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Abstract 

Two organic/inorganic composite coatings based on alginate, as organic matrix, and zinc oxide 

nanoparticles (n-ZnO) with and without bioactive glass (BG), as inorganic components, intended for 

biomedical applications, were developed by electrophoretic deposition (EPD). Different n-ZnO (1–10 

g/L) and BG (1-1.5 g/L) contents were studied for a fixed alginate concentration (2 g/L). The presence 

of n-ZnO was confirmed to impart antibacterial properties to the coatings against gram-negative 

bacteria Escherichia coli, while the BG induced the formation of hydroxyapatite on coating surfaces 

thereby imparting bioactivity, making the coating suitable for bone replacement applications. 

Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared 

spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analyses. 

Scanning electron microscopy (SEM) was employed to study both the surface and the cross section 

morphology of the coatings. Polarization curves of the coated substrates made in cell culture media 

at 37°C confirmed the corrosion protection function of the novel organic/inorganic composite 

coatings. 

 

Keywords:  ZnO nanoparticles, alginate, bioactive glass, coating, electrophoretic deposition (EPD) 
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1 Introduction 

Around 1.5 million bone replacement surgical procedures per year are performed worldwide, with a 

cost of around US$10 billion [1]. Infection of orthopedic implants occurs in 5% of the cases for a total 

amount of 100.000 cases per year just in the USA [1]. This problem is originated by bacterial 

colonization of the implant surface where bacteria form a biofilm causing infection of the bone and 

surrounding tissues [2]. Bacteria can come from a variety sources: deficient hygienic standards in 

hospital [3], and also from the patient’s own skin and/or mucosa, etc. [4,5]. These microorganisms 

attach to the implant surface in an irreversible way. After implantation bacteria can produce a 

relatively thick extracellular matrix layer on the implant surface leading to the formation of an 

adherent biofilm [4–6]. This biofilm makes difficult the penetration of antibacterial agents (e.g. 

immune cells or antibiotics) being thus extremely resistant and adhesive [5]. A chronic infection 

adjacent to the implant can lead to osteomyelitis, acute sepsis, and even death [7]. To tackle this 

problem, a solution being proposed is the incorporation of antibacterial coatings on the implant 

surface to prevent the biofilm formation. 

Another common problem observed for metallic implants is its encapsulation by fibrous tissue [8], 

which leads to micromovements of the implant, migration and possible loosening [8,9]. To solve 

these problems a bioactive material can be used to coat the implant and in order to induce its 

osteointegration. Bioactive glasses are well-known biocompatible materials with osteoinductive 

properties that are being increasingly used in the orthopedic field to promote bone repair and 

regeneration [10–13]. Bioactive glasses form a hydroxyapatite surface layer where osteogenic cells 

can attach and differentiate [13–15] thereby improving the bone-implant contact and promoting 

bone in-growth. Moreover, bioactive silicate glasses of silicate show antibacterial, anti-inflammatory 

and angiogenic effects [16–18].  

ZnO has been used in the production of solar cells, photovoltaic devices, batteries and biosensors 

mainly due its semiconducting properties [19–21]. This material has also been used to produce 

biomimetic membranes able to immobilize proteins due to its rapid transfer of electrons, which 
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represents an  application of ZnO in the field of biomaterials [22]. Antibacterial properties of ZnO 

have been reported [23–25], which opens possible applications of this material in the production of a 

coating on metallic implants with antibacterial activity. Combining ZnO with a bioactive glass (e.g. 

45S5 Bioglass®) [10], a new composite material can be developed that tackles simultaneously the 

two main challenges of traditional orthopedic implants: probability of infections and lack of 

osteointegration. 

Spray plasma coating is a technology widely used to produce bioactive coatings on metallic implants, 

mainly based on calcium phosphates, e.g. hydroxyapatite [26]. However, due to the high 

temperatures reached during the process, a morphological change on the bioactive material is 

induced which may reduce its bioactivity. To solve this inconvenience, a new family of 

organic/inorganic composite coatings made by room temperature electrophoretic deposition (EPD) is 

emerging, where a biocompatible polymer and a bioactive glass (or ceramic) material are combined 

[27–32]. EPD has been used to produce pure bioactive glass coatings [33] and composite coatings of 

bioactive glass with different polymers [34,35] for orthopedic and dental applications. With this room 

temperature processing method possible degradation and microstructural damage of the coating and 

substrate, e.g. phase changes and microcracking due to thermal expansion mismatch, are avoided. A 

growing family of this type of organic-inorganic composite coatings is being produced, as reviewed 

elsewhere [27].  

