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 23 

ABSTRACT  24 

Ambient PM2.5 samples were collected at a high-traffic location (summer and winter 2013) and 25 

characterized for a large suite of elemental and organic markers. Concentrations were found to 26 

exceed the Indian PM2.5 air quality standard on several occasions, especially in the winter. Winter 27 

concentrations of several individual tracer species were several fold higher compared to summer, 28 

particularly for some PAHs and trace metals.  Enrichment factors relative to crustal material 29 

showed significant enrichment for elements such as Ti, Sb, Pb and As, although Ba, often used as a 30 

marker for non-exhaust emissions from traffic was not found to be enriched appreciably. Crustal 31 

material was found to be an important contributor in the summer (14.3%), while wood burning 32 

(23.3%), nitrates (12.4%) and chlorides (12.3%) were found to be major contributors in winter. The 33 

contribution of road traffic exhaust emissions was estimated to be 18.7% in summer and 16.2% in 34 

winter. Other combustion sources (wood and other biomass/waste/coal) were found to be a 35 

significant source in winter, and contribute to the higher concentrations.  Secondary sulphates, 36 

nitrates and chloride (the latter two in winter) and organic matter also contribute substantially to 37 

PM2.5 mass.   38 

 39 

Keywords: Molecular markers; traffic, India; mass closure; particulate matter   40 

41 
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 42 

1. INTRODUCTION  43 

Given the rapid rates of urbanization in Indian cities, air pollution is increasingly becoming a 44 

critical threat to the environment and to the quality of life among the urban population in India. 45 

Particulate matter (PM) concentrations are often found to exceed the Indian National Ambient Air 46 

Quality Standards (NAAQS) and recent studies have identified PM as one of the key public health 47 

risks, particularly in urban areas (Lim et al., 2012; Guttikunda and Goel, 2013; Trivedi et al., 2014). 48 

The primary sources of air pollution in India have been identified as vehicular emissions, industrial 49 

emissions, coal combustion, biomass burning, road dust and waste burning, construction activities,  50 

oil combustion and sea salt (Chowdhury et al., 2007; CPCB, 2010; Guttikunda and Calori, 2013; 51 

Gargava et al., 2014). An overview of PM sources is presented in Guttikunda et al. (2014).  52 

 53 

There is a growing body of literature on source apportionment of PM in India which has used 54 

receptor modelling with both elements and organic markers, and a detailed review of source 55 

apportionment studies in India is presented in Pant and Harrison (2012). A large number of studies 56 

have focused on total suspended particulate matter (TSP) and PM10 but there is an increasing 57 

number of studies focused on fine PM (aerodynamic diameter <2.5 µm) (Chowdhury et al., 2 007; 58 

Tiwari et al., 2009; Chakrobarty and Gupta, 2010; Khare and Baruah, 2010; Gummeneni et al., 59 

2011; Joseph et al., 2011). In terms of geographic distribution across the country, most studies focus 60 

on big cities such as Delhi (Balachandran et al., 2000; Khillare et al., 2004; Srivastava and Jain, 61 

2007; Tiwari et al., 2009; Khillare and Sarkar, 2012; Trivedi et al., 2014), Mumbai (Kumar et al., 62 

2001; Chelani et al., 2008; Kothai et al., 2008), Chennai (Srimuruganandam and Shiva Nagendra, 63 

2011), Hyderabad (Gummeneni et al., 2011; Guttikunda et al., 2013) and Kolkata (Gupta et al., 64 

2007; Kar et al., 2010). The Central Pollution Control Board (CPCB) also conducted a detailed 65 

dispersion and receptor modelling analysis in six cities across India (CPCB, 2010).  In comparison, 66 

there are very few analyses in smaller cities/towns (e.g. Mouli et al., 2006; Kulshrestha et al., 2009; 67 
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Chakrobarty and Gupta, 2010; Masih et al., 2010; Giri et al., 2013). Some recent work focused on 68 

unique sources (Chakrobarty et al., 2013; Deka and Hoque, 2014; Kirillova et al, 2014; Srinivas and 69 

Sarin, 2014).  70 

 71 

A majority of the PM source apportionment studies have been conducted using trace element 72 

markers (Balachandran et al., 2000; Kumar et al., 2001; Kothai et al., 2008) and in some cases, 73 

inorganic tracers have been used in conjunction with organic and elemental carbon (Gupta et al., 74 

2007; Tiwari et al., 2009; Chelani et al., 2010; Sharma et al., 2013). The use of organic molecular 75 

markers for PM source apportionment has only been reported in recent years (Chowdhury et al., 76 

2007; Fu et al., 2010; Masih et al., 2010; Giri et al., 2013; Herlekar et al., 2012; Li et al., 2014). In a 77 

comprehensive review on receptor modelling of PM in India, several gaps were highlighted 78 

including the need for detailed analyses using organic markers, focus on fine particles (PM2.5), and 79 

the need to characterize the contribution of secondary sources to ambient PM concentrations (Pant 80 

and Harrison, 2012).  81 

 82 

Delhi is one of the most polluted cities across the world and concentrations of air pollutants are 83 

often found to exceed the NAAQS. Delhi is reported to have 29 planned industrial areas and 5 84 

factory complexes with a range of industries including food and beverages, metal and alloys, leather 85 

and leather products, chemicals, paper etc. (Delhi Statistical Handbook, 2013). Delhi has two coal 86 

thermal power plants and four natural gas power plants and the sulphur content in the coal used in 87 

power plants in Delhi typically ranges between 0.35% and 0.50% (Chowdhury et al., 2007). Indian 88 

coal is typically high in ash content. Diesel is used for both road transport (cars, utility vehicles, 89 

heavy duty vehicles [HDVs]) and industry (power back-up, mobile phone towers, miscellaneous) 90 

while gasoline is mostly used for road transport. Public transport in the city runs on compressed 91 

natural gas [CNG] while private vehicles run on diesel, gasoline, CNG and liquefied petroleum gas 92 

[LPG]. A number of brick kilns are also reported to operate in areas around Delhi (Guttikunda and 93 
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Calori, 2013). A range of different cooking fuels are used in Delhi including LPG, kerosene, 94 

firewood, cow dung cake, coal, crop residues, biogas and electricity with nearly 90% of households 95 

using LPG (Delhi Statistical Handbook, 2013). Estimated source contributions from the different 96 

sectors are described in Sahu et al. (2011a) and Guttikunda and Calori (2013).  While on one hand, 97 

Sahu et al. (2011a) reported road transport as the biggest contributor to PM2.5 emissions (30.25 98 

Gg/yr) followed by residential emissions (18.65 Gg/yr), dust (18.35 Gg/yr) and industry (16.29 99 

Gg/yr); Guttikunda and Calori (2013) identified transport, power plants and domestic emissions as 100 

the three biggest contributors. Several studies have been undertaken for source apportionment of 101 

suspended particulate matter (SPM), PM10 and PM2.5 using receptor modelling in Delhi and a 102 

majority of those have used methods such as principal component analysis (PCA), PCA-MLR 103 

