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ABSTRACT 

Objectives. The objective of this study was to assess local vascular architecture in atrophic-erosive oral lichen planus 

(OLP). Materials and Methods. We investigated the capillary structure of the oral mucosa in 31 OLP patients and 32 

healthy controls. Capillaries images were captured in vivo through a capillaroscope. We applied fractal analysis to 

quantify the microvasculature morphometric changes in the oral mucosa of atrophic-erosive OLP patients in terms of 

their fractal dimension (D). Results. The oral vascular networks of atrophic-erosive OLP lesions had a significantly 

higher D, both in buccal mucosae (D=1.167, p=0.019) and in tongue (D=1.196, p=0.038), when compared to the control 

population (1.123 for both locations, respectively). Conclusion. The present study confirms previous literature data on a 

close relationship between abnormal vascular architecture and atrophic-erosive OLP. Fractal analysis provided a 

quantitative descriptor of the complexity of the vascular patterns, which increases in the OLP samples. These data may 

provide new information on the OLP pathogenesis, as well as serve as morphological quantifiers in the monitoring 

treatment strategies. 
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INTRODUCTION 

Lichen planus (LP) is a chronic idiopathic inflammatory disease of the skin and mucous membranes, characterized by 

an immune process directed against basal keratinocytes that leads to epidermal damage1. It is still unknown, however, 

how this process is activated in vivo1.  

It is estimated that LP has a prevalence of 1-2% in the general population, 50% of which presents with skin and oral 

lesions, while in 25% of patients oral lesions are the only feature (oral lichen planus, OLP)2 commonly involving the 

buccal mucosa, tongue and gums3. Clinically, OLP lesions are often multiple, bilateral,  symmetrical and may present as 

different subtypes: papular, plaque-like, reticular, erosive, atrophic, bullous4-6.  

Although OLP pathogenesis is still unclear, there is growing evidence pointing to cell-mediated immunity mechanisms 

that involve oral keratinocytes secreting chemokines that attract lymphocytes7. The T CD4+ cells stimulated by antigens 

associated with major histocompatibility complex (MHC) class II (expressed by Langerhans cells) activate T CD8+ 

cells that appear to lead to basal keratinocyte apoptosis8. 

The production of Th1 cytokines (IFN-γ, IL-2 and TNF-α) by activated T cells stimulates the expression of intercellular 

adhesion molecule-1 (ICAM-1) on Langerhans cells and macrophages, and somehow induce the expression of class II 

MHC molecules by keratinocytes, thus contributing to a chronic injurie9. In addition, the activity of cytokines seems to 

be facilitated by an over-expression of their receptors, and possibly up-regulation of several chemokines10.  

Furthermore, lymphocytes seem to influence the development and extent of lesions through the production of 

chemokines such as RANTES which trigger degranulation of mast cells, releasing TNF-α and chymase, which in turn 

promote the discharge of further RANTES, attracting in more mast cells and also inducing their degranulation7. 

TNF-α and IFN-γ polymorphisms have also been suggested to play a role the in susceptibility to OLP, while cytokines 

polymorphisms appear to influence some OLP clinical presentations11. 

Similarly to other chronic inflammatory diseases12-15, neo-angiogenesis is a common event in OLP5,8,16,17 and a  

relationship between abnormal angiogenesis and atrophic-erosive OLP types has been demonstrated5,18. Angiogenesis 

has been suggested to occur as a direct consequence of the dense lympho-histiocytic infiltration (a typical band-like 

pattern in the lamina propria), which causes hypoxia in the inflamed stromal area19. 

The microvasculature in abnormal angiogenesis is often structurally and functionally altered20. The vessels tend to be 

disorganized, unevenly distributed, dilated and more permeable. Arterioles and venules can be morphologically 

undefined, with premature and lack of mural cells, high interstitial pressure and sluggish blood flow. These vascular 

phenotypic changes are also likely to affect the balance of pro- and anti-angiogenic signaling in the tissue21,22. 