An interesting polymer for fabrication of organic/inorganic composite coatings with potential 

biomedical applications is alginate [36], which has been used only to a limited extent in combination 

with EPD to produce bioactive coatings [28,31,36,37]. Alginate is a natural polysaccharide which, due 

to its low toxicity and biocompatibility [38–40], has been studied for different applications, e.g. 

biosensors, drug delivery systems and tissue engineering. This polymer presents a potential binding 

effect with proteins, growth factors and bone-forming cells, being thus also attractive to develop 

coatings for bone contacting materials. 
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EPD appears as a versatile, simple and low cost technique to create highly homogeneous coatings 

with clear advantages, like the possibility to obtain homogeneous coatings on 3D structures of 

complex shape as well as on porous substrates [27,41,42]. Moreover, EPD enables production of a 

wide variety of coatings due to the possibility of depositing different types of materials and 

combination of materials, e.g. inorganic, polymeric and composite materials with high 

microstructural homogeneity and tailored thickness [27,41–43]. The EPD process is based on the 

application of an electric field between two conductive electrodes immersed in a colloidal suspension 

[43]. The electric field imparts electrophoretic motion to charged particles in suspension causing 

their movement to the oppositely charged electrode, where they deposit forming a coherent coating 

over it. 

The aim of this research was to develop a new group of electrophoretic alginate-based coatings on 

stainless steel substrates incorporating ZnO nanoparticles and bioactive glass microparticles as 

inorganic phases. The deposition conditions (i.e. suspension concentration, electric field and 

deposition time) as well as the colloidal stability of the starting suspensions were investigated. 

Coating compositions were studied using XRD, FTIR and TG techniques. The electrochemical behavior 

was also evaluated by obtaining polarization curves of coated substrates to assess the protective 

effect of the coatings on the corrosion behavior of the stainless steel substrates. Antibacterial test 

against gram-negative bacteria were performed to evaluate the potential antibacterial properties of 

the coatings. Gram-negative bacteria were chosen for the tests because even if ZnO nanoparticles 

have been frequently tested against this type of bacteria, the effect of the presence of the alginate 

matrix and bioactive glass particles on antibacterial activity is unknown. 

2 Materials and methods 

2.1 Suspension preparation 

Sodium alginate (Sigma Aldrich, Germany), zinc oxide nanoparticles (n-ZnO, Intrinsiq Materials, UK), 

bioactive glass (BG) microparticles (5-25 µm particle size) of 45S5 composition [10], deionized water 
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and ethanol were used to prepare the composite coatings. A 2 g/L alginate solution was used in all 

experiments while the ceramic content was varied from 1 to 10 g/L. At the same time, different        

n-ZnO/BG ratios were chosen, varying the n-ZnO content from 25 to 100 wt.%. Samples were labeled 

ZA (100 wt.% ZnO), 50-ZBA (50 wt.% ZnO and 50 wt.% BG) and 25-ZBA (25 wt.% ZnO and 75 wt.% 

BG). In order to avoid hydrogen evolution formation during the EPD process (due to water 

electrolysis) a mixture of 40 vol.% ethanol – 60 vol.% water was used [31,37]. To achieve an adequate 

dispersion of the components, the suspensions were magnetically stirred for 10 min followed by 60 

min of ultrasonication (using an ultrasonic bath, Bandelin Sonorex, Germany). Zeta-potential 

measurements were carried out in order to analyze the colloidal stability of the suspensions. These 

measurements were done by Laser Doppler Velocimetry (LDV) technique using a Zetasizer nano ZS 

equipment (Malvern Instruments, UK). The solid content of all suspensions was adjusted to 0.1 g/L in 

order to ensure reliable measurements. 

