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Abstract: This paper proposes a dynamic-context cooperative quantum-behaved 

particle swarm optimization algorithm. The proposed algorithm incorporates a new 

method for dynamically updating the context vector each time it completes a 

cooperation operation with other particles. We first explain how this leads to enhanced 

search ability and improved optimization over previous methods, and demonstrate this 

empirically with comparative experiments using benchmark test functions. We then 

demonstrate a practical application of the proposed method, by showing how it can be 

applied to optimize the parameters for Otsu image segmentation for processing 

medical images. Comparative experimental results show that the proposed method 

outperforms other state-of-the-art methods from the literature. 

 

Key words: Quantum-Behaved Particle Swarm Optimization, Cooperative 

Method, Context vector, Image Segmentation  

 

1. Introduction 

1.1 Background 

Medical imaging, in the form of X-ray radiography, transformed medicine with its 

introduction more than a century ago. The availability of powerful computing 

resources, as well as advances in physics and other technologies, saw the rapid 

proliferation of additional methods over the past few decades, including CT, MRI and 



  

ultrasound imaging. This in turn has led to a rapidly increasing demand for powerful 

and computationally efficient numerical methods for processing ever increasing 

numbers of such images to improve their clarity and automatically extract salient 

information to assist medical professionals. 

Effective medical image processing methods are needed to help the doctor to gain 

more useful information, with greater accuracy, in shorter amounts of time. A 

particularly important capability is image segmentation, [44]. Segmentation is the 

process of partitioning an image into a set of non-intersecting regions, such that each 

region is homogeneous but the union of no two adjacent regions is homogeneous. 

This is a fundamental problem in Computer Vision, and a number of methods have 

been proposed for solving it, [43],[38]. In medical imaging, the goal of segmentation 

is to simplify and/or change the representation of an image, to make it more 

meaningful and easier to analyze. 

To define a dissimilarity measure between neighboring regions, we must first 

define an appropriate feature space. Features like grayscale [6], color [15], texture 

[59], local statistical characteristics [8], and spectrum characteristics, [37], are useful 

for segmentation purposes, and can be extracted from an image region. Popular 

medical image segmentation methods can broadly be divided into region growing 

algorithms, [45], and edge or boundary detection methods, [52]. 

Thresholding is the simplest and most commonly used parallel detecting method 

for segmentation [49]. Thresholding is often used as a preprocessing step, followed by 

other post-processing methods (e.g. [23], [3], [19]). It is also commonly used for skin 

or bone segmentation in CT images, [5]. 

Single threshold segmentation can separate an object from the background, whereas 

multi-threshold methods, e.g. [17], are often needed to distinguish multiple salient 

objects. For binary segmentation of grayscale images, a common approach is to 

represent objects or salient regions as distributions of pixel grey-levels (Gaussian 

distributions or histograms are commonly employed), and use the minimum value of 

the intersection between the two distribution peaks to set the threshold, [6]. 

Alternatively, a variety of objects can be distinguished by setting multiple thresholds 



  

at each local minima over a distribution curve of all image pixels, [17]. 

A shortcoming of these simple approaches is that they may not be suitable for 

multichannel images or images with similar characteristic values. Additionally, they 

may fail when the distribution of pixels for a salient object or image region is 

mult-modal. In addition, such methods fail to exploit spatial information contained in 

images, [4], [18], which can be combined with other kinds of imaging parameters [25], 

[63], and a-priori knowledge, [53]. Thresholding is also sensitive to uneven noise and 

grayscale distribution, for example different thresholds might be necessary at different 

locations in the same image. To overcome these difficulties, many scholars have 

proposed improvement methods, such as transition region determination, [62], 

variable thresholding with pixel spatial location information, [40], and unsupervised 

connectivity-based thresholding segmentation, [31].   

Selecting the appropriate threshold is a difficult problem for images containing 

multiple objects or segmentation categories, and has received considerable attention 

from researchers in recent years. Pun, [46], proposed threshold selection based on a 

maximum entropy principle which is now recognized as one of the most important 

automatic threshold selection methods. This approach attempts to divide an image’s 

greyscale histogram into multiple classes, in a way which maximises the expected 

information. Kapur et al. further developed this method [26]. Sahoo et al. proposed 

replacing the general entropy with Renyi entropy [48]. Jui-Cheng Yen et al. proposed 

an alternative threshold selection method, based on the max-relativity principle [60], 

to replace the general maximum entropy principle. 