(multiple linear regression), diagnostic ratio, enrichment factor etc. However, several recent studies 104 

have used positive matrix factorization (PMF) and chemical mass balance (CMB) models for source 105 

apportionment. A large percentage of the PM has been attributed to vehicular emissions, road dust, 106 

coal combustion and domestic emissions in several studies (Balachandran et al., 2000; Khillare et 107 

al., 2004; Chowdhury et al., 2007; Sharma et al., 2007; Chelani et al., 2010; Tiwari et al., 2013). 108 

Goyal et al. (2010) have reported diesel vehicles to contribute nearly 28% of the total PM in Delhi. 109 

Other sources identified for PM emissions in Delhi include industrial emissions, open refuse 110 

burning and construction (Khillare et al., 2004; Mö nkönnen et al., 2004; CPCB, 2010; Khillare and 111 

Sarkar, 2012; Guttikunda and Calori, 2013). Most receptor modelling studies, however, have 112 

focused on characterization of elemental, and in some case ionic species and PAHs, and there is a 113 

lack of studies with detailed characterization of molecular marker species in PM2.5.   114 

 115 

The objective of the current study was to conduct detailed chemical characterization of ambient 116 

PM2.5 and to assess source contributions to PM2.5 including primary and secondary sources.  117 

 118 

 119 
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 120 

2. MATERIALS AND METHODOLOGY  121 

 2.1  Sampling Location  122 

Mathura Road is one of the major arterial roads in Delhi with an average traffic flow of 170,000 123 

vehicles per day and a modal split shown in Figure 1. Other sources of PM include residential 124 

burning and an industrial hub about three kilometres from the sampling site (Okhla Industrial Area). 125 

Trucks are not allowed between 07:30 to 11:00 and 17:00 to 21:30 while buses, light duty vehicles 126 

(LDVs) and two and three wheelers are not restricted (Delhi Police, 2014). It is important to note 127 

that Bharat Standard IV (BS-IV, 50 ppm sulphur) standards are applicable to the vehicles within 128 

Delhi; vehicles from outside Delhi are often BS-III (equivalent of Euro III, 350 ppm sulphur).  129 

 130 

The samplers were placed at a height of two meters from ground level at a distance of 50 meters 131 

from the road.  Traffic emissions are the most prominent source. Other sources include biomass 132 

combustion in the low-income housing close to the sampling site, emissions from the industrial 133 

units located at a distance of ~3 kilometres from the sampling site and a power plant.  134 

 135 

New Delhi has a sub-tropical climate with hot summers (April-June) and moderately cold winter 136 

(November to January). Typically, S-SW winds are prevalent in summer and N-NW winds are 137 

prevalent in winter (Yadav and Rajamani, 2006). During the summer sampling period (June 15-30, 138 

2014), the average temperature and relative humidity (RH) were recorded as 31.4 – 4.02°C and 67.5 139 

– 20.5% respectively while during the winter sampling period (December 15, 2013-January 15, 140 

2014), the average temperature and RH were recorded as 13.4 – 2.7°C and 80.8 – 8.1 % 141 

respectively. During the sampling period in winter, fog/haze was reported on most days with calm 142 

wind conditions. Average rainfall in the months of June and December was recorded as 151 and 6.8 143 

mm respectively.  144 

 145 
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 146 

2.2  Sampling  147 

Collocated Minivol samplers (AirMetrics, Springfield, OR) equipped with PM2.5 impactors were 148 

used to collect two twelve hour PM2.5 samples per day (filter change at 12:00 and 00:00 ; n=28 in 149 

summer, n= 15 in winter) on 47 mm quartz fibre (Tissuquartz 2500QAT-UP, Pall Life Sciences 150 

(7202) (Ann Arbor, MI)) and PTFE teflon membrane (Telfo@ PTFE membrane with PMP 151 

(polymethypropylene) support ring, 2µm pore size, P all Life Science (R2PJ047) (Ann Arbor, MI)) 152 

filters. Use of a low volume sampler with a flow rate of 5L/min was more suitable in Delhi to 153 

minimize clogging since the area records high PM concentrations. Teflon-membrane filters were 154 

equilibrated in a temperature (21-23 ”C) and RH (30-40%) controlled room before gravimetric 155 

analysis. Pre- and post-weighing of filters was performed with a microbalance (Mettler (Toledo, 156 

OH) Model XP-6) with a sensitivity of – 1µg. Quartz  fibre filters were baked at 900 ”C for four 157 

hours to remove organic artefacts. All samples were analysed at the Environmental Analysis 158 

Facility, Desert Research Institute (Reno, Nevada, USA). 159 

 160 

2.3  Chemical Analysis  161 

The PTFE filter samples were analysed for elements from Na to U at DRI using energy dispersive 162 

X-ray fluorescence (ED-XRF) (PANalytical Epsilon 5) and calibration was performed using 163 

MicroMatter thin-film standards (Watson et al., 1999) while sulphate (SO4
2-), nitrate (NO3

-), 164 

chloride (Cl-), ammonium (NH4
+), sodium (Na+) and potassium (K+) and carbohydrates (mono- and 165 

disaccharides and anhydrosaccharides) were analysed using Ion Chromatography (Thermo Dionex 166 

(Sunnyvale, CA) Model ICS 3000 for anions and carbohydrates and Model ICS 2100 for organic 167 

acids) (Chow and Watson, 1999). The samples were also analysed for straight chain alkanes, 168 

polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes (details in SI) using Thermal 169 

Desorption-Gas Chromatography-Mass Spectrometry (Agilent (Santa Clara, CA) Model 170 

6890/5975C TD-GC-MS) with an HP-5MS capillary column in SCAN mode (Ho and Yu, 2004; 171 



ACCEPTED MANUSCRIPT

8 
 

Chow et al., 2007a). Internal standards used in the analysis include nC16D34 and nC24D50 for alkanes 172 

and phenanthrene-d10 and chrysene-d12 for PAHs. Experimental details of the method for hopane 173 

and sterane analysis are reported by Ho et al. (2008). The samples were also analysed for carbon 174 

fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) using the DRI Model 2001 175 

Thermal/Optical Carbon analyser (DRI (Reno, NV) Model 2001) following the IMPROVE_A 176 

thermal/optical reflectance protocol (Chow et al., 2007b). Organic carbon (OC) is defined as the 177 

sum of OC1-4 and pyrolyzed carbon (OP), and elemental carbon (EC) is defined as the sum of EC1-178 

3 minus any OP.  179 

 180 

2.4  Data Analysis  181 

Data analysis has been carried out using Microsoft Excel and SPSS (Version 21). Several species 182 

were detected in less than 20% of the samples and are not included in further analysis. 183 

Concentrations below detection limits were replaced with 0.5*detection limit.  Correlation analysis 184 

of analyte concentrations was conducted using SPSS based on Pearson Correlation and the 185 

correlation values reported in the text are for p<0.01. Reduced major axis (RMA) regression 186 

analysis has been used in most cases due to similar uncertainties of the different species.  187 

