Atmospheric isoprene ozonolysis: impacts of stabilized Criegee intermediate reactions with SO$_2$, H$_2$O and dimethyl sulfide

M. J. Newland1,* A. R. Rickard2,3, L. Vereecken4, A. Muñoz5, M. Ródenas5, and W. J. Bloss1

1University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, UK
2National Centre for Atmospheric Science (NCAS), University of York, Chemistry, York, UK
3Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK
4Max Planck Institute for Chemistry, Atmospheric Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
5Instituto Universitario CEAM-UMH, EUPHORE Laboratories, Avda/Charles R. Darwin. Parque Tecnologico, Valencia, Spain

* now at: University of East Anglia, School of Environmental Sciences, Norwich, UK
Atmospheric isoprene ozonolysis

M. J. Newland et al.

Received: 9 March 2015 – Accepted: 12 March 2015 – Published: 25 March 2015
Correspondence to: W. J. Bloss (w.j.bloss@bham.ac.uk) and A. R. Rickard (andrew.rickard@york.ac.uk)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Isoprene is the dominant global biogenic volatile organic compound (VOC) emission. Reactions of isoprene with ozone are known to form stabilised Criegee intermediates (SCIs), which have recently been shown to be potentially important oxidants for SO$_2$ and NO$_2$ in the atmosphere; however the significance of this chemistry for SO$_2$ processing (affecting sulfate aerosol) and NO$_2$ processing (affecting NO$_x$ levels) depends critically upon the fate of the SCI with respect to reaction with water and decomposition. Here, we have investigated the removal of SO$_2$ in the presence of isoprene and ozone, as a function of humidity, under atmospheric boundary layer conditions. The SO$_2$ removal displays a clear dependence on relative humidity, confirming a significant reaction for isoprene derived SCI with H$_2$O. Under excess SO$_2$ conditions, the total isoprene ozonolysis SCI yield was calculated to be 0.56 (\pm0.03). The observed SO$_2$ removal kinetics are consistent with a relative rate constant, k(SCI + H$_2$O)/k(SCI + SO$_2$), of 5.4×10^{-5} for isoprene derived SCI. The relative rate constant for k(SCI decomposition)/k(SCI + SO$_2$) is 8.4×10^{10} cm$^{-3}$. Uncertainties are $\pm2\sigma$ and represent combined systematic and precision components. These kinetic parameters are based on the simplification that a single SCI species is formed in isoprene ozonolysis, an approximation which describes the results well across the full range of experimental conditions. Our data indicate that isoprene-derived SCIs are unlikely to make a substantial contribution to gas-phase SO$_2$ oxidation in the troposphere. We also present results from an analogous set of experiments, which show a clear dependence of SO$_2$ removal in the isoprene-ozone system as a function of dimethyl sulfide concentration. We propose that this behaviour arises from a rapid reaction between isoprene-derived SCI and DMS; the observed SO$_2$ removal kinetics are consistent with a relative rate constant, k(SCI + DMS)/k(SCI + SO$_2$), of 4.1 (±2.2). This result suggests that SCIs may contribute to the oxidation of DMS in the atmosphere and that this process could therefore influence new particle formation in regions impacted by emissions of unsaturated hydrocarbons and DMS.
1 Introduction

Atmospheric chemical processes exert a major influence on atmospheric composition. Identified gas-phase oxidants include the OH radical, ozone, NO\textsubscript{3} and under certain circumstances other species such as halogen atoms. Reactions with these oxidants can lead to (for example) chemical removal of primary air pollutants; formation of secondary pollutants (e.g. ozone, harmful to human and environmental health, and a greenhouse gas); and the transformation of gas-phase species to the condensed phase (e.g., SO\textsubscript{2} oxidation leading to the formation of sulfate aerosol, and the formation of functionalised organic compounds leading to secondary aerosol formation, which can influence radiation transfer and climate).

Stabilised Criegee intermediates (SCI), or carbonyl oxides, are formed in the atmosphere predominantly from the reaction of ozone with unsaturated hydrocarbons, though other processes may be important in certain conditions, e.g. alkyl iodide photolysis (Gravestock et al., 2010), dissociation of the DMSO peroxy radical (Asatryan and Bozzelli, 2008), and reactions of peroxy radicals with OH (Fittschen et al., 2014). SCI have been shown in laboratory experiments and by theoretical calculations to oxidise SO\textsubscript{2} and NO\textsubscript{2} (e.g. Cox and Penkett, 1971; Welz et al., 2012; Taatjes et al., 2013; Ouyang et al., 2013; Stone et al., 2014) as well as a number of other trace gases found in the atmosphere. Recent field measurements in a boreal forest (Mauldin et al., 2012) and at a coastal site (Berresheim et al., 2014) have both identified an apparently missing process oxidising SO\textsubscript{2} to H\textsubscript{2}SO\textsubscript{4} (in addition to reaction with OH) and have implied SCI as a possible oxidant, acting alongside OH. Assessment of the importance of SCIs for tropospheric processing requires a quantitative understanding of their formation yields and atmospheric fate – in particular, the relative importance of bimolecular reactions (e.g. with SO\textsubscript{2}), unimolecular decomposition, and reaction with water vapour. Here we describe an experimental investigation into the formation and reactions of the SCIs derived from isoprene (the most abundant biogenic VOC), formed through the ozonolysis process, which dominates atmospheric SCI production, and studied under
boundary layer conditions, to assess their potential contribution to tropospheric oxidation.

1.1 Stabilised Criegee intermediate kinetics

Ozonolysis derived CIs are formed with a broad internal energy distribution, yielding both chemically activated and stabilised CIs. SCIs can have sufficiently long lifetimes to undergo bimolecular reactions with \(\text{H}_2\text{O} \) and \(\text{SO}_2 \), amongst other species. Chemically activated CIs may undergo collisional stabilisation to an SCI (Scheme 1), or unimolecular decomposition or isomerisation.

To date the majority of studies have focused on the smallest SCI, \(\text{CH}_2\text{OO} \), because of the importance of understanding simple SCI systems (this species is formed in the ozonolysis of all terminal alkenes) and the ability to synthesize \(\text{CH}_2\text{OO} \) from alkyl iodide photolysis, with sufficient yield to probe its kinetics. However, the unique structure of \(\text{CH}_2\text{OO} \) (which prohibits isomerisation to a hydroperoxide intermediate) likely gives it a different reactivity and degradation mechanism to other SCI (Johnson and Marston, 2008).

Recent experimental work (Berndt et al., 2014; Newland et al., 2015; Chao et al., 2015; Lewis et al., 2015) has determined the predominant atmospheric fate for \(\text{CH}_2\text{OO} \) to be reaction with water vapour. Some of these experiments (Berndt et al., 2014; Chao et al., 2015; Lewis et al., 2015) have demonstrated a quadratic dependence of \(\text{CH}_2\text{OO} \) loss on [\(\text{H}_2\text{O} \)], suggesting a dominant role for the water dimer, (\(\text{H}_2\text{O} \)\(_2\)), in \(\text{CH}_2\text{OO} \) loss at typical atmospheric boundary layer \(\text{H}_2\text{O} \) concentrations. For larger SCI, both experimental (Taatjes et al., 2013; Sheps et al., 2014; Newland et al., 2015) and theoretical (Kuwata et al., 2010; Anglada et al., 2011) studies have shown that their kinetics, in particular reaction with water, are highly structure dependent. syn-SCI (i.e. those where an alkyl-substituent group is on the same side as the terminal oxygen of the carbonyl oxide moiety) react very slowly with \(\text{H}_2\text{O} \), whereas, anti-SCI (i.e. with the terminal oxygen of the carbonyl oxide moiety on the same side as a hydrogen group) react relatively fast with \(\text{H}_2\text{O} \). This difference has been predicted theoretically (Kuwata et al., 2010;
Anglada et al., 2011) and was subsequently confirmed in recent experiments (Taatjes et al., 2013; Sheps et al., 2014) for the two CH$_3$CHOO conformers. Additionally, it has been predicted theoretically (Vereecken et al., 2012) that the relative reaction rate constants for the water dimer vs. water monomer, k(SCI + (H$_2$O)$_2$)/k(SCI + H$_2$O) of larger SCI (except syn-CH$_3$CHOO) will be over 70 times smaller than that for CH$_2$OO, suggesting that reaction with the water dimer is unlikely to be the dominant fate for these SCI under atmospheric conditions.