The Otsu method [42] is a nonparametric and unsupervised method of automatic 

threshold selection for image segmentation. In Otsu, an optimal threshold is selected 

according to a discriminant criterion. The procedure is very simple, however the 

computation time grows exponentially with the number of thresholds due to its 

exhaustive searching strategy, which would limit the multiple thresholding 

applications [17]. To overcome this problem, researchers have attempted to replace 

the exhaustive search strategy of the original Otsu method with more advanced 

numerical optimization methods, [21], [61], and there is an emerging interest in the 



  

use of partical swarm optimization (PSO) methods to tackle this problem, [56].   

 

1.2 Particle swarm optimisation 

The past 20 years has seen a growing interest in the use of particle swarm 

optimization (PSO) methods, for solving difficult numerical optimization problems, 

especially those involving large search spaces, discontinuous or un-differentiable 

surfaces, and other problems. PSO is useful because it is simple to understand and 

program, it does not rely on any assumptions about the underlying problem space, and 

it uses only a small number of parameters. Since 2003, many improved swarm 

intelligence algorithms have been proposed, [64], [10]. However, like other intelligent 

heuristic-based methods, PSO cannot guarantee globally optimal convergence, and 

can easily become distracted by local optima. In [32], we proposed a cooperative 

quantum-behaved particle swarm optimization algorithm for numerical optimization 

(CQPSO), which addresses these problems by making use of quantum uncertainty and 

cooperation mechanisms. In this paper we improve the performance of our previous 

work, [32], by proposing a new method for dynamically updating the context vector at 

each iteration, and we also show how to combine this approach with the Otsu 

segmentation method to deliver high performance processing of medical images. 

  The PSO literature can roughly be divided into work which addresses: the 

improvement of the algorithm; algorithm analysis; and applications of PSO 

algorithms. Many attempts have been made to improve the performance of PSO. The 

use of binary system particle swarm optimization, for optimizing the structure of 

neural networks, was proposed by Kennedy and Eberhart in 1997, [29]. Shi and 

Eberhart introduced an inertia factor, w , into PSO and improved the convergence 

property, [50]. An extension of this work employed fuzzy systems to nonlinearly 

change the inertia weight during optimization, [51]. Clerc (1999) introduced the 

Contraction-Expansion factor into evolution algorithms to guarantee the convergence 

of the algorithm, [33], while relaxing the speed limit. In 1998 and 1999, [1, 2], the 

concept of selection and crossover was introduced into PSO by Angeline. This 

process involves comparing fitness values to eliminate less fit particles while a new 



  

population is formed by selecting the more fit particles from the parent population and 

the offspring population. Lovbjerg et al. made a further study of PSO with selection 

and crossover, proposing a successful form of crossover operation, [35]. 

Population diversity is particularly important for improving the global convergence 

of PSO algorithms. The concept of “special scope” was introduced into the standard 

PSO algorithm by Suganthan, [54]. In order to enhance the population diversity, 

Kennedy, [27], introduced neighborhood topology to PSO, and also introduced 

“social beliefs” to enhance information exchange between neighborhoods. In 2001, 

Lovbjerg and his colleagues introduced the concept of sub-populations of the genetic 

algorithm and introduced a reproduction operator into the PSO algorithm, [54]. In 

2004, Kennedy demonstrated improved performance of the PSO algorithm by 

employing ring topology, and made the particles move according to normally 

distributed random perturbations, [28]. Later in 2004, Krohling, [30], replaced the 

change of acceleration factor by a normal distribution, showing an improvement in 

the global search ability of the particle swarm.  

PSO algorithms are not guaranteed to converge on global optima, and may 

sometimes even fail to find local optima. In 2004, Sun Jun et al. proposed a new PSO 

model inspired by quantum mechanics to address some of these drawbacks, [55]. This 

new PSO model is based on the Delta potential well, and models the particles as 

having quantum behaviors. Our recent work, [32], extended this by combining 

quantum uncertainty with cooperation mechanisms. 

 

1.3 Quantum PSO methods 

Quantum-behaved PSO algorithms are more efficient than conventional PSO. The 

quantum system is not a simple linear system, but a complex nonlinear system, and 

follows the superposition principle of states. It therefore encodes more states than the 

simple conventional linear system. In the quantum system, the trajectory of the 

particles is non-deterministic. The particles can appear anywhere in the feasible 

region, even a position far away from the current position, according to the 

probability density function. Positions that are different from the current particle’s 



  

position, may have a better fitness value than the best objective function call of the 

current population of particles. Therefore, incorporating the stochastic quantum 

behaviour enables the particles to better explore the search space and helps avoid 

local minima convergence. 