 188 

3. RESULTS 189 

3.1  Particulate Matter  190 

The average 12h concentration in summer was observed to be 58.2–35.0 µg/m 3 with a maximum 191 

PM2.5 concentration of 179.5 µg/m 3 while in winter; the average concentration was 276.9–99.9 192 

µg/m 3 with a maximum of 424.9 µg/m 3 (details in Table 1). Several studies have reported ambient 193 

PM2.5 concentrations in New Delhi, and most of them report concentrations in exceedance of the 194 

Indian PM2.5 NAAQS of 60 µg/m 3 irrespective of site type (Singh et al., 2011; Tiwari et al., 2014; 195 

Trivedi et al., 2014).  Additionally, studies in other Indian cites, including Chennai have reported 196 

higher concentrations in the winter season (Srimuruganandam and Shiva Nagendra, 2012).  A 197 
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summary of relevant studies is presented in Table S1.  Continuously monitored PM2.5 data for New 198 

Delhi are not in the public domain, but these data help to put the concentrations measured during 199 

our campaign into context.  The summer mean in our study was slightly lower than in most other 200 

studies while the winter mean was slightly higher (Table S1).  However the broad conclusion is that 201 

our site well represented PM2.5 concentrations typical of Delhi. 202 

 203 

Concentrations in winter were consistently higher compared to summer and this can be due to the 204 

differences in meteorological parameters as well as variations in source strengths. Significant 205 

differences between PM concentrations in summer and winter have been recorded previously 206 

(Guttikunda and Gurjar, 2012; Yadav et al., 2013; Tiwari et al., 2014), and higher winter 207 

concentrations are attributed to larger combustion source strength in the winter combined with calm 208 

weather conditions and a shallow boundary layer which affects pollutant dispersion adversely.  209 

 210 

If the 12-h concentrations are compared (i.e. 00:00-11:59 AM and 12:01- 23:59 PM), the 211 

concentrations are ~ 1.2 times higher for the 00:00-11:59 AM period in both seasons (Figure 2). 212 

This is expected since this period corresponds with HDV movement across the city at night, and 213 

includes the morning traffic peak. EC was found to be higher for the 00:00-11:59 AM period while 214 

the OC concentrations were higher during the 12:01- 23:59 PM. EC is typically associated with 215 

traffic emissions, and the concentrations are expected to be higher when the volume of heavy duty 216 

vehicle traffic increases. On the other hand, OC can be contributed by primary as well as secondary 217 

sources, and concentrations are likely higher during the day when combustion activities (e.g. 218 

cooking, waste burning), as well as photochemical reactions (i.e. secondary organic aerosol 219 

formation) typically occur.  220 

 221 

3.1.1  Carbon  222 
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In both summer and winter, the high-temperature OC3 (at 480”C) and OP fractions in helium (He) 223 

atmosphere had the highest concentrations among the OC fractions while low-temperature EC 224 

(EC1, in 2% O2/98% He atmosphere) had the highest concentration among the EC fractions. EC3 225 

(at 840”C) was detected in less than 20% of samples in both seasons. This is in line with the 226 

previous studies since EC3 is not associated with gasoline or diesel vehicle emissions. A summary 227 

is presented in Table 1. Typically, EC2 (at 740”C) and OC1 (at 140”C) are associated with diesel 228 

vehicles while EC1, OC2 (at 280”C) and OC3 are dominant in gasoline vehicle emissions (Watson 229 

et al., 1994).  230 

 231 

OC and EC were found to be reasonably closely correlated both in summer and winter indicating 232 

some common sources such as road traffic and biomass burning. Both OC and EC were also 233 

correlated well with PM2.5 mass in summer although no correlation was observed in winter. Both 234 

OC and EC were correlated well with the carbon fractions. If the concentration of OC is expressed 235 

as function of concentration of EC using RMA regression, the OC/EC gradient is significant for 236 

both seasons (1.19 for summer and 2.15 for winter) (Figure 3). The intercept is greater than 4 µg 237 

C/m3 in both cases indicating contributions from other sources of OC unassociated with EC.  238 

  239 

EC is emitted directly into the atmosphere and can be used to estimate relative amounts of primary 240 

OC (POC) and secondary OC (SOC). Higher OC/EC ratios are expected in the conditions where 241 

SOC is dominant and the EC-tracer method involves the use of EC as a tracer for POC, allowing 242 

SOC to be calculated (Turpin and Huntzicker, 1995; Castro et al., 1999; Pio et al., 2011). Minimum 243 

ratios of OC/EC are taken as representative of primary OC (although they may be an over-estimate) 244 

(Pio et al., 2011) and OC above that ratio is taken to be SOC.  The method as outlined by Castro et 245 

al. (1999) was used and estimates of SOC were calculated (Figure 4).  246 

 247 

                        Eq (1) 248 
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 249 

The minimum ratios were estimated as 0.93 for summer and 1.63 for winter, and were used to 250 

calculate the contribution from primary and secondary OC for both seasons.  The average 251 

contribution of POC was estimated to be 41% in summer and 72.3% in winter while the SOC was 252 

estimated to contribute 66.7% in summer, and 33.1% in winter.  253 

 254 

3.1.2  Ions  255 

PM2.5 SO4
2- and NH4

+ were found to be the most abundant ions in summer with average 256 

contributions of 17.1% and 8.5% to PM2.5 mass. Higher abundance of SO4
2- in summer and NO3

- in 257 

winter is consistent with previous observations in the region (Satsangi et al., 2013). In winter, NH4
+ 258 

was the most abundant ion followed by NO3
- contributing 12.4% and 11.8% to PM2.5 mass. A 259 

summary of the data is presented in Table 1. NO3
- and SO4

2- were found to be correlated in summer  260 

as well as in winter and high correlation was also observed between SO4
2- and NH4

+ in summer and 261 

winter indicating common sources. SO4
2- and NO3

- were also moderately correlated with PM2.5 262 

mass in summer but no correlation was observed in winter. Cl- was not found to be correlated with 263 

any of the other ions in summer while in winter, it was correlated with NH4
+.  Higher 264 

concentrations were observed for all ions in winter but Na+ was present in broadly similar 265 

concentrations in both seasons with a winter/summer ratio of less than 2. On the other hand, Cl-, 266 

NO3
- and NH4

+ showed the highest winter/summer ratios. It is worth noting that particulate nitrate 267 

when present as NH4NO3 is semi-volatile (Allen et al., 1989), and at higher temperatures NO3
- is 268 

volatilized from the particle phase. Seasonal variations in concentrations of ions have also been 269 

reported by Sudheer et al. (2014), and Tiwari et al. (2013) reported higher chloride concentrations 270 

in Delhi during winter.   271 

 272 
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Cl- and NO3
- (or their precursors HCl and NOx) have been reported to be emitted during wood 273 

combustion and K+ is widely used as a marker for biomass combustion (Kleeman et al., 1999; 274 

Simoneit et al., 2004; Watson et al., 2008).  In India, Patil et al. (2013) reported a high abundance of 275 