An additional, potentially important, fate of SCI under atmospheric conditions is unimolecular decomposition (denoted k_d in Reaction R4). This is likely to be a significant atmospheric sink for syn-SCI because of their slow reaction with water vapour. Previous studies have identified the hydroperoxide rearrangement as dominant for SCIs with a syn configuration, determining their overall unimolecular decomposition rate (Niki et al., 1987; Rickard et al., 1999; Martinez and Herron, 1987; Johnson and Marston, 2008). This route has been shown to be a substantial non-photolytic source of atmospheric oxidants (Niki et al., 1987; Alam et al., 2013). CIs formed in the anti-configuration are thought to primarily undergo rearrangement and possibly decomposition via a dioxirane intermediate (“the acid/ester channel”), producing a range of daughter products and contributing to the observed overall HO$_x$ radical yield (Johnson and Marston, 2008; Alam et al., 2013).

For CH$_2$OO, rearrangement via a “hot” acid species represents the lowest accessible decomposition channel with the theoretically predicted rate constant being rather low, 0.3 s$^{-1}$ (Olzmann et al., 1997). Recent experimental work supports this slow decomposition rate for CH$_2$OO (Newland et al., 2015; Chchantyal-Pun et al., 2015). However, Newland et al. (2015) have suggested the decomposition of larger syn-SCI to be considerably faster, albeit with substantial uncertainty, with reported rate constants for syn-CH$_3$CHOO of 288 (±275) s$^{-1}$ and for (CH$_3$)$_2$COO of 151 (±35) s$^{-1}$. Novelli et al. (2014), estimated decomposition of syn-CH$_3$CHOO to be 20 (3–30) s$^{-1}$ from direct observation of OH formation, while Fenske et al. (2000), estimated decomposition of CH$_3$CHOO produced from ozonolysis of trans-but-2-ene to be 76 s$^{-1}$ (accurate to
within a factor of three).

\begin{align*}
\text{Alkene} + O_3 & \xrightarrow{k_1} \varphi \text{SCI} + (1 - \varphi)\text{Cl} + \text{RCHO} \\
\text{SCI} + \text{SO}_2 & \xrightarrow{k_2} \text{SO}_3 + \text{RCHO} \\
\text{SCI} + \text{H}_2\text{O} & \xrightarrow{k_3} \text{Products} \\
\text{SCI} & \xrightarrow{k_4} \text{Products} \\
\text{SCI} + (\text{H}_2\text{O})_2 & \xrightarrow{k_5} \text{Products}
\end{align*}

\section{1.2 Isoprene ozonolysis}

Global emissions of biogenic VOCs have been estimated to be an order of magnitude greater, by mass, than anthropogenic VOC emissions (Guenther et al., 1995). The most abundant non-methane biogenic hydrocarbon in the natural atmosphere is isoprene (2-methyl-1,3-butadiene, C\textsubscript{5}H\textsubscript{8}), with global emissions estimated to be 594 (±34) Tgyr-1 (Sindelarova et al., 2014). While the vast majority of these emissions are from terrestrial sources, there are also biogenic emissions in coastal and remote marine environments, associated with seaweed and phytoplankton blooms (Moore et al., 1994). Isoprene mixing ratios (as well as those of some monoterpenes) have been reported to reach hundreds of pptv (parts per trillion by volume) over active phytoplankton blooms in the marine boundary layer (Sinha et al., 2007; Yassaa et al., 2008), with the potential to impact local air quality (Williams et al., 2010).

Removal of isoprene from the troposphere is dominated by reaction with the OH radical during the day and reaction with the nitrate radical during the night (Calvert et al., 2000). The ozonolysis of isoprene is also a non-photolytic source of HO\textsubscript{x} radicals (Atkinson et al., 1992; Paulson et al., 1997; Malkin et al., 2010), with measured yields of OH between 0.25 (Paulson et al., 1997) and 0.27 (Atkinson et al., 1992) (with a current recommended yield of 0.25, Atkinson et al., 2006). Isoprene ozonolysis also leads to
the formation of a range of multi-functional oxygenated compounds, some of which can form secondary organic aerosol (Noziere et al., 2015).

Isoprene ozonolysis yields five different initial carbonyl oxides (Scheme 2). The three basic species formed are formaldehyde oxide (CH$_2$OO), methyl-vinyl carbonyl oxide (MVKOO) and methacrolein oxide (MACROO) (Calvert et al., 2000; Atkinson et al., 2006). MVKOO and MACROO both have syn and anti conformers and each of these can have either cis or trans configuration (Zhang et al., 2002; Kuwata et al., 2005) with easy inter-conversion between the cis and trans conformers (Aplincourt and Anglada, 2003). The kinetics and products of isoprene ozonolysis have been investigated theoretically by Zhang et al. (2002). They predicted the following SCI yields: CH$_2$OO, 0.31; syn-MVKOO, 0.14; anti-MVKOO, 0.07; syn-MACROO, 0.01; anti-MACROO 0.04. This gives a total SCI yield of 0.57. They predicted that 95 % of the chemically activated CH$_2$OO formed will be stabilized, considerably higher than the experimentally determined stabilization of excited CH$_2$OO formed during ethene ozonolysis (35–54 %) (Newland et al., 2015). This is because the majority of the energy formed during isoprene ozonolysis is thought to partition into the larger, co-generated, primary carbonyl species (Kuwata et al., 2005) (i.e. methyl-vinyl ketone (MVK) or methacrolein (MACR)). The predicted stabilization of the other SCI ranges from 20 to 54 % at atmospheric pressure. It is relevant to note that the recommended total SCI yield from isoprene ozonolysis in the Master Chemical Mechanism, MCMv3.2 (Jenkin et al., 1997; Saunders et al., 2003), is considerably lower at 0.22, as a consequence of the MCM protocol, which applies a weighted mean of total SCI yields measured for propene, 1-octene and 2-methyl propene (Jenkin et al., 1997). However, the relative yield of CH$_2$OO (0.50) compared to the total SCI yield in the MCM is very similar to that calculated by Zhang et al. (2002) (0.54).

