrosion current density (Table I) relative to the untreated and ASPN treated material. 

However, as discussed above, the surface deposition layer formed during the ASPA(N&Ag) 

consists of silver particles embedded in iron nitride. The difference in corrosion potential of 

these two phases would lead to galvanic corrosion. The relatively high passive current density 

of the ASPA(N&Ag) samples as compared to the untreated material (Figure 8) might be the 

consequence of the potential galvanic corrosion. Therefore, further research is required to 

tailor the phase constituentof the deposition layer to improve the corrosion behaviour of active 

scree plasma co-alloyed surfaces. 

From the results of GDOES (Figure 5 (c)) and cross-sectional SEM (Figure 6), the ASPN 

treated surfaces exhibita higher nitrogen content and a thicker S-phase case than that of the 

ASPA(N&Ag) treated surfaces when treated under the same treatment duration. This could be 

explained by the introduction of Ag inASPA(N&Ag) treatment. It is well-documented that the 

iron nitrides formed in the deposited surface layer can act as nitrogen carrier which is 

essential for the formation of S-phase. During the ASPA(N&Ag) treatment, although the 

sputtered silver particles would not react with nitrogen, the deposition of silver will reduce the 

amount of nitrogen carriersdepositedon the surface being treated and the presence of Ag 

particles will retard the inward diffusion of nitrogen.These will reduce the supply of nitrogen, 

thus leadingto the lower nitrogen amount and thinner S-phase case of the ASPA(N&Ag) 

treated samples relative to the ASPN treated one. 

 

5 Summary and Conclusions 

A duplex surface layer structure, consisting of a silver-rich deposition layer and anunderneath 

high-nitrogen S-phase case, has been successfully generated by one-step active screen plasma 
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co-alloying technology with both interstitial element nitrogen and substitutional element 

silver. Experimental results demonstrate that metallic silver particlesare uniformly distributed 

in the iron nitride matrix within the surface deposition layer. The surface electrical 

conductivity tests have shown that the introduction of silver can significantly enhance the 

surface electrical conductivity of 316 austenitic stainless steel. Therefore, active screen 

plasma co-alloying with nitrogen and silvercould be a promising method to improve the 

surface properties of 316 SS for high-performancestainless steel bipolar plates in PEMFCs. 
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Table IThe results of potentio-dynamic polarization tests 

Sample 
Corrosion potential 

(mV vs SCE) 

Corrosion current density 

(mA/cm
2
) 

UNT -460 0.114 

ASPN 7h -443 0.088 

ASPA(N&Ag) 7h -427 0.021 

ASPA(N&Ag) 15h -417 0.097 
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Figure 1  

SEM morphology of treated surfaces: Low magnification (a) ASPN 7h (c) ASPA(N&Ag) 7h 

(e) ASPA(N&Ag) 15h; High magnification (b) ASPN 7h (d) ASPA(N&Ag) 7h (f) 

ASPA(N&Ag) 15h 

 

Figure 2  

Analysis of 15h ASPA(N+Ag) treated 316 SS under high magnification(a) Surface 

backscatter image    (b) EDS spectrums of two points 

 

Figure 3  

XRD spectrums of different samples 

 

Figure 4 

XRD patterns of ASPA (N&Ag) and ASPN treated Si wafer after 450°C/15h treatment 

 

Figure 5 

Depth profiles of (a) main elements in 15h ASPA(N&Ag) treated surfaces, (b) nitrogen and (c) 

silver as a function of treatment time 

 

Figure 6 

Cross-sectional SEM image of different samples: low magnification (a) ASPN 7h (b) 

ASPA(N&Ag) 7h (c) ASPA(N&Ag) 15h; high magnification (d) ASPN 7h (e) ASPA(N&Ag) 

7h (f) ASPA(N&Ag) 15h 

 

Figure 7 

The thickness of S-phase layer and deposition layer on different treated samples 

 

Figure 8 

The potentio-dynamic polarization curves of different samples 

 

Figure 9 

The ICR results of different 316 SS samples 
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Figure 5
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Figure 6 
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Figure 9 
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Highlights 

 Radically reduced interfacial contact resistance of 316 by surface N/Ag co-

alloying  

 A duplex surface layer structure produced by one-step plasma surface 

treatment 