Cl- and K+ in wood combustion, open burning and coal combustion while NH4
+, NO3

-   and Cl- are 276 

reported to be abundant in industrial emissions.  The high winter concentration of Cl- could be due 277 

to the increased burning (wood, coal, waste) in the winter season, but like ammonium nitrate, 278 

ammonium chloride is semi-volatile (Pio and Harrison, 1987a,b) causing loss to the vapour phase 279 

during conditions of higher temperature and lower relative humidity in summer.  280 

 281 

Ion equivalency was estimated using Cl-, SO4
2-, NO3

- (anions) and NH4
+ (cation) for both seasons to 282 

understand the neutralization of the ions in the atmosphere (Figure 5) and the anions were found to 283 

be more or less neutralized by NH4
+ in both seasons.  284 

 285 

3.1.3  Elements  286 
 287 

S, Si, and Al were found to be the most abundant elements in summer and winter (Table 1). 288 

Concentrations of several elements including Cl, Pb, Fe and Zn were found to be more than five 289 

times higher in winter compared to summer. Elements typically associated with soil/mineral dust 290 

showed the lowest winter/summer ratios (e.g. Si- 0.95; Ca- 0.80) while several other species 291 

showed a 1.5 to 4 times increase in concentrations in winter (e.g.- Cr- 1.41; Mn- 2.69; S- 3.14; Zn- 292 

3.27; Cu- 4.74).  293 

 294 
Correlation analysis was used to identify associations among different elements. Zn was found to be 295 

moderately correlated with Pb and Br in summer, while a strong correlation was observed in winter 296 

for Pb. Previous studies have also reported correlation between Zn and Pb and Tiwari et al. (2013) 297 

used these as markers for traffic source and Chen et al. (2011) reported association of Fe, Zn, Pb 298 
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and Br with diesel vehicles. Pb and K+ have also been used as markers for biomass burning (Cheng 299 

et al., 2013) but no correlation was observed between these two species in Delhi.  300 

 301 

Al, Si, Ca, Ti, Mn and Fe have been used as markers for crustal dust/soil (Cass, 1998; Chow et al., 302 

2004; Viana et al., 2008; Pant and Harrison, 2012; Tiwari et al., 2013). In summer, Si was strongly 303 

correlated with Al, Fe, Ca, Ti, Sr and moderately correlated with Mn and K and weakly correlated 304 

with Ni. In winter, Si was strongly correlated with Fe, Ca, Ti but Al was not found to be correlated 305 

with the other soil-associated elements but with Cl, Br and moderately correlated with Cu, Zn, and 306 

K. This is probably due to anthropogenic sources of Al, particularly from metallurgical industries, 307 

coal burning and traffic.  308 

 309 

In addition to its correlation with Zn, Pb was correlated with As, K and moderately correlated with 310 

S and Na. In summer, Pb was moderately correlated with S, Br, Zn, Cu and V. As was also 311 

correlated with Zn in winter though these elements were not found to be correlated in summer. As 312 

and Pb are also reported to be emitted from waste burning (Watson et al., 2008). V and Ni are 313 

associated with industrial emissions as well as oil combustion (Viana et al., 2008). Pb, Fe, Zn and K 314 

have also been associated with industrial emissions (Sahu et al., 2011b; Moreno et al., 2013; Patil et 315 

al., 2013; Farao et al., 2014). K and Br have also been reported from wood smoke (Kleeman et al., 316 

1999; Fine et al., 2001) while Zn has been associated with incineration (Harrison et al., 1997; 317 

Moreno et al., 2013) and industrial burning (Duvall et al., 2012). Pb and Mg are also reported to be 318 

emitted from kerosene combustion (Patil et al., 2013). While the correlations in the summer season 319 

are largely indicative of traffic and industrial sources, an additional source, most likely, combustion 320 

(including biomass, coal and waste) is affecting elemental concentrations in the winter season.  Zn 321 

and Cl can both be emitted from coal combustion, and waste incineration (Perrino et al., 2011). In 322 
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winter, brick kilns are also reported to operate in areas surrounding Delhi, and can contribute to PM 323 

concentrations observed in the city (Guttikunda and Calori, 2013).  324 

 325 

Elements such as Cu, Ba, Sb and Sn have been associated with brake wear (Pant and Harrison, 326 

2013) but in Delhi, these were not found to be correlated with each other in summer. Species 327 

associated with brake wear such as Cu and Ba typically exhibit a coarse mode peak at 3.2-5.6 µm 328 

(Gietl et al., 2010). However, in Delhi, these peaks were not observed (unpublished data). This is 329 

important for future studies, as this would imply that elements such as Cu and Ba cannot readily be 330 

used as markers for non-exhaust emissions in India, and further research is required to characterize 331 

appropriate markers for non-exhaust emissions.  332 

 333 

3.1.4  Hopanes and steranes  334 

Total hopane concentration was observed to be 1.97–2.47 ng/m3 in summer and 26.3–7.93ng/m3 in 335 

winter. C31��R-hopane was the most abundant species in both seasons (Table 1, SI). Hopanes were 336 

found to be strongly correlated to alkanes and PAHs in winter although no correlation was observed 337 

with OC and EC. In summer, hopanes were strongly correlated with EC and PAHs and moderately 338 

correlated with OC and alkanes, indicating a traffic source. While hopanes are typically used as 339 

markers for traffic exhaust emissions (Lin et al., 2010; Pant and Harrison, 2013), several hopane 340 

species are also found to be abundant in coal burning emissions (Oros and Simoneit; 2000; Zhang et 341 

al., 2008). The ratio between S/S+R homohopane isomers was identified as 0.05 for lignite and 0.08 342 

for brown coal (Oros and Simoneit, 2000). In Delhi, the values for this ratio were calculated as 0.11 343 

for summer and 0.05 for winter, indicating the potential contribution from coal/lignite burning as an 344 

additional hopane source. Lignite is used for electricity generation in thermal power plants in India, 345 

and coal can also be used for cooking and/or heating, particularly in poorer areas and slums.  346 

 347 
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In the case of steranes, ��� 20R-Cholestane was the abundant sterane in summer while ��� 20S 348 

24R-Ethylcholestane was the most abundant species in winter. Total sterane concentrations in 349 

summer and winter were 0.44–1.04 and 3.95–1.49 ng/m 3 respectively. ��� 20S 24S-350 

Methylcholestane showed a very high winter/summer ratio (15.2) while ��� 20R-Cholestane and 351 

��� 20R 24R-Ethylcholestane showed winter/summer ratios less than 2. Steranes were strongly 352 

correlated with hopanes and EC in summer and in winter, the correlation was moderate both in the 353 

case of hopanes and steranes at p<0.05.  354 

 355 

3.1.5  Alkanes  356 

Alkanes were the most abundant class among the organic species and the 12-h average alkane 357 

concentration was observed to be 48.1–38.9 ng/m3 in summer and 382–137ng/m3 in winter. C20-31 358 

homologues were the most abundant while C39 and C40 were not detected in either season. Fu et 359 

al. (2010) also did not detect C36-40 homologues in winter and C39-40 in summer in Chennai 360 