1.3 Dimethyl sulfide (DMS)

The largest natural source of sulfur to the atmosphere is the biogenically produced compound dimethyl sulfide, DMS (CH$_3$SCH$_3$), which has estimated global emissions
of 19.4 (±4.4) Tgyr\(^{-1}\) (Faloona, 2009). DMS is a breakdown product of the plankton waste product dimethylsulfoniopropionate (DMSP). Jardine et al. (2015) have also recently shown that vegetation and soils can be important terrestrial sources of DMS to the atmosphere in the Amazon Basin, during both the day and at night, and throughout the wet and dry seasons, with measurements of up to 160 pptv within the canopy and near the surface. The oxidation of DMS is a large natural source of SO\(_2\), and subsequently sulfate aerosol, to the atmosphere and therefore is an important source of new particle formation. This process has been implicated in an important feedback leading to a regulation of the climate in the pre-industrial atmosphere (Charlson et al., 1987). The two most important oxidants of DMS in the atmosphere are thought to be the OH and NO\(_3\) radicals (Barnes et al., 2006) (Reactions R6–R7). Because of its photochemical source, OH is thought to be the more important oxidant during the day in tropical regions, while NO\(_3\) becomes more important at night, at high latitudes, and in more polluted air masses (Stark et al., 2007). Certain halogenated compounds, e.g. Cl (Wingenter et al., 2005) and BrO (Wingenter et al., 2005; Read et al., 2008), have also been suggested as possible oxidants for DMS in the marine environment.

\[
\text{DMS} + \text{OH} \rightarrow \text{CH}_3\text{SCH}_2 + \text{H}_2\text{O} \quad (R6a)
\]

\[
\rightarrow \text{CH}_3\text{S(OH)}\text{CH}_3 \quad (R6b)
\]

\[
\text{DMS} + \text{NO}_3 \rightarrow \text{CH}_3\text{SCH}_2 + \text{HNO}_3 \quad (R7)
\]

2 Experimental

2.1 Experimental approach

The EUPHORE facility is a 200 m\(^3\) simulation chamber used primarily for studying reaction mechanisms under atmospheric boundary layer conditions. Further details of
the chamber setup and instrumentation are available elsewhere (Becker, 1996; Alam et al., 2011), and a detailed account of the experimental procedure, summarised below, is given in Newland et al. (2015).

Experiments comprised time-resolved measurement of the removal of SO$_2$ in the presence of the isoprene-ozone system, as a function of humidity or DMS concentration. SO$_2$ and O$_3$ abundance were measured using conventional fluorescence and UV absorption monitors, respectively; alkene abundance was determined via FTIR spectroscopy. Experiments were performed in the dark (i.e. with the chamber housing closed; j(NO$_2$) $\leq 10^{-6}$ s$^{-1}$), at atmospheric pressure (ca. 1000 mbar) and temperatures between 287 and 302 K. The chamber is fitted with large horizontal and vertical fans to ensure rapid mixing (three minutes). Chamber dilution was monitored via the first order decay of an aliquot of SF$_6$, added prior to each experiment. Cyclohexane (ca. 75 ppmv) was added at the beginning of each experiment to act as an OH scavenger, such that SO$_2$ reaction with OH was calculated to be ≤ 1 % of the total chemical SO$_2$ removal in all experiments.

Experimental procedure, starting with the chamber filled with clean air, comprised addition of SF$_6$ and cyclohexane, followed by water vapour (or DMS), O$_3$ (ca. 500 ppbv) and SO$_2$ (ca. 50 ppbv). A gap of five minutes was left prior to addition of isoprene, to allow complete mixing. The reaction was then initiated by addition of the isoprene (ca. 400 ppbv), and reagent concentrations followed for 30–60 min; typically ca. 25 % of the isoprene was consumed after this time. Nine isoprene + O$_3$ experiments, as a function of [H$_2$O], were performed over separate days. Each individual run was performed at a constant humidity, with humidity varied to cover the range of [H$_2$O] = 0.4–21 \times 1016 molecules cm$^{-3}$, corresponding to an RH range of 0.5–27 % (at 298 K). Five isoprene + O$_3$ experiments as a function of DMS were also performed. Measured increases in [SO$_2$] agreed with measured volumetric additions across the SO$_2$, humidity and DMS ranges used in the experiments.
2.2 Analysis

As in our previous study (Newland et al., 2015), from the chemistry presented in Reactions (R1)–(R5) SCI will be produced in the chamber from the reaction of the alkene with ozone at a given yield, ϕ. A range of different SCI are produced from the ozonolysis of isoprene (see Scheme 2: 9 first-generation SCI present), each with their own distinct chemical behaviour (i.e. yields, reaction rates). It is not feasible (from these experiments) to obtain data for each SCI independently, consequently for analytical purposes we adopt two alternative analyses to treat the SCI population in a simplified (lumped) manner:

In the first of these, we make the approximation that all SCI may be considered as a single species (defined from now on as ISOP-SCI). Alternatively, the SCI population is grouped into two species, the first of which is CH$_2$OO (for which the kinetics are known) and the second (hereafter termed CRB-SCI) represents all isomers of the other SCI species produced, i.e. Σ(MVKOO + MACROO). The implications of these assumptions are discussed further below, but a key consequence is that the relative rate constants obtained from the analysis presented here are not representative of the elementary reactions of any single specific SCI isomer formed, but rather represent a quantitative ensemble description of the integrated system, under atmospheric boundary layer conditions, which may be appropriate for atmospheric modelling.

Following formation in the ozonolysis reaction, the SCI can react with SO$_2$, with H$_2$O, with DMS (if present), with other species, or undergo unimolecular decomposition, under the experimental conditions applied. The fraction of the SCI produced that reacts with SO$_2$ (f) is determined by the SO$_2$ loss rate ($k_2[SO_2]$) compared to the sum of the total loss processes of the SCI (Eq. 1):

$$f = \frac{k_2[SO_2]}{k_2[SO_2] + k_3[H_2O] + k_d + L}$$

(1)

Here, L accounts for the sum of any other chemical loss processes for SCI in the chamber, after correction for dilution, and neglecting other (non-alkene) chemical sinks.
for O$_3$, such as reaction with HO$_2$ (also produced directly during alkene ozonolysis, Alam et al., 2013; Malkin et al., 2010), which was indicated through model calculations to account for < 0.5 % of ozone loss under all the experimental conditions.

2.2.1 SCI yield calculation

The value for the total SCI yield of ISOP-SCI, $\varphi_{\text{ISOP-SCI}}$, was determined from an experiment performed under dry conditions (RH < 1 %) in the presence of excess SO$_2$ (ca. 1000 ppbv), such that SO$_2$ scavenged the majority of the SCI (> 95 %). From Eq. (2), regressing dSO$_2$ against dO$_3$ (corrected for chamber dilution), assuming f to be unity (i.e. all the SCI produced reacts with SO$_2$), determines the value of φ_{min}, a lower limit to the SCI yield. Figure 1 shows the experimental data, from which φ_{min} was derived.

\[
\frac{d[\text{SO}_2]}{d[\text{O}_3]} = \varphi \cdot f
\]

(2)

The lower limit criterion applies as in reality f will be less than one, at experimentally accessible SO$_2$ levels, as a small fraction of the SCI will still react with trace H$_2$O present, or undergo decomposition. The actual yield, $\varphi_{\text{ISOP-SCI}}$, was determined by combining the result from the excess-SO$_2$ experiment with those from the series of experiments performed at lower SO$_2$, as a function of [H$_2$O], to determine k_3/k_2 and k_d/k_2 (see Sect. 2.2.2), through an iterative process to determine the single unique value of $\varphi_{\text{ISOP-SCI}}$ which fits both datasets.