In 2008, Leandro dos Santos Coelho [11] proposed an improved quantum-behaved 

swarm optimization with chaotic mutation operator. Soon after, from 2009 to 2014, 

more improved quantum-behaved swarm optimization methods were proposed, e.g. 

[36, 57, 32, 24, 13, 39, 14, 47, 22]. Y.G. Fu et al. combined differential evolution with 

the QPSO algorithm (DEQPSO) in an attempt to further enhance the performance of 

both algorithms [16]. Ch et al. investigated the accuracy of the hybrid SVM-QPSO 

model [7]. To further improve robustness against local minima, an improved PSO 

algorithm based on combining simulated annealing (SA), co-evolution theory, 

quantum behavior theory and diversity-guided mutation strategy (MSCQPSO) was 

proposed in [34]. 

Accompanying these advances in performance, there have been increasing numbers 

of applications of QPSO appearing in the literature, including image segmentation, 

[56], orthogonal MIMO radar, [33], and other applications, [12, 41, 47, 58]. 

 

1.4 Contributions of this work 

Our work extends previous quantum PSO methods [17,36,57] in several ways. In 

[17,36,57], the measurement process consists in randomly sampling only once from 

the wave function distribution, which leads to a loss of information. In contrast, we 

draw multiple samples which preserves additional information about the shape of the 

distribution. These multiple measurements are then combined using a cooperation 

procedure. Additionally, we propose a new way of dynamically updating the context 

vector during the cooperation procedure. Cooperation is performed successively 

between the context vector and each of the multiple measurement samples, and the 

context vector is itself updated after each such cooperation. Additionally we show 

how Dynamic-Context Cooperative Quantum PSO (CCQPSO) can be applied to a 

practical problem in medical imaging, by using it to optimize the parameters of Otsu 



  

segmentation for dividing the pixels of medical images into multiple classes. 

 

1.5 Structure of this paper 

Section 2 explains our proposed algorithm. It introduces PSO methods, describes the 

extension of quantum particles, and explains the notion of context vectors and how 

they can be used to enhance cooperative behaviour. Section 3 presents the results of 

comprehensive empirical testing on benchmark data-sets, and comparisons against 

other state-of-the-art methods. Section 4 draws concluding remarks and makes 

suggestions for future work. 

 

2. Introduction to the proposed algorithm 

2.1 Particle Swarm Optimization 

In the classical PSO model, the i
th particle is assigned the properties of position, 

iX , 

and velocity, iV , and propagated using the following evolutionary equation: 

( 1) ( ) 1* 1( )*( ( ) - ( )) 2* 2( )*( ( ) - ( ))
i i i i igV t V t c r t P t X t c r t P t X t+ = + + .   (1)

 

In 1998, Shi [50] proposed the widely used Standard PSO, introducing the parameter 
ω  into the equation: 

( 1) * ( ) 1* 1( )*( ( ) - ( )) 2* 2( )*( ( ) - ( ))i i i i igV t V t c r t P t X t c r t P t X tω+ = + + ,   (2) 

where 1c  and 2c  are the accelerated coefficients or learning factors,. Commonly 

1 2 2c c= =  and usually 1 2 (0,4)c c= ∈ . 1r  and 2r  are uniformly distributed 

random numbers from 0 to 1. iP  is the best known position of particle i and gP  be 

the best known position of the entire swarm. 

 

2.2 Quantum Particle Swarm Optimization 

In PSO, particles move along deterministic paths, at speeds which are limited by the 

available computing resources. This limits the ability of such algorithms to find global 

optima, and makes them prone to local optima convergence. To overcome the 

limitations of these deterministic particle paths, researchers have attempted to 



  

introduce an element of stochasticity into particle paths, making an analogy with the 

probabilistic quantum mechanical descriptions of the motions of subatomic particles 

in the physics literature. Early work in this area included Jun et al., [55], in 2004. 

In terms of classical mechanics, a particle’s motion can be completely described by 

its position vector and velocity vector, which determine the trajectory of the particle. 

The particle moves along a deterministic trajectory in Newtonian mechanics, but this 

is not the case in quantum mechanics. In the quantum world, the position and the 

velocity of a particle can never both be determined simultaneously, according to 

Heisenburg’s uncertainty principle, [20]. Instead, the particle state must be described 

probabilistically. 