2.2 Electrophoretic deposition 

Stainless steel AISI 316L electrodes (foils of 2.25 cm2 deposition area and 0.2mm thickness) were 

used to deposit the coatings via constant voltage-EPD. The distance between the electrodes in the 

EPD cell was kept constant at 10 mm. Deposition voltages and times in the ranges 5-40 V and 5-35 s, 

respectively, were studied. The deposition yield was evaluated using an analytical balance (precision 

0.0001g). Coated substrates were dried during 24 h in normal air at room temperature prior to mass 

determination. 

2.3 Characterization 

In order to characterize the coatings, XRD (D8 Philips X'PERT PW 3040 MPD), FTIR (Bruker 

Instruments, Germany) and thermogravimetric (TG) (TGA/SDTA 851e, Mettler Toledo) tests in air 

(heating rate: 10°C/min) were performed. The microstructure of the ZnO nanoparticles was 

characterized with TEM (JEOL 2100, 200 kV). The surface microstructure and composition of the 

coatings were analyzed by SEM (Hitachi S4800) and energy-dispersive X-ray spectroscopy (EDX), 

respectively. To determine the coating thickness, cross section of the samples were cut using and ion 
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mill (Hitachi IM4000) and further observed by SEM. Bending tests were also performed in order to 

qualitatively evaluate the deformation ability of the coatings and the adhesion between the 

substrate and the coating. 

2.4 Electrochemical behavior and corrosion  

The electrochemical behavior of the coatings was studied in order to test their possible corrosion 

protective properties. Potentiodynamic polarization curves were obtained using a 

potentiostat/galvanostat (Autolab PGSTAT 30). The samples were immersed in 100 mL of Dulbecco´s 

MEM (DMEM, Biochrom) at 37°C. A conventional three electrode system was used, where a platinum 

foil served as counter electrode and Ag/AgCl (3M KCl) was used as reference electrode. The analysis 

was carried out using an O-ring cell with an exposed sample area of 0.38 cm2 with a potential sweep 

rate of 1 mV/s. 

2.5 Bioactivity in-vitro assessment 

The bioactivity of the coatings was determined through immersion in simulated body fluid (SBF) 

using Kokubo’s protocol [44]. The samples with an area of 2.25 cm2 were immersed in 50 mL SBF    

(pH = 7.4) during 7 days at 37°C. XRD was used to evaluate the formation of hydroxyapatite (HA) on 

the coatings.  

2.6 Antibacterial evaluation 

The antibacterial activity of all samples was investigated against the gram-negative Escherichia coli 

(E. coli, strain: dH5a) using the following method. A colony of E. coli was cultivated at 37 °C for 24 h in 

5 mL of Lactose broth (LB) medium supplemented with 0.1 vol.% of Ampicillin. After 24 h, the 

cultures were diluted in 10 ml of LB medium. 60 μL of the bacterial solution was added on each 

coated sample and incubated for 1, 2, 3 and 4 h at 37 °C. After the specific time points, each sample 

was stamped on the surface of a LB-agar solid culture, which was prepared by dissolving 7 g of agar 

and 9 g of LB in 500 mL of water, poured onto a plastic petri dish for gelation, and cultivated at 37 °C 

for 24 h. 
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3 Results and Discussion  

3.1 Solution stability, electrophoretic deposition and characterization 

The compatible interaction of water with the body in comparison with other solvents, makes it a 

simple and reasonable choice to be used as dispersing medium for EPD suspensions. However water 

leads to hydrogen and oxygen evolution at relatively low voltages inducing a negative effect in the 

adhesion and homogeneity of the electrophoretic coatings [43]. To avoid possible negative effects, a 

mixture of 60 vol.% water and 40 vol.% ethanol was used based on our previous work [31,37] with an 

alginate content of 2 g/L. The ethanol contributes to reduce and in best case to suppress hydrogen 

formation during deposition.  