Lately, investigation of the quantitative microangioarchitecture has also focused on morphometric descriptors such as 

those  used to characterise fractals23 which we set to investigate here. 

 

Fractal Analysis 

Mandelbrot, in his work aimed to provide mathematical interpretations of real phenomena dominated by randomness 

and chaos and to devise means of describing shapes endowed of complexity and self-similarity, by developing the 

concept of fractals24. Mathematically, a fractal object has two main features:  

a) Fractals often have a fractional, or non-integer, dimension25. In terms of Euclidean 'topological' dimensions, points 

have a zero dimension, straight lines have 1 dimension (length), plane surfaces have 2 and volumes have 3. Fractals 

however typically have dimensional values that exceed their topological dimension26. Fig. 2 shows an approximation of 

a von Koch type of fractal curve. This object should have (by being a line) a topological dimension of 1, but increasing 

the scale of observation reveals that it is not a rectifiable curve: the length of the curve between any two points is (in its 

limit) infinite because increasingly more detail is revealed upon increasing magnification. 

b) Fractals exhibit self-similarity independent of scaling25. Natural objects, such as coastlines, trees and, in this case, 

vascular trees are only approximations to mathematical fractals and exhibit some degree of statistical self-similarity (i.e. 

smaller pieces are 'statistically similar' to the whole, but not necessarily identical, while maintaining a similar level of 

structural complexity) over some range of scales27. In those cases, one way to describe their complexity is by means of 

the fractal dimension (D). This number defines the space-filling properties of the object26 by describing the rate of space 

filling in the embedding space. For an object in 2 dimensional space, D can take values between 0 and 2 — the closer an 

object's fractal dimension gets to 2 (the embedding space), the more the object appears to fill space and the more 

geometrically complex it is. Therefore D becomes a convenient quantifier of the complexity and space filling properties 

of the microvessels within the environment.  

It is interesting to note that in addition to global quantifiers of complexity, Fractal geometry can also be used to obtain 

quantifiers of the local morphological complexity of objects23,28-30. In the context of vascular structures, it has been 

shown that both physiological and pathological vascular trees can be described as fractals23,30. 

We applied fractal analysis to quantifying global microvasculature morphometric changes in the oral mucosa of 

atrophic-erosive oral lichen planus (OLP) patients. 

 



MATERIALS AND METHODS 

Patients 

This study - approved by the Ethical committee of the Second University of Naples - enrolled 63 patients referring to 

the Oral Pathology Unit at the Second University of Naples, Italy, after informed and written consent. Thirty-one 

patients were affected by atrophic-erosive OLP and 32 healthy patients were used as controls.  

Diagnosis of OLP was made evaluating both clinical and histological features according to the criteria established by 

World Health Organization31. Patients diagnosed with OLP were further divided into atrophic-erosive and reticular 

subgroups according to the clinical classification generally accepted5,32-34  

Patients with reticular lichen planus were not included because a previous study reported that microvessel density 

(MVD) of atrophic-erosive OLP was significantly higher than that of the reticular OLP and there was no significant 

difference of MVD between reticular OLP and a control group5. Moreover, Scardina et al.35, compared microcirculation 

among the different clinical OLP forms by video-capillaroscopy and observed a higher density and the presence of a 

greater number of branched, tortuous loops in the atrophic form compared to the exclusively reticular form. 

For all 31 patients with OLP,  the lesions were originally atrophic-erosive (first onset) and did not have involvement of 

the skin, genital mucosa, or other anatomic sites. The characteristics of the subjects are shown in Table I. 