The wave function, ,( )x tψ
�

, probability density function, 
2

,( )x tψ
�

and, within a 

3D space, 
2

,( )x t dxdydzψ
�

, represents the probability of a particle being discovered 

within the volume element, dxdydz  at time t. The wave function is obtained by 

solving the Schrodinger equations, based on a Delta potential well: 

2
2

( ) ( ) ( )

( )
2

( , ) ( , )

V X X p y

H V X
m

i X t H X t
t

γδ γ

ψ ψ

∧

∧


= − − = −




= − ∇ +


∂
− = ∂

�

�

,                       (3) 

where point P is the center of the well. Solving the Schrodinger equations, [55], yields 

the wave function: 

 /1
( ) y L
y e

L
ψ −

= ,                            (4) 

where,
2

L
mγ

=
�

, y X p= − , ( )V x  is the potential well function. H
∧

 is the 

Hamiltonian operator. 2∇  is the Laplace operator. This gives the probability density 

function as: 

2 2 /1
( ) ( ) y L

Q y y e
L

ψ −
= = .      (5) 



  

  The above functions describe the location of a particle probabilistically, 

analogously to quantum theory. However, to evaluate a fitness function (i.e. 

converting from the search space to the solution space) for numerical optimisation, we 

need to use an exact, explicit particle position. Converting from a density function to 

an explicit position is achieved by using a Monte Carlo method to simulate a position 

“measurement”. The procedure of measurement simulation is described as follows. 

  Let s  be a uniformly distributed random number: 

1 1
(0,1)s rand u

L L
= = .     (6) 

Substituting s  for
2

( )yψ , we obtain: 

21 y / L
s e

L

−
=  ,      (7) 

and hence 2 /y L
u e

−
=  ,      (8) 

yielding ln(1/ )
2

L
y u= ±  .     (9) 

   This finally gives the estimated position Xid of the ith particle in the d-dimensional 

search space (where idp  is the attractor of the i
th particle) as: 

ln(1/ )
2id id

L
X p u= ± .                       (10) 

  In [55], L  is evaluated with the current particle position idX  and attractor idp : 

2 id idL * * p Xα= − .                         (11) 

Finally, the particle position is updated based on the delta potential well model: 

1 1id id id idX ( t ) p * p X ( t ) * ln( / u )α+ = ± − ,            (12) 

where α , known as the “expansion factor”, is a unique parameter of the 

quantum-behaved particle swarm optimization algorithm based on the Delta potential 

well, and is generated from a uniformly distributed random function in the interval [0, 

1]. 

 

2.3 Cooperative quantum-behaved particle swarm optimization algorithm 

(CQPSO) 

J. Sun et al. incorporated a context vector in cooperative quantum-behaved particle 



  

swarm optimization (sunCQPSO), [17]. The context vector was designed to evaluate 

each dimension of a particle appropriately in the processing of cooperation. In 

sunCQPSO, the globally optimal particle in each generation is assigned as the context 

vector. In contrast, at each generation, for each particle we use the Monte Carlo 

measurement procedure to sample multiple measurements, [32]. In [32], we showed 

how to set the best of these samples to be a local context vector for that particle. 

Search algorithms which include stochasticity (including quantum particle swarm 

optimization and genetic algorithms) suffer from the “curse of dimensionality”, which 

refers to the phenomenon of scaling problems with high dimensional data. Every 

dimension of a particle will affect its overall fitness. Therefore, some particles will be 

associated with low fitness, even if some of their dimension values lie very close to 

the corresponding dimensions of the globally optimal solution. This is why the 

cooperation operation is important, as it enables information from the “good” 

dimensions to be preserved within the particle swarm and can prevent potentially 

useful information from being unnecessarily discarded. By performing cooperation 

one dimension at a time, we are able to evaluate each dimension respectively, and 

save the most useful information to accelerate convergence. We now describe how our 

proposed method extends the notion of cooperation in quantum PSO, by generating 

new individuals by performing cooperation between multiple Monte Carlo 

measurements for each particle.  