(India). The dominant homologues were C26, C27 and C25 in summer and C29, C22 and C31 in 361 

winter. Dominance of C29 and C31 homologues in winter indicates contribution from vegetative 362 

emissions, possibly through burning of biomass. The winter/summer ratios were highest for the 363 

lower homologues (C18-C23) and C34-35, probably reflecting greater partitioning into the 364 

condensed phase in the cooler months.    365 

 366 

Wood and biomass combustion is quite common in Delhi during the winter period when they are 367 

used not only as a cooking fuel but also for heating (Fu et al., 2010; Yadav et al., 2013). In addition, 368 

tyres, old furniture and waste materials are often burnt in the open. Long chain alkanes (e.g. C36) 369 

are also reported to be emitted from open waste burning (Fu et al., 2010; Alves et al., 2012).  370 

Alkane emissions (n<25) from the vehicles can be attributed to unburnt engine oil in the case of 371 

gasoline vehicles and fuel as well as lubricating oil in case of diesel vehicles,  and older vehicles are 372 

often high emitters of n-alkanes (Rogge et al., 1993).  373 
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 374 

Alkanes were found to be correlated well with OC, and hopanes and moderately correlated with 375 

PAHs and EC) in summer. In winter, however, no correlation was observed with OC and EC 376 

although strong correlation was observed with hopanes as well as PAHs ().  377 

 378 

Carbon Preference Index (CPI), the ratio of odd to even numbered homologues, can be used to 379 

estimate the relative contribution of anthropogenic and biogenic sources. Due to the odd carbon 380 

number preference in case of vegetative material, higher ratio values are associated with a biogenic 381 

contribution. In this case, the index value was 1.09 for summer and 1.22 for winter indicating a 382 

significant contribution from anthropogenic sources in both seasons.   383 

 384 

3.1.6  PAHs  385 

PAHs are typically emitted as a by-product of combustion (including road traffic, solid fuel 386 

combustion, coal combustion, industries and agricultural burning) and are found both in gas- and 387 

particulate-phases (Smith and Harrison, 1996; Cass, 1998; Chow et al., 2004). The total particulate 388 

(pPAH) concentration was observed to be 7.73–5.54 ng/m3 in summer and 119–33.8 ng/m3 in 389 

winter. Several species including picene (Pic), dibenzo(ae)pyrene (DaeP), coronene (Cor) were 390 

detected only in winter samples. Acenapthylene (Acy) was the most abundant species in summer 391 

followed by acenapthene (Ace), while in winter chrysene (Chr) was the most abundant species 392 

followed by benzo(a)pyrene (BaP). PAHs were strongly correlated with OC, EC and hopanes in 393 

summer and moderately correlated with alkanes suggesting a traffic source.  394 

 395 

HDVs typically emit low molecular weight PAHs including anthracene (Ant), methyl- and 396 

dimethyl-phenanthrenes and fluoren-9-one (Rogge et al., 1993; Sjorgen et al., 1996; Miguel et al., 397 



ACCEPTED MANUSCRIPT

17 
 

1998). Species such as benzo(b)naphtho(1,2-d)thiophene (BN1NT), fluorene (Flu), phenanthrene 398 

(Phe) have been used as markers for diesel vehicle emissions while methylphenanthrenes have been 399 

associated with evaporative emissions from fuel (Harrison et al., 1996; Jang et al., 2013). PAHs 400 

such as benzo(ghi)perylene (BghiPe), indeno(1,2,3-cd)pyrene (IcdP) and Cor have previously been 401 

used as markers for gasoline traffic emissions (Cass, 1998; Phuleria et al., 2007; Pant and Harrison, 402 

2013). Flu, Acy, Ant, Phe, Pyr, benzo(e)pyrene (BeP), BaP, retene (Ret) are typically used as 403 

markers for wood combustion (Cass, 1998; Fine et al., 2001; Simoneit, 2002; Jang et al., 2013) 404 

while Ant, Phe, benzo(a)anthracene (BaA) and Chr are used as markers for coal combustion 405 

(Harrison et al., 1996). Several species such as Ant, cyclopenta(cd)pyrene (CcdP) and BN1NT have 406 

been attributed to various sources in different studies. For example, Larsen and Baker (2003) 407 

reported the use of CcdP as a tracer for gasoline emissions while Jang et al. (2013) used it as a 408 

marker for coal combustion. Previous studies from India have associated pyrene with domestic fuel 409 

emissions (kerosene, dung etc.) and coal combustion, BaP with wood combustion and BghiPe and 410 

IcdP with traffic emissions (Kulkarni and Venkataraman, 2000; Sharma et al., 2007) while 411 

benz(a)anthracene-7,12-dione (BaAQ) has been associated with residential natural gas emissions 412 

(Cass, 1998).  413 

 414 

If the summer and winter concentrations are compared, species such as Phe (11.6) and BaA (54.7) 415 

associated with coal and biomass combustion show very high winter/summer ratios while others 416 

associated with traffic such as BghiPe (6.86) and 2-Methyl phenanthrene (2MPhe) (2.50) have 417 

comparatively lower winter/summer ratios. This indicates additional sources in the proximity of the 418 

sampling site during the winter season which is consistent with emission inventory analyses. High 419 

winter/summer ratios have been reported previously by Sharma et al. (2007) for Delhi. In addition 420 

to source types, the different temperature regimes across seasons can also influence the partitioning 421 

of the species in the gas- and particle- phases for PAHs (Smith and Harrison, 1996).  422 
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 423 

One of the qualitative approaches for assessment of PAH source is diagnostic ratio (DR) analysis 424 

where ratios of different PAHs are used for identification of contributing sources. The ratio of 425 

IcdP/IcdP+BghiPe is used as an indicator for diesel/gasoline or coal emissions (Ravindra et al., 426 

2008). The ratio was observed to be 0.38 in summer and 0.46 in winter indicating a contribution 427 

from vehicular emissions. The ratio of BaA/BaA+Chr can also be used to distinguish between 428 

diesel/gasoline/wood combustion and in the present case, the ratio was observed to be 0.18 for 429 

summer and 0.39 for winter which corresponds with diesel emissions (Kavouras et al., 2001). 430 

HDVs are reported to emit higher concentrations of lighter PAHs such as Pyr, BaA and Chr 431 

compared to heavier PAHs such as BghiPe and coronene (Miguel et al., 1998). The site gets a high 432 

volume of interstate HDV traffic, and often the trucks are run on high sulphur fuel.  433 

 434 

3.1.7  Sugars 435 

In ambient air, saccharides are typically associated with biological material (e.g. soil organic 436 

matter) and arabitol and mannitol have been proposed as markers for fungal spores (Simoneit et al., 437 

2004; Buaer et al., 2008). Glycerol was the only saccharide species detected in both summer and 438 

winter with a winter/summer ratio of 26.5. Most of the other saccharides were detected in less than 439 