 

Capillaroscopic investigation 

Intravital videomicroscopy (capillaroscopy) allows evaluation of in vivo microcirculation35 (Fig. 1) and permits a 

simple, repeatable, non-invasive exam of oral mucosa in an orthogonal projection. The videocapillaroscope is a digital 

microscope that can be connected to a computer/camera allowing the acquisition of images of the mucosal vasculature 

(in this case with a field size of 1280x1024 pixels). Oral mucosa vascular architecture imaging was performed using 

computerized videocapillaroscopic techniques (Dino-lite) and related software (DinoCapture2.0- 0.9.5b). White LED 

lights are built-in in the device. All the captured images were taken at 200x magnification. The capillaroscopy analysis 

was always performed by the same operator, with the same light source, always in the morning, with the camera was 

positioned into the oral cavity at a right angle. 

Estimation of the Fractal Dimension (D) 

D is a global quantifier of the complexity of a set and it is here related to the number of vessels, their variability in 

shape and magnitude, and distribution pattern29,30. In this case D can be considered as a quantitative parameter to 

characterise the visible vasculature.  



The images captured with capillaroscopy were converted to 8bit greyscale and thresholded using Otsu’s method 

implemented in the ImageJ analysis software36. Regions smaller than 2 morphological dilations were deleted and finally 

a median filter of radius 2, was applied to remove any remaining noise. The resulting images were then skeletonized 

(reduced to single pixel paths) to simplify the geometric pattern while still retaining a reproducible and computable 

representation of the original vessel distribution (Fig. 1). The box-counting method25 was used to calculate D of the 

vascular skeletons (Fig. 3).  

Statistical analysis 

The differences in D in the images across the OLP and control patients were analysed for significance using F-test (for 

variability across groups) and Student’s t-test for significance of the difference of the means using Microsoft Excel 

(Microsoft Corp.). 

 

RESULTS 

Table II summarizes the average of the D in OLP lesions and in healthy oral mucosae (Fig.4). 

The statistical analysis of the D data is shown in Table II. An F-test revealed that variability in D across groups was not 

statistically significant (p>0.05), but the mean D values were statistically different. The oral vascular networks of 

atrophic-erosive OLP lesions had a significantly higher D, both in buccal mucosae (D=1.167, p=0.019) and in tongue 

(D=1.196, p=0.038), when compared to the control population (1.123 for both locations, respectively). However, the 

range of values across groups had an important overlap, possibly due to individual variation and this would make it 

difficult to enable D to be used alone as a unique discriminant of OLP. Nevertheless, it might prove useful for 

monitoring changes in vascularity as response to treatment or the status of the vascular networks on an individual basis. 

 

DISCUSSION 

Fractal-like properties have been described in numerous macro and microscopic anatomical structures37, suggesting that 

they might provide functional or developmental benefits. Self-similarity, has been observed in biological trees38, neural 

structures39 and vascular network in developing embryos40. Microcirculation in normal and pathological conditions, 

(e.g. in neoplastic development and growth36,41), has also been investigated in terms of fractals42,43 and it has been 

hypothesized that a fractal morphology might optimize the supply of nutrients while minimizing the energy required for 



blood flow and metabolic exchange26,43. It should not be surprising therefore  that the geometric organization of 

vascular networks becomes altered when is influenced by local stimuli, e.g. growth factors released by neoplastic 

tissues44,45 or by chronic inflammatory diseases like OLP5,9. 

In this paper we exploited Fractal analysis to quantify the phenotypic changes in the vascular patterns, but the analysis 

also has the additional advantage to be a multi-scale characterization, i.e. it summarises the rate of change of space 

occupancy across scales (box size, in the current analysis). Such multi-scale analysis is more robust than single scale 

descriptors, such as ‘density’, which for fractal objects is not as meaningful as first thought (unintuitively e.g. a fractal 

sponge, the bigger it is, the less dense it becomes). 

The oral vascular networks of atrophic-erosive OLP lesions had a significantly higher D, when compared to the control 

population, confirming previous evidence of a  relationship between abnormal vascular architecture and morphological 

changes in atrophic-erosive OLP5,18. It furthermore highlights the feasibility to use fractal analysis to assess 

quantitatively the microvascular patterns in OLP lesions to characterise and monitor progression and response to 

treatment. 