In general, our proposed method could be used to cooperate between an arbitrary 

number of measurement samples. The greater the number of such observations, the 

greater will be the utilization efficiency of the quantum-induced uncertainty, and the 

faster the convergence rate. However, the total processing time grows linearly. For 

proof of principle, we will here explain the algorithm assuming that the wave function 

is sampled by the measurement procedure to generate five new 

individuals: ),,...,,( 112111 Dl xxxX , 2 21 22 2( , ,..., )l DX x x x , 3 31 32 3( , ,..., )l DX x x x ,

4 41 42 4( , ,..., )l DX x x x  and 5 51 52 5( , ,..., )l DX x x x , then we compute: 



  

1 2
1 1 1

1 1 1
( , ,..., )

M M M

i i id

i i i

mbest P P P
M M M= = =

= ∑ ∑ ∑ ,                (13) 

( 1) * ( ) (1 )*i i gP t P t Pϕ ϕ+ = + −
,                    (14) 

)/1ln(*)(*)1()1( utXmbesttPtX iii −±+=+ α
,            (15) 

where
 mbest  is the mean position of the whole particle swarm. )1( +tPi

 is the new 

particle, which combines information from Pi(t) (the “personal best” position 

achieved by the ith particle throughout its history) and Pg (the globally best particle 

over the whole population). M is the population size, and ϕ  and u  are uniformly 

distributed random numbers from 0 to 1. α  is known as the Creativity Coefficient, 

and is the only parameter which needs to be specified. 

 

2.4 Dynamic-Context Cooperative Quantum-behaved Particle Swarm 

Optimization Algorithm 

The previous section showed how to sample multiple measurements, and combine 

these through cooperation. In our previous work, [32], we selected the best of these 

measurement vectors and set it as the context vector. This context vector then 

remained constant throughout the cooperation procedure. In contrast, we now explain 

how to continually update the context vector dynamically during cooperation, to take 

account of any new information obtained at each successive stage of the cooperation 

process. This dynamic update procedure makes best use of new information and so 

accelerates the rate of convergence. After each particle evaluation is completed, that 

particle will update its own context vector according to the procedure shown in Fig. 1. 

In this paper, for proof of principle, each particle generates five particles through five 

simulated measurements as mentioned above. We therefore obtain five individuals 

and then select the best individual BiX _  according to its fitness value among five 

individual. Then we assign BiX _  as the current local context vector for the i
th

 

particle Pi. This context vector is then cooperated with the remaining four individuals 

obtained from the measurement process. For each dimension of the context vector, the 



  

corresponding dimension of each of the other four individuals is substituted, and 

tested to see if the replacement dimension improves the fitness value. If it does, the 

substitute value is adopted and the resulting vector is used to replace the context 

vector. This procedure is repeated until all dimensions of all five measurement vectors 

have been evaluated, and the best permutation is selected to form a new particle for 

the new generation. This procedure is shown in figure 1. 

Procedure: 

Initialize population: Xi  

Pbest=Xi 

Gbest=best Pbest 

if  t<Gmax 

   for each particle  

      generate five particles using Eq.(13) to Eq.(15) 

      select Xi= BiX _  

      Xc=Xlj 

for each particle Xk 

   f=f(Xc) 

         for each dimension j 

           if f(Xc(j,Xkj))<f 

              Xij= Xkj 

           endif 

           Xc= BiX _   

         end 

         Xc= Xi 

      end 

if f(Xi)<f(Pbesti) 

         Pbesti=Xi 

endif 

if f(Pbesti)<f(Gbest) 

         Gbest=Pbesti 

endif 

   end 

Fig. 1.  Pseudo-code procedure for Dynamic-Context Cooperative Quantum-behaved particle 

swarm optimization (CCQPSO). 

3. Experimental results 

3.1 Experiments using benchmark optimization functions 

To investigate the performance of our proposed Dynamic Context Cooperative 



  

Quantum-behaved particle swarm optimization (CCQPSO) algorithm, we have tested 

CCQPSO using five benchmark test functions. Table 1 lists the basic characteristics of 

these test functions. These benchmark functions are all minimization problems with 

zero global minimum values. For each function, we compare the performance of 

CCQPSO against: quantum-behaved particle swarm optimization algorithm with 

weighted mean best position (WQPSO) [58]; the cooperative quantum particle swarm 

algorithm presented by J-Sun et al. (sunCQPSO) [17]; and our previously proposed 

cooperative quantum-behaved particle swarm optimization (CQPSO) [32]. 

  For CCQPSO, the size of the initial population is 20 and we set the parameter 

5measurements = . We performed 50 trial runs for each algorithm on each benchmark 

function, and recorded the mean best fitness and standard deviation over the 50 trials. 

For sunCQPSO and CQPSO, relaxation factor α  decreases linearly from 1.0 to 0.5. 