Table 1 presents the results of the zeta potential values for different suspensions (a solid content of 

0.1 g/L was used to ensure reliable measurements with a ceramic/polymer ratio of 1). As it can be 

seen ZnO nanoparticles have a positive zeta potential which predicts a cathodic deposition, however 

the high standard deviation reflects certain instability of the system. The addition of alginate to the 

suspension shifts the zeta potential to negative values, as expected, considering that the alginate is 

an anionic biopolymer which develops a negative charge in solution. The shift of the zeta potential to 

negative values implies the anodic deposition of the sample ZA. When BG is also introduced in the 

suspension (samples 50-ZBA and 25-ZBA), the zeta potential remains negative and becomes slightly 

higher (in absolute value), which implies a higher suspension stability. Moreover, the change in the 

ratio BG/n-ZnO did not induce changes in the zeta potential. Considering the low zeta potential 

values of the BG and the BG/n-ZnO suspensions in the absence of alginate, it could be considered 

that the stability of the particles in suspension is mainly controlled by the alginate. This could be 

explained by the fact that the negatively charged alginate is being absorbed on the particles surface, 

and therefore it is responsible for the high zeta-potential values measured. 
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Table 1 Zeta potential values of different suspensions 

Suspension 
Zeta-potential 

(mV) 

n-ZnO (without Alg) 24±19 

BG (without Alg) -17±13 

BG-n-ZnO (75wt%/25wt%) -19±12 

ZA -58±9 

50-ZBA -65±10 

25-ZBA -65±9 

 

To optimize the system, an initial n-ZnO content of 2 g/L was chosen keeping a ceramic (BG and 

ZnO)/polymer weight ratio of 1:1. Homogeneous and crack-free coatings were obtained using 30 V of 

deposition potential and 5 s of deposition time. Higher voltages or times led to cracking of the 

coating mainly due to the hydrogen evolution during the deposition, while lower voltages or times 

led to inhomogeneous coatings. For ceramic contents from 1 to 10 g/L, which implies 

ceramic/polymer weight ratios ranging from 0.5 to 5, determined deposition conditions (30 V and 5 

s) were found to be optimum, leading also to homogeneous and crack-free coatings. This is an 

important finding considering that in other works with metallic oxide nanoparticles, when the 

ceramic/polymer ratio was above 3,  the coatings were full of cracks and presented poor adhesion to 

the substrate [37,45]. Fig. 1 shows the surface of ZA and 25-ZBA coatings produced with different 

ceramic contents (2 and 10 g/L). Images documenting the results of the bending are also presented 

in Fig. 1. As it can be observed, even for 10 g/L the coatings resisted the bending process with just 

some small cracks located at the borders of the sample. These cracks at the edges of the substrates 

are due to the higher ceramic content deposited in such areas as a consequence of the well-known 

edge effect during EPD [45]. 
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Figure 1 Coatings obtained at 30 V and 5 s of deposition time from the system ZA with 2g/L (a and b) and 10 g/L  (c and d) 
of ceramic content, and from the system 25-ZBA with 2 g/L of ceramic content (e and f). 

 

Fig. 2 (a and b) presents the TEM and SEM images of the ZnO nanoparticles. As it can be observed, 

the particles have a broad size distribution with sizes ranging from tens to hundreds of nanometers, 

and presented an elongated hexagonal shape, typical of ZnO powders which crystallize in a 

hexagonal crystalline phase, called zincite, as further confirmed by XRD. Fig. 2 (c and d) shows the 

SEM images of the ZA coatings produced with different ceramic contents (4 and 10 g/L). As it can be 

observed, in all cases the coatings are fully homogeneous in the microscale and no cracks are 

observed with deposited particles of size between 20 and 60 nm, meaning that the large ZnO 

particles (seen by TEM) in suspension do not participate in the coating formation. As a consequence 

of their larger particle size, their electrophoretic mobility is lower and these particles probably settle 
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down due to gravity forces. The coating thickness was around 3-4 µm for a ZA coating produced with 

2g/l ZnO. 

 

 

 

Fig. 3 shows the variation of deposition yield of ZA coating as a function of the n-ZnO particles 

concentration in suspension. As it can be observed, the higher the concentration, the higher is the 

deposition yield. Also at higher concentrations (more than 8 g/L) the system presents an asymptotic 

behavior indicating the system´s incapacity to have higher deposition yields, and supporting the fact 

that the deposition is controlled by the presence of alginate. When the ceramic content is increased 

but the alginate content is kept constant (2 g/L), the ratio polymer/ceramic decreases considerably, 

from 2 when using 1 g/L of n-ZnO to 0.2 when the n-ZnO content is 10 g/L. Although the saturation 

point of n-ZnO powders with alginate has not been measured in this study, it is likely that at such a 

low polymer/ceramic weight ratio as 0.2, the ZnO particles would present a lower zeta potential 

value and therefore agglomerates could form more easily. At the same time, with high ceramic 

Figure 2 TEM and SEM images of the ZnO nanoparticles (a and b) and SEM images of the ZA coating produced from a 
suspension of 4 g/L (c) and 10 g/L (d) of ceramic (BG, ZnO) content. 
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contents, particle-particle interactions become more important and the largest ZnO particles, as well 

as the agglomerates, tend to settle down not reaching the deposition electrode.  