20% of the samples and are not discussed in detail (Table 1).  440 

 441 

Anhydrosaccharides such as levoglucosan and mannosan are typically associated with 442 

wood/biomass combustion (Simoneit et al., 2004; Alves et al., 2012). Both levoglucosan and 443 

mannosan were only detected in the winter season and had a strong correlation. Levoglucosan was 444 

also strongly correlated with OC  and Cl-. Correlation with K+ was comparatively weaker, and not 445 

significant at p<0.01. Fu et al. (2010) reported a levoglucosan/mannosan ratio of 16.4 which is 446 

comparable to the ratio observed in the current study (16.07). Cow dung burning has also been 447 
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identified as a source of levoglucosan in India, but K is typically not released from cow dung 448 

combustion (Fu et al., 2010). A recent study focused on water soluble organic carbon (WSOC) has 449 

also highlighted the importance of biomass combustion as a source of OC in Delhi (Kirillova et al., 450 

2014).  451 

 452 

3.1.8  Diacids  453 

Several organic acids including oxalic acid, lactic acid and glutaric acid were found to be present in 454 

both seasons. While oxalic acid was found to be the abundant species in both seasons, formic acid 455 

had the highest winter/summer ratio of 3.14. Biogenic sources have been reported to contribute to 456 

malic acid precursors, and the absence of the compound in this sample set is consistent with the 457 

absence or low concentrations of other biogenic material-related molecular markers.  458 

3.2  Enrichment Factors   459 

In order to further understand the sources of the elements (crustal vs. anthropogenic), enrichment 460 

factors (EFs) were calculated based on continental crust concentrations using Al as the reference 461 

element (Taylor and McLennan, 1995) (selected species are presented in Figure 6).  462 

 463 

 464 

 465 

EF values of 10 or higher are considered to indicate significant anthropogenic contribution. High 466 

enrichment factors were observed for elements such as Ti, Cu, Zn, Sb, Cd, Sn, As and Pb both in 467 

summer and winter, with higher enrichment observed in winter. Ti, typically associated with crustal 468 

matter, was also found to be enriched in both seasons although contrary to other elements, the 469 

enrichment was higher in summer. Similarly, EFs for Sb and Sn were higher for the summer 470 
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compared to winter. EF for As was found to be several fold higher in winter (~36 times) compared 471 

to the summer. Cr showed similar enrichment in summer and winter seasons. Cd is primarily 472 

emitted from industries (smelting), waste incineration and recycling of electronic waste but is also 473 

associated with traffic emissions (Amato et al., 2011b).  As is used as a marker for coal combustion, 474 

and Pb and Zn are also emitted from waste incineration. On the other hand, elements such as Si, Fe, 475 

Ca, Ba, Mn, Mg, Sr and Se were present in concentrations similar to the upper continental crust 476 

(Taylor and McLennan, 1995).  477 

 478 

3.3  Mass Closure  479 

In order to understand the relative contribution of the different species, mass closure was attempted 480 

for PM2.5 mass with seven key components including woodsmoke, traffic, other OM, secondary 481 

aerosol (ammonium chloride, ammonium nitrate and ammonium sulphate) and mineral dust/soil 482 

(Table 2). A little over 100% of the measured mass was accounted for in both cases (115.4% in 483 

summer and 114.2% in winter) and the results are described in Figure 7.  484 

 485 

Crustal material was estimated using concentrations of elements- Si, Al, Ca, Fe and Ti, based on 486 

Chan et al. (1997). Organic matter (OM) was estimated from OC using a factor of 1.2 in the case of 487 

traffic OM, and 1.5 in the case of other OM, which was considered as largely secondary.  488 

 489 

OM was found to be the highest contributor to mass in summer (33.3%) while woodsmoke was the 490 

primary contributor to PM2.5 mass in winter (23.3%) (details in Figure 6). Ammonium sulphate 491 

(20.5 %) and crustal material (14.3%) had higher contributions in summer while ammonium nitrate 492 

(12.4%) had a higher contribution in winter. A lower concentration of nitrate in summer can be 493 

explained by the volatility at higher temperatures while higher crustal matter in summer (14.3%) is 494 

attributed to desert dust as well as local dust sources which are frequently resuspended in dry and 495 
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windy conditions. Traffic was found to contribute 18.7% in summer and 16.2% in winter, while 496 

woodsmoke was found to contribute 23.3% in winter.  497 

 498 

Table 3 summarizes results from source apportionment studies conducted in New Delhi. While 499 

most studies report traffic, road dust, coal combustion and biomass as key sources of PM in New 500 

Delhi, there is a large variability in the quantitative estimation of source contributions.  Some of the 501 

variability in introduced by the differences in the computational methods. For instance, while most 502 

receptor models use the principle of mass conservation; the CMB model takes into consideration the 503 

chemical profiles of individual sources, while the mass closure approach relies on individual 504 

tracers. In addition, most of the studies conducted in Delhi have analysed inorganic species 505 

(elements and ions) and recent studies have included carbon (OC/EC). In addition, choice of 506 

sampling location can often drive differences in the results, especially when site types have 507 

significantly different characteristics. In a CMB study in New Delhi, Chowdhury et al. (2007) 508 

identified five major sources including road dust, coal combustion, diesel and gasoline exhaust and 509 

biomass combustion at an urban residential site.  These are in line with the source inferences drawn 510 

in this study, and while the quantitative contributions are a little different between the 2007 study 511 

and the current study, overall trends with a high contribution from road dust in summer, and 512 

biomass combustion in winter are similar.  It is important to remember that the site characteristics 513 

are not comparable between the two sites, and differences in local source strengths can introduce 514 

differences in the overall source contribution estimate.  The contribution of secondary aerosol was 515 

not estimated in their study.  For comparison, a study in 2012 in Mumbai found the contribution of 516 

secondary inorganic aerosol to be 23% of total PM2.5 mass while crustal material was reported to 517 

contribute 11% of PM2.5 mass, and in Chennai, the contribution of secondary aerosol was estimated 518 

as 42% of PM2.5 mass (Joseph et al., 2012). 519 

 520 
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It is important to note that some of the factors used in the current mass closure calculation are 521 

derived from the literature and may not be directly representative of the Indian situation. For 522 

example, the woodsmoke estimation factors utilized in this study are based on measurements made 523 

in Europe, and due to differences in the wood type, and the burning conditions, the ratios may not 524 

accurately represent the contribution of woodsmoke in an Indian city. Also, this can introduce 525 

uncertainty in the overall estimation. As a next step, locally developed source profiles (Patil et al., 526 

2013; Matawle et al., 2014) will be tested for a CMB model.  527 

 528 

4. CONCLUSIONS  529 

PM2.5 samples were analysed for a heavy traffic site in New Delhi, and detailed chemical 530 

characterization was conducted including analyses of metals, ions, carbon and molecular markers. 531 

