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in reducing the excessive velocity shear within the neutral surface layer as seen with the 

Smagorinsky model alone. However, the model was initially formulated on the assumption of 

the computational grid mesh being fairly isotropic. When generating the backscatter 

acceleration fields, a 3-D 1:2:1 spatial filter is applied to white-noise fields, generated on the 

model grid, in order to introduce a backscatter length scale that scales with the LES filter 

width. However, in areas of high vertical grid refinement (for example) the backscatter length 

scale in the wall-normal direction is reduced, which causes an inappropriately high level of 

anisotropy to be introduced into the backscatter acceleration fields. Practically, this adds 

disproportionately large backscatter signals to the flow-field in the horizontal, and little in the 

vertical, leading to a reduction in the ability of the backscatter model to enhance vertical 

momentum flux so as to smooth out vertical velocity gradients within the surface layer. To 

alleviate such issues, Weinbrecht and Mason (2008) (hereafter, WM08) later proposed a 

modification to the MT92 model, in which the white-noise fields are instead generated and 

filtered on a secondary isotropic grid, with resolution scaled on the LES filter width in the 

interior of the simulated ABL, and then linearly interpolated onto the anisotropic model grid. 

This method imposes that the backscatter length scale is fixed and spatially isotropic, which, 

unlike the MT92 model, ensures a largely grid-independent reduction in excessive velocity 

shear. However, as discussed below, such spatial uniformity in the backscatter acceleration 

fields is not always physically appropriate; furthermore, the applicability of the model is 

limited to simple grid geometries in which the LES filter width is assumed fixed throughout 

the domain. 

LES is based on the assumption that the filter operation separates the large anisotropic eddies, 

responsible for most of the turbulent energy transport, from the small isotropic eddies, 

responsible for most of the turbulent energy dissipation. With the Smagorinsky SGS model, 

the LES filter width is assumed to scale with the local grid mesh size. Thus in well-resolved 
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either by employing gradual grid refinement (Kravchenko et al., 1996) or by using an explicit 

filter to decouple the LES filter width from the grid mesh size, which can then be varied 

smoothly across grid discontinuities (Piomelli et al., 2006). In this case, the WM08 model 

could not ensure a physically appropriate backscatter length scale everywhere. 

In this paper, we develop a new method for generating stochastic backscatter acceleration 

fields that allows the local backscatter length scale and anisotropy to be controlled 

independently of the model grid. The backscatter length scale can then be reduced 

appropriately towards surfaces, and, if necessary, varied to reflect any spatial variations in 

LES filter width, and the backscatter anisotropy can be specified in relation to the physical 

anisotropy of the subgrid scales. The advantages of the new model, and the corresponding 

limitations of the MT92 and WM08 models, are illustrated in the schematic diagram in 

Figure 1, which shows an example case in which the LES filter width decreases towards the 

bottom right corner of the domain as drawn (as a result of smooth grid refinement). It can be 

seen that in the flow interior, the backscatter is appropriately grid-scale and isotropic for all 

three models, except for the MT92 model in areas of horizontal grid refinement, where the 

backscatter becomes unphysically anisotropic due to the dependence of the 1:2:1 filter 

operation on the local grid spacing. Closer to the surface, the backscatter anisotropy with the 

new model is increased gradually in accordance with an assumed profile of the physical 

anisotropy of the subgrid scales. With the MT92 model, however, the dependence of the 

anisotropy on the grid spcaing results in regions of unphysically high or unphysically low 

anisotropy, and with the WM08 model, the backscatter remains isotropic at all distances from 

the surface. With the new model, the backscatter length scale is reduced towards the surface 

in accordance with the local subgrid turbulence length scale, and further reduced in refined 

grid regions to reflect the reduced LES filter width, whereas the length scale remains fixed at 
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Figure 5 - Surface-layer profiles of the three variance components, and their sum, for 
the three backscatter acceleration fields shown in Figure 4 for the (a) MT92, (b) WM08, 
and (c) GAF model. Solid line shows the target backscatter variance profile as given by 
the right hand side of Eq. (13). All values are normalised by the maximum of the target 
profile. For the GAF model, dashed lines show the expected variance profiles resulting 

from the imposed backscatter anisotropy (see Figure 3(a)). 

 

  