 

Figure 3 Relationship between n-ZnO concentration in suspension and deposited mass per area using 2 g/L alginate 
suspensions in ethanol/water solvent. Deposition time was 5 s and deposition potential 30 V. 

 

Different coatings containing BG and n-ZnO were obtained varying the deposition voltage and time 

(from 5 to 60 V and from 1 s to 5 min respectively) and it was observed that the optimal conditions 

were the same used for the ZA system, i.e. 5 s deposition time and a voltage of 30 V. The fact that 

both systems exhibit the same optimal conditions may be due to the fact that the deposition is 

controlled by the alginate. According to the zeta potential measurements, we suggest that the 

alginate is adsorbed on the surface of both BG and n-ZnO particles, which increases the absolute 

value of the zeta potential. However, the non-absorbed chains of the alginate in the suspension are 

also affected by the applied electric field since alginate is a polyelectrolyte which is negatively 

charged in the media. Under these conditions, when the voltage is applied, the particles with 

adsorbed alginate will move along with the free polymer chains. It is suggested that these free chains 

can further favor the deposition on the electrode by dragging the ceramic particles towards the 
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deposition electrode. As the alginate concentration is constant for each experiment, it can be 

considered that the kinetics of deposition is determined by the mobility of the polymer molecules. In 

the proposed mechanism, alginate forms a charged polymer cloud in the suspension and with its 

movement, due to the applied potential, it involves the ceramic particles forming the composite 

coating on the electrode surface. Fig. 4a presents the SEM image of 25-ZBA coating produced with a 

ceramic content of 2 g/L. As it can be seen, the coatings are homogeneous with BG particles well 

distributed on the surface. Fig 4 (b and c) shows a BG particle partially covered with ZnO particles, 

which confirms the co-deposition of both materials. Fig. 4d shows the EDX results of large particles 

deposited, where the presence of Si, P, Ca and Na can be confirmed, indicating that these are BG 

particles. Carbon is coming from the polymer as well from the stainless steel substrate. While Ni, S, 

Cr and Fe are also from the substrate and Zn confirms the presence of the ZnO nonoparticles. 

Homogeneous and crack-free coatings were obtained. ZBA coatings also showed sufficient adhesion 

to the substrate after the qualitative bending test carried out (Fig. 2 (e and f)). ZBA coatings exhibed 

an average thickness of 2-3 µm. 

 

 
Figure 4 SEM images (a, b and c) and EDX results (d) of the n-ZnO-BG/Alg coating produced from a suspension of 2g/l 

ceramic components (25wt.% n-ZnO and 75wt.%BG). 
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Fig. 5 shows the FTIR results for both ZA and 25-ZBA coatings produced from a suspension with 2g/L 

of ceramic content, pure alginate coating and inorganic powder, i.e. BG powder and n-ZnO powder. 

The presence of alginate in ZA and ZBA coatings is confirmed by the characteristic peaks of both the 

asymmetric and the symmetric stretching of COO- group at 1620 cm-1 and 1413 cm-1, respectively 

[46]. In the case of pure alginate coating, an extra peak at 1723 cm-1, caused by the stretching 

vibration of the protonated carboxylic group of alginic acid, is observed [36,47]. When BG and n-ZnO 

particles are included in the suspension, an alkalinisation effect occurs and the pH increases resulting 

in the deprotonation of the mentioned carboxylic group. Therefore, the peak at 1723 cm-1 does not 

appear in the    and   -    coa ngs.  he    powder spectrum shows the characteris c as mmetric 

stretching and bending peaks of the  i- - i bonds at    1043, 924 and 497-500 cm-1 [48], respectively. 