PM concentrations were found to be higher than the 24-hour PM2.5 NAAQS (60 µg/m 3) on several 532 

occasions in summer and on all days in winter. Several elements including Cu, Zn, Pb, Cd and As 533 

were found to be significantly enriched and complex correlations were observed between elemental 534 

species. In the case of molecular markers, several combustion-related species were detected only in 535 

winter. Alkanes were found to be the most abundant class of organic species followed by PAHs and 536 

hopanes.  537 

 538 

Concentrations were found to be significantly higher in winter compared to summer. Pollutant 539 

concentrations can be affected both by meteorology and source strength. There is an appreciable 540 

difference in the average temperature between summer and winter seasons in Delhi, and this could 541 

be driving some of the differences between species� concentrations in the two seasons. At higher 542 

temperatures, several species can be easily volatilized and reactive species can often undergo 543 

chemical reactions in presence of sunlight (e.g. photodegradation of PAHs) (Venkataraman and 544 

Friedlander, 1994; Smith and Harrison, 1996; Alves et al., 2012). The combination of higher wind 545 
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speeds and a deeper mixed layer can lead to better dispersion of pollutants in the summer season. 546 

However, in winter, there is much less solar radiation, and the weather conditions are often �calm� 547 

in Delhi indicated by zero or very low wind speeds. Further, the inversion layer height is typically 548 

much lower in winter. A combination of such meteorological factors can thus contribute to a build-549 

up of pollutants, leading to higher concentrations. Another important aspect is the role of additional 550 

sources in the winter season. During the winter season, biomass/waste combustion is often used as a 551 

source of heating across the city, a lot of which occurs under uncontrolled conditions in the open 552 

areas. An increase in species associated with waste combustion (Pb, Zn, C35 and C36) indicates the 553 

potential contribution from this seasonal source at the sampling site.   However, in the absence of 554 

detailed emission inventories, it is difficult to attribute the elemental concentrations to specific 555 

sources. It is also important to characterize the source emissions in detail, in order to separate the 556 

contributions from various combustion sources. Lack of enrichment of barium in the samples 557 

indicates that the non-exhaust traffic markers typically used in Europe and USA (i.e., Cu, Ba, and 558 

Sb) might not be relevant in the Indian scenario.   559 

 560 
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 1014 

Table 1:  Concentrations of the main species measured in the summer and winter campaigns (in 1015 
µg/m 3, organic species in ng/m3). 1016 

Species  
Summer Winter 

Mean  S.D.  Min Max Mean  S.D.  Min Max 
Mass  58.2 35.0 3.30 179.5 276.9 99.9 111.9 424.9 
OC  17.6 8.38 5.17 36.4 104.4 40.6 53.3 195.5 
EC  7.77 7.06 0.60 31.4 46.3 18.9 12 78.9 
Ions   

Chloride  2.14 1.54 0.56 6.70 27.8 18.1 7.21 68.1 
Nitrate  4.37 2.14 1.04 8.79 32.8 20.1 0.21 76.7 

Sulphate 9.97 6.25 1.74 27.5 26.1 15.3 7.66 59.1 
Ammonium 4.94 2.87 0.94 12.4 34.2 17.0 13.0 64.0 

Na+ 0.41 0.38 0.01 1.56 0.64 0.30 0.20 1.18 
K+ 0.86 0.49 0.13 2.40 3.83 1.63 1.51 6.50 

Anhydrosaccharides    
Levoglucosan detected in <20% samples 6.57 3.23 2.15 12.0 

Mannosan detected in <20% samples 0.42 0.27 0.06 1.04 
Molecular Markers   

Sum of Hopanes  
(C27-C35) 1.97 2.47 0.00 9.26 26.3 7.93 15.6 40.4 

Sum of Steranes 
(C27-C29) 0.44 1.04 0.00 4.81 3.95 1.49 1.63 6.79 

Sum of Alkanes 
(C14-C40) 48.1 38.9 1.52 145 382 137 168 617 
Sum of PAHs (C12-

C24) 7.73 5.54 0.82 25.8 119 33.8 84.1 188 
Sum of Saccharides 

(C3-C12) 0.05 0.01 0.03 0.08 1.63 1.77 0.54 7.21 
Sum of Diacids (C1-

C5) 1.43 0.49 0.65 2.41 3.76 3.12 1.00 9.55 
Elements   

Al 0.81 0.72 0.08 3.03 1.73 0.87 0.63 3.74 
Si 1.88 1.87 0.02 7.80 1.79 0.67 0.77 2.94 
S 3.02 2.20 0.01 9.67 9.49 7.27 2.42 26.9 

Ca 0.78 0.75 0.004 3.27 1.11 0.46 0.33 1.85 
Cu 0.02 0.01 0.001 0.05 0.07 0.07 0.01 0.28 
Zn 0.20 0.19 0.01 0.75 0.64 0.38 0.23 1.47 
Mn 0.03 0.03 0.0003 0.11 0.08 0.07 0.01 0.29 
Fe 0.71 0.63 0.02 2.52 1.15 0.33 0.53 1.57 
Ba 0.03 0.03 0.004 0.13 0.01 0.01 0.01 0.04 
Pb 0.08 0.06 0.003 0.27 0.60 0.65 0.08 2.51 
Ni 0.004 0.003 0.0003 0.01 0.01 0.01 0.0003 0.02 
Ti  0.07 0.06 0.003 0.25 0.07 0.04 0.005 0.13 
V 0.01 0.01 0.0004 0.02 0.01 0.01 0.001 0.03 
Cr 0.01 0.01 0.0003 0.05 0.01 0.02 0.00 0.06 
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Table 2:  Estimation factors used for mass closure.  1017 

Source Component Estimation factor Reference 

Woodsmoke 

Mass  11.2*levoglucosan  Harrison et al. (2012) 

In summer, since levoglucosan was not detected, this calculation was 
not included for mass closure. 

OCw  7.35*levoglucosan  Puxbaum et al. (2007) 

ECw 0.2*woodsmoke PM2.5  Harrison et al. (2012) 

Traffic 

ECt Total EC- ECw In summer, since levoglucosan was not detected, EC mass was not 
corrected for woodsmoke EC.   

OCt  0.35* ECt  Pio et al. 2011 

PM2.5 1.35* ECt  

OM (PM2.5) Traffic PM2.5*1.2  Chow et al. (2002) 

Other OM  
Other OC = Total OC � (OC t+ OCw) 

Other OM= Other OC*1.5 Puxbaum et al. (2007), Pio et al. (2011) 

Secondary Ions 

(NH4)2SO4 1.38*Sulphate  Harrison et al. (2003)  

Based on molar ratios  NH4NO3  1.29*Nitrate  

NH4Cl  1.51*Chloride 

Dust 
Crustal Mass  1.16(1.90Al+ 2.15Si+ 1.41Ca+1.67Ti+ 

2.09Fe)  
Chan et al. (1997)  

Total PM SUM (Woodsmoke, Traffic OM, Other OM, (NH4)2SO4, NH4NO3, NH4Cl, Crustal mass) 
ECt- EC associated with traffic; ECw- EC associated with woodsmoke, OCw- OC associated with woodsmoke, OCt- OC associated with traffic  1018 
 1019 
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Table 3:  Summary of receptor modelling studies for New Delhi. 1020 