2.2.2 $k(\text{SCI} + \text{H}_2\text{O})/k(\text{SCI} + \text{SO}_2)$ and $k_d/k(\text{SCI} + \text{SO}_2)$

By rearranging Eq. (1), the following equation (Eq. 3) can be derived. Therefore, in order to determine the relative rate constants k_3/k_2 and $(k_d + L)/k_2$, a series of experiments were performed in which the SO$_2$ loss was monitored as a function of [H$_2$O]...
(see Sect. 2.1).

\[
[\text{SO}_2] \left(\frac{1}{f} - 1 \right) = \frac{k_3}{k_2} [\text{H}_2\text{O}] + \frac{k_d + L}{k_2}
\]

(3)

From Eq. (2), regression of the loss of ozone \((d\text{O}_3)\) against the loss of \(\text{SO}_2\) \((d\text{SO}_2)\) for an experiment at a given RH determines the product \(f \cdot \phi\) at a given point in time. This quantity will vary through the experiment as \(\text{SO}_2\) is consumed, and other potential SCI co-reactants are produced, as predicted by Eq. (1). A smoothed fit was applied to the experimental data for the cumulative consumption of \(\text{SO}_2\) and \(\text{O}_3\), \(\Delta\text{SO}_2\) and \(\Delta\text{O}_3\), (as shown in Fig. 2) to determine \(d\text{SO}_2/d\text{O}_3\) (and hence \(f \cdot \phi\)) at the start of each experiment, for use in Eq. (3). The start of each experiment (i.e. when \([\text{SO}_2] \sim 50\text{ ppbv}\) was used as this corresponds to the greatest rate of production of the SCI, and hence largest experimental signals (i.e. \(\text{O}_3\) and \(\text{SO}_2\) rate of change; greatest precision) and is the point at which the SCI + \(\text{SO}_2\) reaction has the greatest magnitude compared with any other potential loss processes for either reactant species (see discussion below). The value \([\text{SO}_2]((1/f) - 1)\) can then be regressed against \([\text{H}_2\text{O}]\) for each experiment to give a plot with a gradient of \(k_3/k_2\) and an intercept of \((k_d + L)/k_2\) (Eq. 3). Our data cannot determine absolute rate constants (i.e. values of \(k_2, k_3, k_d\)) in isolation, but is limited to assessing their relative values, which may be placed on an absolute basis through use of an (external) reference value \((k_2(\text{CH}_2\text{OO} + \text{SO}_2)\) in this case).

2.2.3 \(k(\text{SCI + DMS})/k(\text{SCI + SO}_2)\)

A similar methodology was applied to that detailed in Sect. 2.2.2 to determine the relative reaction rate of ISOP-SCI with DMS \(k(\text{SCI + DMS})/k(\text{SCI + SO}_2)\), \(k_8/k_2\). Here, the \(\text{SO}_2\) loss was determined as a function of \([\text{DMS}]\) rather than \([\text{H}_2\text{O}]\). \([\text{H}_2\text{O}]\) was \(< 1 \times 10^{16}\) molecules cm\(^{-3}\) for all experiments.

\[
\text{SCI + DMS} \xrightarrow{k_8} \text{Products}
\]

(R8)
Equation (3) is modified to give Eq. (4) by the addition of the DMS term. The gradient of a plot regressing $[\text{SO}_2]((1/f) - 1)$ against $[\text{DMS}]$ is then k_8/k_2 and the intercept is $k_3/k_2[\text{H}_2\text{O}] + (k_d + L)/k_2$. Using this intercept, these experiments can also be used to validate the k_3/k_2 and $(k_d + L)/k_2$ values derived from the experiments described in Sect. 2.2.

$$[\text{SO}_2] \left(\frac{1}{f} - 1 \right) = \frac{k_8}{k_2} [\text{DMS}] + \frac{k_3}{k_2} [\text{H}_2\text{O}] + \frac{k_d + L}{k_2}$$

(4)

3 Isoprene + ozone as a function of $[\text{H}_2\text{O}]$

3.1 SCI yield

Figure 1 shows the derived φ_{min} for isoprene, 0.55, determined from fitting Eq. (2) to the experimental data. φ_{min} was then corrected ($< 3\%$) as described in Sect. 2.2.1 using the k_3/k_2 and k_d/k_2 values determined from the measurements shown in Fig. 3 using Eq. (3). The corrected yield, $\varphi_{\text{ISOP-SCI}}$, is 0.56 ($\pm 0.03$). Uncertainties are $\pm 2\sigma$, and represent the combined systematic (estimated measurement uncertainty) and precision components.

Literature yields for SCI production from isoprene ozonolysis are given in Table 1. The value derived for the yield in this work agrees very well with the value of 0.58 (± 0.26) from a recent experimental study (Sipilä et al., 2014) which used a similar single-SCI analysis approach.

Other experimental studies have reported lower values (by up to a factor of 2) for the total isoprene SCI yield. Rickard et al. (1999) derive a total yield of 0.28 from the increase in primary carbonyl yield (MVK and MACR) in the presence of a suitable SCI scavenger (excess SO_2). However, owing to the fact that they could not measure a formaldehyde yield, in their analysis it was assumed that 40% of the chemically activated CH_2OO formed was stabilised (derived from the measured CH_2OO SCI yield for ethene ozonolysis), corresponding to their determination of a CH_2OO SCI yield of 0.18.
for isoprene ozonolysis. If it is assumed that 95 % of the CH\textsubscript{2}OO formed was actually stabilised, as calculated by Zhang et al. (2002), then this yield increases to 0.43, giving a total yield, $\varphi_{\text{ISOP-SCI}}$, of 0.53, in excellent agreement with the current work. From theoretical calculations, Zhang et al. (2002) predicted a yield of 0.31 for CH\textsubscript{2}OO, the most basic SCI, 0.14 for \textit{syn}-MVKOO, 0.07 for \textit{anti}-MVKOO, 0.04 for \textit{anti}-MACROO and 0.01 for \textit{syn}-MACROO. This gives a sum of SCI of 0.57, again in very good agreement with the overall value derived here. The MCMv3.2 (Jenkin et al., 1997; Saunders et al., 2003) recommends a $\varphi_{\text{ISOP-SCI}}$ of 0.22, considerably lower than most studies cited here, but it recommends a similar relative yield for stabilised-CH\textsubscript{2}OO (0.50) compared to the total SCI yield. A probable reason for the low SCI yields in the MCM is the assumption of low stabilisation of the chemically activated CI formed.

The CH\textsubscript{2}OO yield ($\varphi_{\text{CH}_{2}OO}$) from isoprene ozonolysis derived in this work can be calculated by multiplying the total SCI yield (0.56) by the fraction of the total SCI yield predicted to be CH\textsubscript{2}OO by Zhang et al. (2002) (0.54). This gives a yield of stabilised CH\textsubscript{2}OO from this work of 0.30. This is in very good agreement with Neeb et al. (1997) who derived a yield of stabilised CH\textsubscript{2}OO from isoprene ozonolysis of 0.30 by measuring hydroxymethyl hydroperoxide formation (HMHP, the product of CH\textsubscript{2}OO + H\textsubscript{2}O).