All trials were performed using a 2.33GHz Pentium IV PC with 2G RAM running 

Matlab implementations of the algorithms. 

  The results are shown in Table 2 and Table 3, where M is the size of population, D 

is the number of dimensions and Gmax is the maximum allowed number of 

generations. 

Table 1 Basic characteristic of test functions 

The functions Expression Initialization 

interval 

Maximal 

area 

Sphere function f1  (-50,100) 100 

Rosenbrock function f 2  (15,300) 100 

Rastrigrin function f 3  (2.56,5.12) 10 

Griewank function f 4  (-300,600) 600 

De Jong,s function f 5  (-30,100) 100 

From Table 2 and Table 3 it can be seen that our proposed CCQPSO method 

significantly outperforms all the other comparison methods on all five benchmark 

functions and the performance variance of the proposed method is also small, 

suggesting stability. 

 

n
2

i
i 1

f1(x) x
=

=∑

n
2 2

i 1 i i
i 1

f 2(x) (100(x x ) (x 1) )+
=

= − + −∑
n

2
i i

i 1

f 3(x) (x 10cos(2 x ) 10)
=

= − π +∑
n

2 n i
i i 1

i 1

x1
f 4(x) x cos( ) 1

4000 i
=

=

= − ∏ +∑
n

4
i

i 1

f 5(x) ix
=
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Table 2 Test function comparison between WQPSO and sunQPSO  

f M D Gmax 
WQPSO sunCQPSO 

Mean Min St.Var Mean Min St.Var 

f 1 20 

20 1500 2.4267E-38 5.8824E-38 4.946880e-317 0.0000E+00 

30 2000 6.9402E-32 1.2879E-31 0.0000E+00 0.0000E+00 

100 3000 4.2014E-11 4.0006E-11 2.4209E-218 0.0000E+00 

f 2 20 

20 1500 4.4948E+01 5.8837E+01 3.7499E+01 4.8401E+01 

30 2000 7.6625E+01 1.0193E+02 5.5191E+01 6.4979E+01 

100 3000 2.4832E+02 1.9868E+02 8.4586E+01 4.2951E+01 

f 3 20 

20 1500 1.2945E+01 4.0725E+00 0.0000E+00 0.0000E+00 

30 2000 2.4259E+01 7.9174E+00 5.9698E-02 2.3869E-01 

100 3000 2.1121E+02 3.5535E+01 9.1352E+00 7.0400E+00 

f 4 20 

20 1500 2.4863E-02 2.3981E-02 4.2273E-02 4.3296E-02 

30 2000 9.0994E-03 1.2641E-02 6.1817E-02 6.9100E-02 

100 3000 4.4359E-03 9.0706E-03 4.4409E-18 2.1977E-17 

f 5 20 

20 1500 2.4224E-50 1.5425E-49 0.0000E+00 0.0000E+00 

30 2000 1.5686E-40 5.9721E-40 0.0000E+00 0.0000E+00 

100 3000 7.7518E-11 7.8925E-11 5.3694E-285 0.0000E+00 

 

Table 3 Test function comparison between CQPSO and CCQPSO  

f M D Gmax 
CQPSO CCQPSO 

Mean Min St.Var Mean Min St.Var 

f 1 20 

20 1500 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

30 2000 4.4466E-323 0.0000E+00 0.0000E+00 0.0000E+00 

100 3000 3.6129E-98 2.5448E-97 0.0000E+00 0.0000E+00 

f 2 20 

20 1500 2.9140E+01 5.6023E+01 1.8557E+00 2.5443E+00 

30 2000 2.9660E+01 4.6534E+01 1.1051E+00 1.1660E+00 

100 3000 1.4697E+02 9.3562E+01 2.0581E+01 1.4751E+01 

f 3 20 

20 1500 1.2198E+01 6.4537E+00 5.9698E+00 3.9798E+00 

30 2000 1.8049E+01 6.3279E+00 1.1343E+01 3.8918E+00 

100 3000 1.1293E+02 1.7379E+01 4.7161E+01 6.5471E+00 

f 4 20 

20 1500 1.9176E-02 1.6191E-02 1.3727E-02 2.0671E-02 

30 2000 1.0279E-02 1.5108E-02 0.0000E+00 0.0000E+00 

100 3000 2.6110E-03 5.1311E-03 0.0000E+00 0.0000E+00 

f 5 20 

20 1500 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

30 2000 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

100 3000 3.7938E-104 1.4349E-103 0.0000E+00 0.0000E+00 

 
  Figure 2 plots log fitness of the measurement vectors against numbers of 
generations for CCQPSO, CQPSO and sun CQPSO, for the “Sphere” benchmark test 
function, f1. Clearly the proposed CCQPSO significantly outperforms the other 



  

methods, demonstrating significantly more rapid convergence. 
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Fig. 2.  Comparison of convergence of “measurement” values for Sphere function f1. Note, we 

only compare against sunCQPSO and CQPSO, because WQPSO does not use “context” vector. 