Reference Location  Method Results (%) 
Current study  PM2.5  

Mathura Road   
Pragmatic Mass Closure 
(elements, ions, OC, EC, 
molecular markers) 

Woodsmoke- 23.3 (w)  
Traffic- 18.7 (s)/ 16.2 (w)  
Dust- 14.3 (s)/ 3.9 (w)  
Sulphate- 20.5 (s)/ 10.6 (w)  
Nitrate- 8.4 (s)/ 12.4 (w)  
Chloride- 4.8 (s)/ 12.3 (w)  
Other OM- 33.3 (s)/ 21.4 (w)  

Sharma et al. (2013)  
 
 

PM10  

CSIR- NPL Campus 
  

PMF (elements, ions, OC 
and EC) 

Soil (20.7) 
Vehicles (17.0) 
Secondary-inorganic (21.7) 
Fossil fuel-coal/heavy oil (17.4) 
Industry (4.5)  
Sea salt (4.4)  

Li et al. (2014)  TSP  (winter)  
CSIR- NPL Campus  

Mass Balance (elements, 
ions, OC, EC, molecular 
markers) 

Crustal material (48) 
Organic matter (23)  
Sulphate (4.9) 
Nitrate (4.5)  
Ammonium (2.7) 
Other (7.2)  

Tiwari et al. (2013)  PM10  

IITM Campus (Central 
Delhi)  
 

PMF/UNMIX (elements, 
ions)  

Road traffic  
Crustal dust  
SIA  
Chloride   

Khillare and Sarkar 
(2012)  

PM10  
Residential sites  

PCA-MLR (elements)  Crustal (49-65) 
Vehicular (27-35)  
Industrial (4-21)  

Singh et al. (2011)  PM10 and PM2.5  
GGSIP University 
Campus  

Qualitative- diagnostic 
ratios, enrichment factor 
(elements, PAHs)  

Vehicles, road dust, industries  

CPCB (2010)  PM2.5  

Various sites 
 

CMB (elements, ions, OC 
and EC) 

Vehicles- 7-40 (s)/  
Industry- 10-19 (s)  
Construction- 16-41 (s) 
Resuspended dust- 17-56 (s)  

Tiwari et al. (2009)  PM2.5  

Two sites in New Delhi  
 Biomass and fossil fuel burning 

(80); natural and soil derived 
particles (~6) [refers to % variance 
explained]  

Srivastava and Jain 
(2008) 

SPM (fine and coarse)  
Residential  

CMB (elements)  Diesel vehicles, industries, paved 
road dust, gasoline vehicles, solid 
waste, and soil and crustal dust [in 
descending order] 

Chowdhury et al. 
(2007)  

 CMB (elements, ions, 
OC, EC, molecular 
markers)  

Diesel- 22 (s)/ 10 (w)  
Gasoline- 2 (s)/ 9 (w)  
Road Dust- 42 (s)/ 11 (w)  
Coal- 2 (s)/ 14 (w) 
Biomass- 7 (s)/ 20 (w)   
Sulphate- 10 (s)/ 8 (w)  
Nitrate- 3 (s)/ 7 (w)  
Ammonium- 3 (s)/ 5(w)  
Other Mass- 11 (s)/ 17 (w)  

Khillare et al. (2004)  SPM  
Residential/industrial/co
mmercial sites in Delhi 

PCA (elements)  Vehicular and industrial emissions 
(60) 
Crustal (22)  
[refers to % variance explained] 

1021 
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Figure 1: Modal split at the sampling location in Delhi  1025 
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Figure 2: Average 12-h concentrations in summer and winter seasons 1046 
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Figure 3: Relationship between OC and EC in summer and winter 1049 
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Figure 4: Estimation of minimum OC/EC ratio using the EC tracer method  1053 
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Figure 5: RMA regression between ammonium and sum of anions (i.e. nitrate, sulphate, chloride)  1057 
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Figure 6: Enrichment factors for select elements 1062 
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Figure 7: Mass closure for PM2.5 at CRRI 1066 
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Figure 1: Modal split at the sampling location in Delhi  
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Figure 2: Average 12-h concentrations in summer and winter seasons 
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Figure 3: Relationship between OC and EC in summer and winter 
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Figure 4: Estimation of minimum OC/EC ratio using the EC tracer method  
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Figure 5: RMA regression between ammonium and sum of anions (i.e. nitrate, sulphate, chloride)  
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Figure 6: Enrichment factors for select elements 
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Fi
gure 7: Mass closure for PM2.5 at CRRI 
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HIGHLIGHTS 
 

·  Chemical composition measured in summer and winter campaigns 
·  Analyses of many elements, ions, OC/EC and organic molecular markers 
·  Winter campaign mass concentrations far exceed those in the summer 

campaign 
·  Major components (ammonium salts, woodsmoke, traffic, crustal) are 

quantified 
·  Good mass closure achieved 
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Table S1:  Previous studies reporting concentrations of PM2.5 at sites in India 

Reference City Site Type Measurement Technique Year Season PM2.5 concentrations (µg/m3) 
 
 
Trivedi et al., (2014) 

 
 

Delhi 

 
 

Residential 

 
Beta Attenuation Monitor (BAM), 

real-time data 

 
 

2010-2011 

Summer 
 
 

Winter 

86.4 ± 26.8 (a) 
40.6 - 144.7 (r) 

 
221.1 ± 94.7 (a) 
80.7 – 470.1 (r) 

Tiwari et al. (2014) Delhi Residential Beta Attenuation Monitor (BAM),  
real-time data 

2010-2011 Summer 
 

Winter 

91.0 
 

169.4 
Saraswat et al. (2014) Delhi Various locations TSI DustTrak 8250 aerosol 

monitor, real-time data 
2010 Spring/Summer 96 – 232 (r) 

Bisht et al. (2013) Delhi Ten different 
locations across 

Delhi 

Beta Attenuation Monitor (BAM),  
real-time data 

2010 Post monsoon 112.1 ± 56.0 

 
 
Singh et al. (2011) 

 
 

Delhi 

 
 

Roadside 

 
APM 550 Fine Particle Samper, 

offline data 

 
 

2007-2008 

Winter 
 
 

Summer 

61.8 ± 11.7 (a) 
30.92 – 73.5 (r) 

 
39.4 ± 13.9 (a) 
16.3 – 63.2 (r) 

Srimuruganandam and 
Shiva Nagendra (2012) 

Chennai Urban roadside Envirotech APM 550 Fine Particle 
Samper, offline data 

2008-2009 Winter 
 

Summer 

74.1 ± 14.4 (a) 
 

67.4 ± 20.2 (a) 
Joseph et al. (2012) Mumbai Control 

 
Kerbside 

 
Industrial 

 
Residential 

AirMetrics Minivol Sampler 2007-2008 Average of summer, 
winter and monsoon 

69 ± 20 (a) 
 

84 ± 31 (a) 
 

95 ± 36 (a) 
 

89 ± 33 (a) 
a:  mean ± standard deviation;  r:  range 

 
 