3.2 Analysis 1: single SCI (ISOP-SCI) treatment

Figure 2 shows the cumulative consumption of SO\textsubscript{2} relative to that of O\textsubscript{3}, ΔSO\textsubscript{2} vs. ΔO\textsubscript{3} (after correction for dilution), for each isoprene ozonolysis experiment as a function of [H\textsubscript{2}O]. A fit to each experiment, which has the sole purpose of extrapolating the experimental data to evaluate dSO\textsubscript{2}$/d$O\textsubscript{3} at $t = 0$ (start of each experimental run) for use in Eqs. (1)–(3), is also shown. The overall change in SO\textsubscript{2}, ΔSO\textsubscript{2}, is seen to decrease substantially with increasing humidity over a relatively narrow range of [H\textsubscript{2}O] (0.4–21 \times 1016 cm-3). This trend is similar to what is seen for smaller, structurally less complex alkene ozonolysis systems (Newland et al., 2015), and is as would be expected from the understood chemistry (Reactions R1–R5), as there is competition between SO\textsubscript{2}, H\textsubscript{2}O, and decomposition for reaction with the SCI formed.
Figure 3 shows a fit of Eq. (3) to the data shown in Fig. 2, giving a gradient of k_3/k_2, and an intercept of the (relative) rate of SCI decomposition $(k_d + L)/k_2$. The results are well described by the linear relationship (Eq. 3) across the full range of experimental conditions. This suggests that the analytical approach – of treating the SCI produced from isoprene ozonolysis as a single system – provides a good quantitative description of the ISO-SCI/O$_3$/H$_2$O/SO$_2$ system under atmospheric boundary layer conditions, and hence provides a good approximation for use in atmospheric modelling studies. Reaction with the water dimer is not considered in this analysis (see discussion below). From Fig. 3 it is apparent that the observations can be described well by a linear dependence on [H$_2$O] across the full range of experimental conditions applied. However, [H$_2$O] can range up to $\sim 1 \times 10^{18}$ cm$^{-3}$ in the atmosphere; the derived relationship may work less well at these high RH as the role of the water dimer becomes more important; this is considered further in Sect. 3.3 (below) in which the SCI mix formed during isoprene ozonolysis is separated into CH$_2$OO and the other SCI formed.

The derived relative rate constant for reaction of ISOP-SCI with water and with SO$_2$, k_3/k_2, is $5.4 \ (\pm 0.8) \times 10^{-5}$ (Table 2). Newland et al. (2015) recently reported a k_3/k_2 relative rate constant for CH$_2$OO of $3.3 \ (\pm 1.1) \times 10^{-5}$ using the same experimental approach as used in this study. The value derived for ISOP-SCI here is a factor of 1.6 larger than that derived for CH$_2$OO suggesting that the other SCI formed during isoprene ozonolysis have a mean k_3/k_2 higher than that of CH$_2$OO alone.

No absolute values of k_2(SCI + SO$_2$) have been measured for ISOP-SCI. However Welz et al. (2012) obtained an absolute value of k_2 for CH$_2$OO (3.9×10^{-11} cm3 s$^{-1}$), using direct methods at reduced pressure (a few Torr). If this value is used as an approximation for the k_2 value of ISOP-SCI (at atmospheric pressure), then a k_3(SCI + H$_2$O) value of 2.1×10^{-15} cm3 molecule$^{-1}$ s$^{-1}$ is determined (assuming the reaction between ISOP-SCI and water vapour is dominated by reaction with the water monomer, rather than the dimer, as discussed above).

From Eq. (3), the intercept in Fig. 3 gives the term $(k_d + L)/k_2 \cdot (k_d + L)$ will be dominated by k_d under the experimental conditions applied and analysis extrapolation to
the start of each experimental run; however, the possibility of other chemical loss processes (see below) dictates that the derived value for k_d is technically an upper limit. From Fig. 3, k_d/k_2 is determined to be $8.4 \pm 50 \times 10^{10} \text{ cm}^{-3}$ (Table 2). Using the k_2 value determined by Welz et al. (2012) to put k_d/k_2 on an absolute scale (as above for k_3) yields a k_d of $\leq 3.3 \pm 20 \text{ s}^{-1}$. Newland et al. (2015) recently determined k_d for CH$_2$OO to be $-8.8 \pm 13 \text{ s}^{-1}$, i.e. indistinguishable from zero within uncertainty. This suggests that either k_d for the non-CH$_2$OO SCI within the ISOP-SCI family is relatively low, i.e. a few tens s$^{-1}$, and/or that CH$_2$OO dominates the ISOP-SCI population. The limited precision obtained for these k_d values reflects the uncertainty in the intercept of the regression analysis shown in Fig. 3.

Sipilä et al. (2014) recently reported a value of k_{loss}/k_2 for isoprene ozonolysis derived SCI, treated using a single-SCI approach, which is analogous to the value $(k_3[H_2O] + k_d)/k_2$ reported in this section. They derive a value of $2.5 \pm 0.1 \times 10^{12} \text{ cm}^{-3}$ at $[H_2O] = 5.8 \times 10^{16} \text{ cm}^{-3}$. From the k_3 and k_d values derived in the single SCI analysis in this work (Table 2) we calculate a value of $3.2 \pm 0.7 \times 10^{12} \text{ cm}^{-3}$ at the same $[H_2O]$, in reasonably good agreement.

Other potential fates for SCIs include reaction with ozone (Kjaergaard et al., 2013; Vereecken et al., 2014; Wei et al., 2014), with other SCI (Su et al., 2014; Vereecken et al., 2014), carbonyl products (Taatjes et al., 2012), acids (Welz et al., 2014), or with the parent alkene (Vereecken et al., 2014). Sensitivity analyses indicate that the reaction with ozone could be significant, as predicted by theory (Kjaergaard et al., 2013; Vereecken et al., 2014; Wei et al., 2014) with an upper limit of ~ 10% of SCI loss for the lowest RH (worst case) experiment, while total losses from reaction with SCI (self-reaction), carbonyls and alkenes are calculated to account for < 1% of the total SCI loss under the experimental conditions applied.

The results presented here suggest that while SCI and conformer specific identification is important to determine the product yields, it does not appear to be important when solely considering the combined effects of isoprene ozonolysis products on the oxidation of SO$_2$ under the experimental conditions applied.
3.3 Analysis 2: two-SCI species (CH$_2$OO + CRB-SCI) treatment

In Sect. 3.2 the combined effects of the five SCI initially produced during isoprene ozonolysis were treated as a single pseudo-SCI, ISOP-SCI. In this section an alternative approach is presented, in which the SCI family is split into two components. These are: CH$_2$OO, for which the reaction rates with water and the water dimer have been quantified in recent experimental studies, and the sum of the MVKOO and MACROO SCI, denoted CRB-SCI.

To date, the effects of the water dimer, (H$_2$O)$_2$ have only been determined experimentally for CH$_2$OO (Berndt et al., 2014; Chao et al., 2015; Lewis et al., 2015; Newland et al., 2015). Theoretical calculations (Vereecken et al., 2012) predicted the significant effect of the water dimer compared to the monomer for CH$_2$OO, but also that the ratio of the SCI + (H$_2$O)$_2$: SCI + H$_2$O rate constants, k_5/k_3, of the larger, more substituted SCI, anti-CH$_3$CHOO and (CH$_3$)$_2$COO, are 2–3 orders of magnitude smaller than for CH$_2$OO (Vereecken et al., 2012). This would make the dimer reaction negligible at atmospherically accessible [H$_2$O] (i.e. < 1 x 1018 cm$^{-3}$) for SCI larger than CH$_2$OO. The results presented in Sect. 3.2 show that, under the single-SCI treatment of the isoprene ozonolysis SCI chemistry, a water monomer only approach is able to describe the experimental data. Hence the effect of the water dimer reaction on CRB-SCI is not considered in this analysis (the water dimer reaction is included for CH$_2$OO).

\[
[SO_2] \left(\frac{1}{f} - 1 \right) = \gamma^A \left(\frac{k_3^A[H_2O] + k_5^A[(H_2O)_2] + (k_d^A + L^A)}{k_2^A} \right) + \gamma^C \left(\frac{k_3^C[H_2O] + (k_d^C + L^C)}{k_2^A} \right)
\]

(5)

where A is CH$_2$OO and C is CRB-SCI.
Figure 4 shows three fits, obtained using Eq. (5) and corresponding to different treatments for the reaction of CH$_2$OO with H$_2$O and with (H$_2$O)$_2$, to the measurement data presented in Fig. 3. For all three scenarios, the relative contribution of the two SCI components to the total SCI yield (γ) was assumed to be $\gamma^A = 0.54$ and $\gamma^C = 0.46$, after Zhang et al. (2002). k^A_3/k^A_2 is assumed to be 3.3×10^{-5} after Newland et al. (2015).