 

  In order to test the significance between CCQPSO and other comparison algorithms, 

the Student's t Test was used. It can be calculated by the follow formula: 
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where, 1 2,n n is the sample number of the two the sample sets, 1 2,X X is their average 

value, and 2 2
1 2,S S is their variance. Because 1n  and 2n  are equal, and we set 

1 2n n n= = , the formula can be simplified to: 
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  The result of the Student’s t Test is shown in Table 4. The negative value means that 

the result of our algorithm is better. From the table we can see that our algorithm is 

better than WQPSO on all the test functions. And our algorithm is better than 

sunCQPSO on f2 and f4. On f3, sunCQPSO is better than CCQPSO, but on f1(100 

dimension), f2-f4, and f5(100 dimension) our algorithm is better than CQPSO. 

Therefore, the advantages of our proposed CCQPSO algorithm become more obvious 

generations 
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with increasing numbers of dimensions. 

 

Table 4. Results of Student's t Test between CCQPSO and comparison algorithms 

f D CCQPSO-WQPSO CCQPSO-sunCQPSO CCQPSO-CQPSO 

f 1 

20 -7E-19    0 0 

30 -1.4E-15    0 0 

100 -4.6E-05    0 -5E-49    

f 2 

20 -38.4992    -34.9534    -24.9535    

30 -52.0597    -46.5459    -28.9352    

100 -109.099    -58.9391    -84.9774    

f 3 

20 -17.2059    20.94743 -13.4967    

30 -26.3993    38.72308 -14.7794    

100 -176.972    72.27895 -94.0588    

f 4 

20 -0.36967    -0.79064    -0.19957    

30 -0.56653    -1.64614    -0.58539    

100 -0.32603    -6.6E-09    -0.25515    

f 5 

20 -4.3E-25    0 0 

30 -4.5E-20    0 0 

100 -6.1E-05    0 -7E-52 

 

3.2 Medical Image segmentation  

To demonstrate an application of the proposed CCQPSO algorithm, we now 

demonstrate its performance on a medical imaging problem. We use CCQPSO to 

optimize the parameters for Otsu image segmentation of six different CT images 

showing cross-sections through a human stomach cavity. Each image is 512*512 

pixels. The algorithm is tasked with segmenting each image pixel into one of three 

classes, based on grey level intensity, such that the three classes are as distinct as 

possible from each other. Again, we compare the proposed CCQPSO algorithm 

against CQPSO [32] and sunCQPSO [17]. 

  During all trials, the algorithm parameter are set as follows. For sunQPSO [17], 

CQPSO [32] and CCQPSO, the populations are all set to 20, and relaxation factor α  

decreases linearly from 1.0 to 0.5. For CQPSO and CCQPSO, the number of 

measurements is set to 5, and the iterations argument is 100. We performed 10 trial 

runs for every instance and recorded mean optimal threshold, mean inter-class 



  

variance and standard deviation. The simulation has been carried out on a 2.33GHz 

Pentium IV PC with 2G RAM using algorithm implementations in Matlab.  

Table 5 Segmentation data of the three algorithms on stomach CT images 200.1 and 200.2 

 

200.1 200.2 

Optimal 

Threshold 

Inter-Class 

Variance  
St.Var 

Optimal 

Threshold 

Inter-Class 

Variance 

 

St.Var 

sunCQPSO 39,193 5236.6340 4.0600E+01 59,165 5204.1790 5.7500E+01 

CQPSO 43,171 5251.2720 1.1972E+02 72,208 5224.1460 4.8833E+01 

CCQPSO 62,176 5315.6780 0.0000E+00 62,176 5275.4370 9.5900E-13 

 

Table 6 Segmentation data of the three algorithms on stomach CT images 200.10 and 200.86 

 