The present analysis deals with a projection of the 3d pattern onto a 2d image plane and while it could be extended to 

the more realistic case of 3d microvascular networks, this is technically challenging as 3d data is difficult to obtain at 

these small scales using non-invasive methods. Nevertheless, 2d projection patters still preserve useful microcirculation 

information, as reported here and in other publications26,36. 

The central role of vascular architecture in autoimmune disorders and chronic inflammation has prompted the use of 

some therapeutic strategies in the treatment of some chronic inflammatory diseases. For example, anti-angiogenic 

therapy proved promising in alleviating the severity and preventing progressive chronic inflammation in disorders like 

rheumatoid arthritis, collagen-induced arthritis and peritoneal fibrosis46-49. Considering that in some OLP cases 

conventional immunosuppressive and/or anti-inflammatory therapy has been found ineffective, and that the vascular 

architecture is altered, targeting angiogenesis might be a valid therapeutic target to fight such persistent inflammation 

cases. This idea seems to be supported by results obtained with thalidomide, an inhibitor of angiogenesis, in the 

treatment of erosive OLP cases where the corticosteroid therapy was contraindicated or had no effects50-52. It is also 

important to note that OLP is a potentially malignant disorder. Despite the numerous factors associated with malignant 

change, there is a scarcity of definite clinical, histological and molecular predictors of malignant development for 

OLP53. While some authors54 proposed microvessel density analysis as a parameter in determining potential malignant 

progression of vulvar lichen sclerosus, this has not been studied extensively in OLP. In this context of malignant 



transformation, fractals also have been shown to be indicators of premalignant and malignant epitelial profiles55 and that 

could also be integrated in the analysis of OLP lesions.In this preliminary study, we presented an application of fractal 

geometry to develop an objective, operator-independent and in vivo technique capable of quantifying morphological 

changes in microvascular patterns in atrophic-erosive OLP lesions. Further study is guaranteed to elucidate the value of 

fractal geometry as a quantitative marker in monitoring the status of the disease, the effectiveness of therapies and the 

early diagnosis of malignant transformation. 
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FIGURE LEGENDS 

Table I. Clinical features of subjects in this study. 

Table II. The average of the D in OLP lesions and in healthy oral mucosae. 

Fig. 1 – A) Capillaroscopy image of healthy mucosa; B) Capillaroscopy image of patient affected by lichen; C) 

Skeletonized image of image A;  D) Skeletonized image of image B. 

Fig. 2 - A von Koch curve example. Fractal objects  have a non-integer, dimension which exceeds their topological 

dimension and exhibit self-similarity independent of scaling. 

Fig. 3 - The slope of the line represents the Fractal dimension of the microvessels. A) healthy subject; B) OLP patient. 

Fig. 4 - The bar graph shows the average fractal dimension in the four groups.  



Table I. Clinical features of subjects 

 

Group Number of 
subjects 

Age Gender Site 

Mean +SD Range F/M Buccal 
mucosa 

Tongue 

 

Atrophy-
erosive OLP 

31 
64.903 

+ 6.705 

54 - 78 16/15 
22 9 

Control 32 61.593 

+ 9.417 
43 - 73 16/16 

22 10 

OLP: Oral Lichen Planus 

 

 

 



 
Table II. The average of the FD in OLP lesions and in healthy oral mucosae. 

     

 

 
Normal 

  
 OLP 

 

 
Tongue Buccal mucosa 

 
 Tongue Buccal mucosa 

N 10 22 
 
 9 22 

Average 1.123 1.123 
 
 1.196 1.167 

SD 0.083 0.052 
 
 0.053 0.068 

Min 0.990 1.045   1.089 1.040 

Max 1.225 1.253   1.281 1.281 

Statistical differences (FD normal vs. OLP) 

 Tongue Buccal mucosa     

F-test p 0.227 0.221 
 
  

 
T-test p 0.038 0.019 

 
  

 
 

   

 SD: standard deviation, FD: fractal dimension, OLP: oral lichen planus    
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