The solid red line in Fig. 4 is a linear fit to the data to determine k^C_3 and k^C_d. The CH$_2$OO + (H$_2$O)$_2$ rate constant, k^A_5, was assumed to be zero to reduce the number of free parameters. This assumption is reasonable considering the apparent linear dependence of the presented measurements across the full range of conditions applied on [H$_2$O]. The linear fit determines a value of $k^C_3/k^A_2 = 7.8 \ (\pm 1.1) \times 10^{-5}$ and a value of $(k^C_d + L^C)/(k^A_2 \text{(CRB-SCI)}) = 1.8 \ (\pm 11) \times 10^{11}$ cm$^{-3}$ (Table 2). Again, as for the single species analysis, the decomposition term is poorly constrained.

The dashed blue line fits Eq. (5) using the parameters derived above for CRB-SCI and the water dimer relative reaction rate for CH$_2$OO determined in Newland et al. (2015), $k_5/k_2 = 0.014 \ (\pm 0.018)$. This still gives a good fit to the data in Fig. 4. The dotted green line is a similar fit but uses the recently directly determined CH$_2$OO + (H$_2$O)$_2$ rate, k^A_5, of 6.5×10^{-12} cm3 s$^{-1}$ by Chao et al. (2015). It is seen that this fit considerably overestimates the observations at higher [H$_2$O]. However, owing to the quadratic relationship of [(H$_2$O)$_2$] to [H$_2$O] a small difference in the rate constant can have a large effect, especially at higher [H$_2$O]. Possible explanations for this discrepancy are: (i) that the kinetics observed for CH$_2$OO as formed from CH$_2$I$_2$ photolysis are not representative of the behaviour of the CH$_2$OO moiety as formed through alkene ozonolysis (although the conditions are such that a thermalized population would be expected in both cases), (ii) It could be that the fraction of the total isoprene SCI yield that is CH$_2$OO is lower than that predicted by Zhang et al. (2002), hence the effect of the (H$_2$O)$_2$ reaction overall is reduced. However, the predicted yield is in good agreement with those determined experimentally, albeit using indirect methods, so it seems unlikely that the actual CH$_2$OO yield is considerably lower, (iii) It could be that multi-
ple effects are affecting the curvature of the results shown in Fig. 4. Analogous plots for CH$_3$CHOO shown in Newland et al. (2015) displayed a shallowing gradient with increasing [H$_2$O] (i.e. the opposite curvature to that caused by the (H$_2$O)$_2$ reaction). The probable explanation for the curvature observed for CH$_3$CHOO is the presence of a mix of syn and anti conformers (Scheme 2) in the system and the competing effects of the different kinetics of these two distinct forms of CH$_3$CHOO. A similar effect may arise for the isoprene derived CRB-SCI which include multiple syn and anti conformers. The competition of this effect with that expected from the water dimer reaction may effectively lead to one masking the other under the experimental conditions applied.

Rate data for the reactions of isoprene derived SCI obtained using both analytical approaches described are given in Table 2.

3.4 Atmospheric implications

Treatment of the SCI produced from isoprene ozonolysis as a single SCI system appears to describe the observations well over the full range of experimental conditions accessible in this work (Sect. 3.2). The derived values for k_3 (ISOP-SCI) reported here (obtained by fitting Eq. (3) to the measurements, and placed on an absolute basis using the measured k_2 (CH$_2$OO) of 3.9×10^{-11} cm3 s$^{-1}$, Welz et al., 2012), correspond to a loss rate for ISOP-SCI from reaction with H$_2$O in the atmosphere of 600 s$^{-1}$ (assuming [H$_2$O] = 2.8×10^{17} molecules cm$^{-3}$, equivalent to an RH of 65 % at 288 K). Comparing this to the derived k_d value, 3.3 (±20) s$^{-1}$, it is seen that reaction with H$_2$O is predicted to be the main sink for isoprene derived SCI in the atmosphere, with other sinks, such as decomposition and other bimolecular reactions, being negligible. Hence k_d is neglected in the following analysis.

An estimate of a mean steady state ISOP-SCI concentration in the background atmospheric boundary layer can be calculated using Eq. (6).

$$[\text{ISOP-SCI}]_{ss} = \frac{[\text{Isoprene}][O_3]k_1\varphi}{k_3[H_2O]}$$ (6)
Using the data given below, a steady state SCI concentration of 2.4×10^2 molecules cm$^{-3}$ is calculated for an isoprene ozonolysis source. This assumes an ozone mixing ratio of 40 ppbv, an isoprene mixing ratio of 1 ppbv, an SCI yield φ of 0.56, and a reaction rate constant k_1 (isoprene – ozone) of 1.0×10^{-17} cm3 s$^{-1}$ (288 K) (Atkinson et al., 2006); k_2(SCI + SO$_2$) of 3.9×10^{-11} cm3 s$^{-1}$, k_3(SCI + H$_2$O) of 2.1×10^{-15} cm3 s$^{-1}$ with [H$_2$O] of 2.8×10^{17} cm$^{-3}$ (RH \sim 65 % at 288 K). A typical diurnal loss rate of SO$_2$ to OH ($k_{OH}[OH]$) is 9×10^{-7} s$^{-1}$ (Welz et al., 2012), while the SO$_2$ loss rate arising from reaction with ISOP-SCI, using the values above, would be 9.2×10^{-9} s$^{-1}$. This suggests, for the conditions given above, the diurnally averaged loss of SO$_2$ to SCI to be a small fraction of that due to OH. This analysis neglects additional chemical sinks for SCI, which would reduce SCI abundance, and the possibility of other alkene ozonolysis products leading to SO$_2$ oxidation which may increase the impact of alkene ozonolysis upon gas-phase SO$_2$ processing (Mauldin et al., 2012; Curci et al., 1995; Prousek, 2009). However, the analysis also neglects additional sources of SCI, e.g. photolysis of alkyl iodides (Gravestock et al., 2010; Stone et al., 2013), dissociation of the dimethyl sulfoxide (DMSO) peroxy radical (Asatryan and Bozzelli, 2008; Taatjes et al., 2008), and reactions of peroxy radicals with OH (Fittschen et al., 2014), which are currently poorly constrained and may even dominate SCI production over an ozonolysis source in some environments.

SCI concentrations are expected to vary greatly depending on the local environment, e.g. alkene abundance may be considerably higher (and with a different reactive mix of alkenes giving a range of structurally diverse SCI) in a forested environment, compared to a rural background. Furthermore, isoprene emissions exhibit a diurnal cycle in forested environments owing to a strong temperature dependence, hence are predicted to change significantly in the future as a response to a changing climate and other environmental conditions (Peñuelas and Staudt, 2010).
4 Isoprene + ozone as a function of DMS

4.1 Results

A series of experiments analogous to those reported in Sect. 3 were performed as a function of dimethyl sulfide concentration, [DMS], rather than [H₂O]. Figure 5 shows that SO₂ loss in the presence of isoprene and ozone is increasingly inhibited by the presence of greater amounts of DMS. Under the experimental conditions applied, it is assumed that the SCI produced in isoprene ozonolysis are reacting with DMS in competition with SO₂ (Reaction R9).