201.10 201.86 

Optimal 

Threshold 

Inter-Class 

Variance 
St.Var 

Optimal 

Threshold 

Inter-Class 

Variance 
St.Var 

sunCQPSO 44,138 3956.0970 2.5400E+01 45,119 4740.0140 2.4300E+01 

CQPSO 73,209 3963.1870 2.8674E+01 67,159 4730.3980 1.3452E+01 

CCQPSO 56,146 3990.3230 4.7900E-13 55,139 4765.4210 9.5900E-13 

 

Table 7 Segmentation data of the three algorithms on stomach CT images 200.14 and 200.29 

 

200.14 201.29 

Optimal 

Threshold 

Inter-Class 

Variance 
St.Var 

Optimal 

Threshold 

Inter-Class 

Variance 
St.Var 

sunCQPSO 58,176 4.5421E+03 6.7260E+01 68,201 3.9453E+03 6.2061E+01 

CQPSO 73,154 4.5453E+03 4.4676E+01 83,212 3.9497E+03 1.9377E+01 

CCQPSO 62,172 4.5999E+03 9.5869E-13 67,182 3.9835E+03 9.5869E-13 

    

(a) Original image                     (b) sunCQPSO 



  
     

(c) CQPSO                          (d) CCQPSO 

Fig. 3. Segmentation results of stomach image “CT 200.1”. The three classes are denoted by white, 

grey and black respectively. 

 

 

 

 

     

(a) Original image                     (b) sunCQPSO 



  
     

(c) CQPSO                          (d) CCQPSO 

Fig. 4. Segmentation results of stomach image “CT 200.2”. The three classes are denoted by white, 

grey and black respectively.  

 

 

 

     

(a) Original image                     (b) sunCQPSO 



  
     

(c) CQPSO                          (d) CCQPSO 

Fig. 5. Segmentation results of stomach image “CT 200.10”. The three classes are denoted by 

white, grey and black respectively. 

 

 

 

 

     

(a) Original image                     (b) sunCQPSO 



  
     

(c) CQPSO                          (d) CCQPSO 

Fig. 6. Segmentation results of stomach image “CT 200.86”. The three classes are denoted by 

white, grey and black respectively. 

 

 

 

 

     

(a) Original image                     (b) sunCQPSO 



  
     

(c) CQPSO                          (d) CCQPSO 

Fig. 7. Segmentation results of stomach image “CT 200.14”. The three classes are denoted by 

white, grey and black respectively. 

 

 

 

 

     

(a) Original image                     (b) sunCQPSO 



  
     

(c) CQPSO                          (d) CCQPSO 

Fig. 8. Segmentation results of stomach image “CT 200.29”. The three classes are denoted by 

white, grey and black respectively. 

 

It can be seen from Tables 5, 6 and 7 that, image segmentation using CCQPSO 

produces better results in terms of variance between classes. According to the 

evaluation criteria of the Otsu method, the greater the value of variance between 

clusters the better the segmentation result is expected to be. Although the numerical 

results show that the proposed CCQPSO method has clustered pixels into classes that 

are more distinct than the comparison methods, the differences in the quality of the 

resulting segmented images are not obvious to the human eye. 

 

 

4. Conclusion 

This paper has presented a new Dynamic Context Cooperative Quantum-behaved 

particle swarm optimization (CCQPSO) algorithm. The aim of this method is to 

improve the performance of the cooperative quantum-behaved particle swarm 

optimization (CQPSO) algorithm by better exploiting contextual information. We 

have shown how context variables can be continuously and dynamically updated 

when evaluating different individual dimension components, during the cooperation 

procedure, thus making the best possible use of any new information, as soon as it 

becomes available to the system. 



  

  Empirical testing, on a number of different benchmark test functions, shows that 

CCQPSO significantly outperforms three other state of the art methods, accelerating 

convergence and reducing final errors. We have also shown how CCQPSO can be 

used to optimize the parameters of Otsu image segmentation, and we have 

demonstrated this method on a number of example medical images. Numerical results 

suggest that CCQPSO outperforms the comparison methods for image segmentation, 

although the resulting images, output by all three compared methods, appear visually 

similar to the human eye. We suggest that a reason for this is that the image 

characteristics, segmentation method to be optimized, and number of classes to be 

clustered, all conspire to provide a relatively simple optimization problem, where less 

sophisticated methods can still show nearly as good performance as complex methods. 

In future work, we hope to provide more obvious demonstrations of the advantages of 

CCQPSO by applying it to more complex kinds of segmentation problems on more 

difficult images. 
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