The presence of ZnO was confirmed by EDX and XRD. 
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Figure 5 FTIR results for the different coatings and their components. Alginate powder (a), alginate coating (b), BG 
powder (c), ZnO powder (d), ZA coating (e) and 25-ZBA coating (f). 

 

The thermal behavior of the ZA and 25-ZBA composite coatings was analyzed by TG/DTA 

measurements (Fig. 6). The first mass loss in the TG curve at around 100°C can be attributed to the 

physically adsorbed water that was retained in the coatings. Between 300 and 450°C, an exothermic 

peak in the DTA curves is observed for all the coatings (not shown), which can be attributed to the 

burn out of the alginate [28,31]. Once the alginate is burned out, there is no other important change 

in the mass loss (at T>500°C), indicating that the residual material in the coating is the (non-burnable) 

ceramic phase. Table 1 shows the final composition of the coatings, which is based on the thermal 

analysis results. 
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Table  1 Final composition of the coatings from both systems (ZA and 25-ZBA) according to the TG analysis. 

System 

Initial ceramic 
content in 
suspension 

(g/L) 

Final components in the coating 

Water Alginate Ceramic phase 

wt.% vol.% wt.% vol.% wt.% vol.% 

ZA 

 

 

25-ZBA 

 

2 12 4 35 15 53 81 

10 4 1 13 4 83 95 

2 13 7 27 24 60 69 

 

 

Figure 6 Thermogravimetric analysis for the ZA coating produced from suspensions with 2g/L (a) and 10g/L (b) of ceramic 
content and for the 25-ZBA coating produced from a suspension coatining 2g/L of ceramic (c). 

 

3.1 Electrochemical behavior and corrosion  

The corrosion resistance of metallic materials used in biological environments is one of the key 

parameters determining their success. Applying a protective coating is one of the alternatives to 
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tackle the relatively low corrosion resistance of stainless steel in biological fluids, which is due to the 

high chloride content in this environment. Fig. 7 shows the polarization curves of the uncoated 316L 

stainless steel substrate (bare metal), the ZA composite with two different solid contents, namely 1 

g/L and 10 g/l, and also 50-ZBA and 25-ZBA coatings produced with 2 g/L of ceramic content in the 

suspension. It can be observed that all coated samples show a higher Ecorr and a lower icorr compared 

to the bare metal, indicating that both composite coatings protect the substrate against corrosion. 

The ZA coatings exhibit a higher Ecorr and lower icorr than the 50-ZBA and 25-ZBA coatings, which is 

likely due to the presence of the BG particles that increase the activity of the system due to the 

dissolution of the material in the DMEM. The BG dissolution leaves space to the liquid media to 

penetrate into the coating increasing the current density. Similar phenomena were previously 

reported on related BG containing composite coatings [37]. 

 

Figure 7 Polarization curves obtained using DMEM at 37°C for: the bare SS 316L (a), ZA coatings produced from 
suspension with 1 g/L (b) and 10 g/L (c) of ceramic content, also 50-ZBA (d) and 25-ZBA (e) coatings produced from a 

suspensions with 2 g/L of ceramic particles 
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3.2 Bioactivity in-vitro assessment 

In order to evaluate the potential bioactivity of ZA and ZBA coatings, samples prepared from 

suspensions with solid concentration of 2 g/L were immersed in SBF at 37°C during 7 days. Fig. 8 

(diffractograms b and c) shows the normalized XRD plots of ZA and ZBA coatings obtained after 

immersion in SBF. As expected the ZA coating was not bioactive, e.g. no hydroxyapatite (HA) was 

formed on the coating surfaces. On the other hand the coating with BG was able to form a HA layer 

over it, indicating that the presence of the n-ZnO particles did not inhibit the bioactivity of the BG.  As 

it can be seen, the ZBA coating presents the typical diffraction peaks corresponding to the (100), 

(200), (111) (211), (221) and (222) planes of hydroxyapatite (HA), indexed using the JCPDS (card 

number 09-0432) the characteristic peak at 31,8° corresponding to HA is overlapped with a peak of 

ZnO, but this peak is clearly more intense than in the other two diffractograms, indicating the 

presence of ZnO and HA. 