Using Eq. (4) a similar analysis to that performed for SCI + H₂O can be applied. Figure 6 shows a fit of Eq. (4) to the experimental data. This yields a gradient of k_8/k_2 and an intercept of $(k_3[H₂O]+k_d+L)/k_2$. The derived relative rate constant of $k(\text{SCI}+\text{DMS})/k(\text{SCI}+\text{SO₂})$, k_8/k_2, using this method is 4.1 ($±2.2$). Using the absolute value of k_2 (CH₂OO) derived by Welz et al. (2012) (as described previously) determines a value of $k_8 = 1.6 \times 10^{-10}$ cm³ s⁻¹.

The intercept of the linear fit in Fig. 6 is 1.1×10^{12} cm⁻³. This represents $(k_3[H₂O]+k_d+L)/k_2$ and hence can also be compared with the kinetic parameters derived in Sect. 3 (non-DMS experiments). From Fig. 3, $(k_d+L)/k_2 = 8.4 \pm 5.0 \times 10^{10}$ cm⁻³ and $k_3[H₂O]/k_2 = 4.3 \pm 0.6 \times 10^{11}$ cm⁻³ ([H₂O] = 8×10^{15} cm⁻³, the mean of the values for the five DMS experiments, 6.7–8.8 $\times 10^{15}$ cm⁻³), giving a combined value of $5.2 \pm 0.7 \times 10^{11}$ cm⁻³. These two values agree within the precision of the data.

4.2 Discussion and atmospheric implications

To the authors’ knowledge, this is the first work to show the relatively fast (in relation to other recently determined SCI bimolecular reactions, e.g. SCI + SO₂ and NO₂, and the well established OH + DMS reaction) rate of reaction of SCI with DMS, although the products have yet to be identified. While this work presents only SCI derived from iso-
isoprene ozonolysis, it seems likely that the fast reaction rate will apply to all SCI (though the precise rate will be structure dependent).

DMS is mainly produced as a by-product of phytoplankton respiration and so the highest concentrations are found in marine coastal environments or above active phytoplankton blooms. Furthermore, Jardine et al. (2015) have recently shown that DMS mixing ratios within and above a primary Amazonian rainforest ecosystem can reach levels of up to 160 pptv, in canopy and above the surface, for periods of up to 8 h during the evening and into the night, with levels peaking at 80 pptv above canopy.

SCI can also be expected to be present in the marine environment. As already discussed, mixing ratios of isoprene (Sinha et al., 2007; Yassaa et al., 2008) and monoterpenes (Yassaa et al., 2008) have been reported to reach in the region of hundreds of pptv over active phytoplankton blooms in the marine boundary layer. Additionally, the emission of small alkenes from coastal waters has been observed (Lewis et al., 1999). Furthermore, the photolysis of alkyl iodides (prevalent in the coastal environment, Jones et al., 2010) may be a significant source of SCI (Stone et al., 2013). Berresheim et al. (2014) have suggested that small SCI derived from alkyl iodide photolysis may be responsible for observed H$_2$SO$_4$ production, in excess of that expected from measured SO$_2$ and OH concentrations, at the coastal atmospheric observatory Mace Head, Ireland. Jones et al. (2014) proposed SCI produced from alkyl iodide photolysis as a possible source of surprisingly high formic acid concentrations observed in the marine environment in the European Arctic. Other non-ozonolysis sources of SCI include dissociation of the dimethyl sulfoxide (DMSO) peroxy radical (Asatryan and Bozzelli, 2008; Taatjes et al., 2008) (which could be an important source in the marine environment, where DMSO is an oxidation product of OH + DMS), and potentially from reactions of peroxy radicals with OH in remote atmospheres (Fittschen et al., 2014).

From the analysis in Sect. 3.4 a concentration of ISOP-SCI of 2.4×10^2 molecules cm$^{-3}$ was calculated, assuming an isoprene concentration of 1 ppbv. In a remote marine environment isoprene concentrations are probably an order of magnitude lower than this and consequently [ISOP-SCI] would be calculated to be on
the order of 2×10^1 molecules cm$^{-3}$. However, some regions will be impacted by both high isoprene and DMS concentrations, for example tropical islands, such as Borneo, which can have high isoprene concentrations and are strongly influenced by marine air masses (MacKenzie et al., 2011), as well as significant terrestrial sources from vegetation and soils in the Amazon, especially into the evening and at night (Jardine et al., 2015), when ozonolysis chemistry is at its most effective relative to photochemical OH chemistry. High sulfate composition of organic aerosols collected from the Borneo rain forests likely arises from the chemical processing of oceanic emissions of DMS and SO$_2$ (Hamilton et al., 2013). The sulphate content of aerosols was observed to increase further over oil palm plantations in Borneo, where isoprene concentrations may reach levels on the order of tens of ppbv (MacKenzie et al., 2011), indicating scope for alkene ozonolysis–DMS chemical interactions to become significant. If a diurnally averaged [OH] is taken as 5×10^5 molecules cm$^{-3}$ then the loss rate of DMS to OH is $\sim 3.5 \times 10^{-6}$ s$^{-1}$ while the loss to ISOP-SCI, at a concentration of 1×10^2 cm$^{-3}$, is $\sim 2 \times 10^{-8}$ s$^{-1}$, i.e. about 0.6% of the loss to OH. However in an environment with particularly high isoprene mixing ratios, such as over the oil palm plantations in Borneo this could rise to a few percent.

SCI derived from isoprene ozonolysis are unlikely to compete with OH during the day-time or NO$_3$ during the night, as an oxidant of DMS. However, alternative SCI sources have been suggested which may lead to significantly higher SCI concentrations in marine environments those predicted from ozonolysis alone. Further investigation is required to clarify the reasons for the observed discrepancies in SO$_2$ and DMS oxidation and the possibility that these may be, at least in part, explained by the presence of SCI, dependent on the products of SCI-DMS interactions. SCI are most likely of a similar importance to other minor reaction channels for DMS processing such as reaction with atomic chlorine or BrO, reported to have a reaction rate constant of $\sim 3.4 \times 10^{-10}$ cm3 molecule$^{-1}$ s$^{-1}$ at 298 K (Atkinson et al., 2004) and marine boundary layer concentrations on the order of 10^3–10^4 molecules cm$^{-3}$ (von Glasow and Crutzen,
SCI may be most important for DMS oxidation during the evening period and early morning periods, when OH and NO_3 production are both relatively low.

5 Conclusions

Isoprene ozonolysis leads to gas-phase SO_2 removal, which decreases significantly with increasing water vapour. This trend is consistent with production of stabilised Criegee intermediates (SCIs) from the ozonolysis reaction, and the subsequent reaction of these species with SO_2 or H_2O. Competition between H_2O and SO_2 for reaction with the SCI leads to this observed relationship, in which SCI abundance is sensitive to water vapour concentration, even at the dry end of the range found in the troposphere (ca. 1–20% RH). The kinetics of this system can be described well by treatment of the SCI population as a single pseudo-SCI species under the experimental conditions applied, allowing for relatively easy integration into atmospheric chemical models. The results indicate that SCI derived from isoprene ozonolysis are unlikely to make a substantial contribution to atmospheric SO_2 oxidation and hence sulphate aerosol formation in the troposphere.