 

Figure 8 Normalized XRD results of the samples: ZA coating produced using a suspension with 2g/L of ceramic content 
(a), ZA coating produced for a suspension with 2g/L of ceramic content and after 7 days of immersion in SBF (b) and 25-

ZBA coating produced for a suspension with 2 g/L of ceramic content and after 7 days of immersion in SBF (c). JCPDS 
cards: 09-0432 (HA), 033-0945 (austenitic stainless steel) and 036-1451 (ZnO). 
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3.3 Antibacterial evaluation 

The antibacterial properties of the coatings were evaluated against the gram-negative Escherichia 

coli bacteria. To run the test four different samples were prepared: ZA and 25-ZBA coatings, stainless 

steel substrate as a reference and a coating containing only BG and alginate (BG/Alg sample) [31], 

also as reference, to evaluate the effect of the BG. The antibacterial activity of the coated samples 

against E. coli is illustrated in Fig. 9. Each picture displays four different areas corresponding to the 

four different time points considered (1, 2, 3 and 4 h). As observed in fig. 9 (a and b), there is no 

evident reduction of the bacterial colonies on the stainless steel substrate or on the BG/Alg sample 

even after 4 h. On the other hand, for sample ZA (fig. 9c) the bacterial colonies have clearly 

disappeared after just 1 h, which is an indication of the antibacterial power of the n-ZnO particles. 

Finally, in the case of the coatings obtained with both BG and n-ZnO powders (sample 25-ZBA), the 

bacterial colonies do not disappear completely but they are significantly reduced after 3 h and 

especially after 4 h (fig. 9d). The key difference between samples ZA and 25-ZBA is the higher amount 

of ZnO nanoparticles present in sample ZA compared to sample 25-ZBA, which indicates that with 

increasing n-ZnO content, the antibacterial capability against gram-negative Escherichia coli bacteria 

increases. Antibacterial activity of ZnO against gram-positive and gram-negative bacteria has been 

already reported [49–51], especially against Escherichia coli [24]. The benefits of using small 

(nanoscale) particle size to increase antibacterial activity have been also reported [52,49]. The 

mechanism of antibacterial activity of ZnO is not yet fully understood [24]. Some authors ascribe the 

antibacterial activity to the generation of hydrogen peroxide [51,53,54], this idea has been partially 

confirmed [24]. On the other hand it has been also proposed that a binding of the ZnO particles to 

the cells due to electrostatic forces can damage the cell membrane killing the bacteria [55]. 
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Figure 9 Antibacterial results of different coating against gram-negative E- Coli. Stainless steel (a), BG/Alg coating (1.5g/L 
BG) (b), ZA coating (c) and 25-ZBA coating (d). Zones I, II, II and IV indicate the number of hours that the test was run (1, 

2, 3 and 4h respectively). 

 

4 Conclusions 

Novel ZnO/alginate and ZnO-BG/alginate composite coatings on stainless steel have been 

successfully obtained by anodic electrophoretic deposition. For both coatings optimized deposition 

conditions were 5 s and 30 V, as deposition time and potential, respectively. Homogeneous and crack 

free ZnO/alginate coatings can be obtained using suspensions with solid contents varying from 1 to 

10 g/L. In terms of corrosion protection all coated samples presented a lower corrosion current 

density, with a slightly higher corrosion potential compared with the bare material, indicating the 

protective character of the coatingsagainst corrosion. The presence of BG in the coating induced the 

growth of a hydroxyapatite layer on the coating after 7 days of immersion in SBF. It was also proven 

that the presence of n-ZnO does not affect the development of the bone-like HA phase. Furthermore, 
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the incorporation of ZnO nanoparticles within the composite coatings clearly provides antibacterial 

properties against gram-negative Escherichia coli to the final material. Considering the corrosion 

protection properties as well as the bioactivity and antibacterial effect of the ZnO containing 

coatings, it can be concluded that these coatings provide a new alternative to tackle the main 

problems of bone replacement implants namely lack of osteointegration and infection risk. 
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HIGHLIGHTS 

 

1) Organic-inorganic nanocomposite coatings fabricated by electrophoretic deposition 

2) nZnO and bioactive glass containing alginate coatings exhibit antibacterial effect 

3) Bioactive character and anticorrosion function of coatings demonstrated 