Furthermore we show, for the first time, that SO_2 loss in the presence of isoprene and ozone significantly decreases with the addition of dimethyl sulphide (DMS). The data suggest a fast reaction of isoprene derived SCI with DMS. However, the exact mechanistic nature of the reaction, including the likely oxidation products, need to be elucidated. This result has implications for the oxidation of DMS in the atmosphere. Although it seems unlikely that SCI produced from isoprene ozonolysis alone are important for DMS oxidation, it is possible that (the sum of) SCI species produced from other alkene-ozone reactions, or from other (photo)chemical sources (which may be prevalent in the marine boundary layer), could be a significant source of DMS oxidant under certain atmospheric conditions, and hence influence new particle formation above environments influenced by emissions of unsaturated hydrocarbons and DMS.
Acknowledgements. The assistance of the EUPHORE staff is gratefully acknowledged. Mat Evans, Salim Alam, Marie Camredon and Stephanie La are thanked for helpful discussions. This work was funded by EU FP7 EUROCHAMP 2 Transnational Access activity (E2-2012-05-28-0077), the UK NERC (NE/K005448/1) and Fundacion CEAM. Fundació CEAM is partly supported by Generalitat Valenciana, and the project DESESTRES (Prometeo Program – Generalitat Valenciana). EUPHORE instrumentation is partly funded by the Spanish Ministry of Science and Innovation, through INNPLANTA project: PCT-440000-2010-003. Original data is available from author on request.

References

Table 1. Total isoprene SCI yields derived in this work and reported in the literature.

<table>
<thead>
<tr>
<th>(\phi_{\text{ISOP-SCI}})</th>
<th>Reference</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.56 (±0.03)</td>
<td>This work</td>
<td>SO(_2) loss</td>
</tr>
<tr>
<td>0.58 (±0.26)</td>
<td>Sipilä et al. (2014)</td>
<td>Formation of H(_2)SO(_4)</td>
</tr>
<tr>
<td>0.30 ((\phi_{\text{CH2OO}}))(^a)</td>
<td>Neeb et al. (1997)</td>
<td>HMHP(^b) yield</td>
</tr>
<tr>
<td>0.27</td>
<td>Hasson et al. (2001)</td>
<td>HMHP yield + difference between MVK and MACR production at high/low [H(_2)O]</td>
</tr>
<tr>
<td>0.28</td>
<td>Rickard et al. (1999)</td>
<td>Assumes stabilisation of 40% of CH(_2)OO produced + difference between MVK and MACR production at high/low [SO(_2)]</td>
</tr>
<tr>
<td>0.53</td>
<td>Rickard et al. (1999)</td>
<td>Assuming 95% of CH(_2)OO is stabilised (after Zhang et al., 2002) + difference between MVK and MACR production at high/low [SO(_2)]</td>
</tr>
<tr>
<td>0.57</td>
<td>Zhang et al. (2002)</td>
<td>Theoretical</td>
</tr>
<tr>
<td>0.22</td>
<td>MCMv3.2(^c)</td>
<td>Based on a weighted average of the yields for propene, 1-octene and 2-methyl propene.</td>
</tr>
</tbody>
</table>

Uncertainty ranges (±2\(\sigma \), parentheses) indicate combined precision and systematic measurement error components for this work, and are given as stated for literature studies. All referenced experimental studies produced SCI from C\(_5\)H\(_8\) + O\(_3\) and were conducted between 700 and 760 Torr. \(^a\) Yield of stabilised CH\(_2\)OO only, \(^b\) Hydroxymethyl hydroperoxide (a first order product of CH\(_2\)OO + H\(_2\)O). \(^c\) http://mcm.leeds.ac.uk/MCM/ (Jenkin et al., 1997).
Table 2. Isoprene derived SCI relative and absolute rate constants derived in this work.

<table>
<thead>
<tr>
<th>SCI</th>
<th>$10^5 k_3/k_2$</th>
<th>$10^{15} k_3$ (cm3 s$^{-1}$)</th>
<th>$10^{-11} k_d/k_2$ (cm$^{-3}$)</th>
<th>k_d (s$^{-1}$)</th>
<th>k_8/k_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$OOb</td>
<td>3.3 (±1.1)</td>
<td>1.3 (±0.4)</td>
<td>-2.3^c (±3.5)</td>
<td>-8.8^c (±13)</td>
<td></td>
</tr>
<tr>
<td>ISOP-SCI</td>
<td>5.4 (±0.8)</td>
<td>2.1 (±0.3)</td>
<td>0.8 (±5)</td>
<td>3.3 (±20)</td>
<td>4.1 (±2.2)</td>
</tr>
<tr>
<td>CRB-SCI</td>
<td>7.8 (±1.1)</td>
<td>3.0 (±0.4)</td>
<td>1.8 (±11)</td>
<td>7.0 (±43)</td>
<td></td>
</tr>
</tbody>
</table>

Uncertainty ranges (±2σ, parentheses) indicate combined precision and systematic measurement error components.

a Scaled to an absolute value using k_2(CH$_2$OO) = 3.9 × 10$^{-11}$ cm3 s$^{-1}$ (Welz et al., 2012). b From Newland et al. (2015). c Values are indistinguishable from zero within the measurement uncertainties.
Scheme 1. Simplified generic mechanism for the reaction of Criegee Intermediates (CIs) formed from alkene ozonolysis.
Scheme 2. Mechanism of formation of the nine possible Criegee Intermediates (CIs) from isoprene ozonolysis.
Figure 1. ΔSO$_2$ vs. ΔO$_3$ during the excess SO$_2$ experiments ([H$_2$O] < 5 x 1015 cm$^{-3}$). The gradient determines the minimum SCI yield (ϕ_{min}) from isoprene ozonolysis.
Figure 2. Cumulative consumption of SO$_2$ and O$_3$, ΔSO$_2$ vs. ΔO$_3$, for the ozonolysis of isoprene in the presence of SO$_2$ at a range of water vapour concentrations, from 4×10^{15} cm$^{-3}$ to 2.1×10^{17} cm$^{-3}$. Symbols are experimental data corrected for chamber dilution. Lines are smoothed fits to the experimental data.
Figure 3. Application of Eq. (3) to derive relative rate constants for reaction of the isoprene derived SCI with H$_2$O (k_3/k_2) and decomposition (($k_d + L$)/k_2).
Figure 4. Application of Eq. (5) to derive relative rate constants for reaction of the sum of the MVKOO and MACROO SCI (CRB-SCI) with the water monomer, and the decomposition rate. Red line: water monomer only reactions; blue dashed line: water monomer reaction and CH$_2$OO water dimer reaction rate from Newland et al. (2015); green dotted line: CH$_2$OO water dimer reaction rate from Chao et al. (2015). Shaded areas indicate reported uncertainties on dimer reaction rates.
Figure 5. Cumulative consumption of SO$_2$ and O$_3$, ΔSO$_2$ vs. ΔO$_3$, for the ozonolysis of isoprene in the presence of SO$_2$ at a range of DMS concentrations, from 6 to 55 ppbv. [H$_2$O] in all experiments was $< 9 \times 10^{15}$ cm$^{-3}$. Markers are experimental data, corrected for chamber dilution. Solid lines are smoothed fits to the experimental data.
Figure 6. Application of Eq. (4) to derive rate constants for reaction of ISOP-SCI with DMS (k_8) relative to that for reaction with SO$_2$.

\[
\frac{(k_d + L)}{k_2} = 1.1 \times 10^{12} \text{ cm}^3
\]

\[k_8/k_2 = 4.1\]