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Abstract15�

�16�

As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal 17�
group, are susceptible to extremes of temperature and low water availability. In few places is 18�
this more apparent than in the Arctic and Antarctic, where low temperatures predominate and 19�
water is unusable during winter and unavailable for parts of summer. Polar terrestrial 20�
invertebrates express a suite of physiological, biochemical and genomic features in response to 21�
these stressors. However, the situation is not as simple as responding to each stressor in 22�
isolation, as they are often faced in combination. We consider how polar terrestrial 23�
invertebrates manage this scenario in light of their physiology and ecology. Climate change is 24�
also leading to warmer summers in parts of the polar regions, concomitantly increasing the 25�
potential for drought. The interaction between high temperature and low water availability, and 26�
the invertebrates’ response to them, are therefore also explored. 27�
 28�
Keywords: Cross tolerance; rapid cold hardening; anhydrobiosis; cryoprotective dehydration; sub-29�
lethal characteristics; climate warming 30�
 31�

1. Introduction 32�

1.1. The trials of being an invertebrate 33�

Invertebrates, more so than any other animal group, are at the whim of their environment. Unlike 34�
birds and mammals, which are able to regulate their internal body temperature, invertebrates are 35�
poikilothermic ectotherms and their body temperature is highly influenced by, and varies markedly 36�
with, the environmental temperature (Speight et al. 2008). While cold-blooded vertebrates, such as 37�
fish, reptiles and amphibians, are also poikilothermic ectotherms, they are not generally as diminutive 38�



2�
�

as invertebrates. Even the smallest vertebrate recorded, the Papua New Guinea frog Paedophryne 39�
amanuensis (7.7 mm in length), dwarfs the vast majority of invertebrates (Rittmeyer et al. 2012). 40�
Cold-blooded vertebrates accordingly have a smaller surface area to volume ratio than invertebrates 41�
and therefore have more time to respond to changes in temperature. This means that invertebrates are 42�
more susceptible to injuries following either rapid cooling (Czajka 1990) or warming (Chidawanyika 43�
and Terblanche 2011). A small body size also means invertebrates are generally more vulnerable to 44�
desiccation than their larger-bodied vertebrate relatives.  45�

1.2. Polar climate     46�

In few places are invertebrates more directly impacted by their environment than in the Arctic tundra 47�
(Strathdee and Bale 1998) or the fellfields of the Antarctic (Block et al. 2009; Hogg et al. 2006). Air 48�
temperatures regularly fall below -10oC during the winter in the maritime Antarctic and, in regions 49�
such as the continental Antarctic and High Arctic, frequently drop below -40oC (Block et al. 2009; 50�
Convey 2013; Sformo et al. 2010; Strathdee and Bale 1998). Invertebrates buffer these temperatures 51�
behaviourally to some extent (Hayward et al., 2003) by moving beneath the snow, within the soil 52�
profile, or into cryptogams like mosses, lichen and algae (Bengtson et al. 1974; Burn 1986; Convey 53�
1996; Convey and Smith 1997; Spaull 1973). However, even within these microhabitats, they can still 54�
be subjected to sub-zero temperatures on a daily basis throughout the winter (Davey et al. 1990; 55�
Block et al. 2009; Strathdee and Bale 1998). Microhabitat temperatures during the summer are also 56�
very low and rarely rise above 5oC in the maritime and continental Antarctic, and slightly higher in 57�
the High Arctic (Block et al. 2009; Coulson et al. 1993; Strathdee and Bale 1998). The availability of 58�
liquid water also presents an important challenge. During the winter, water is locked up as snow and 59�
ice where it is inaccessible (Block et al. 2009) while, in summer, streams, lakes and rock pools, which 60�
form from melted ice and snow in spring, evaporate, resulting in drought (Convey et al. 2003). Again, 61�
behavioural responses can help reduce desiccation stress (Hayward et al., 2000, 2001). However, 62�
because access to moisture is so restricted in both space and time at polar latitudes, physiological 63�
responses play a dominant role in determining species survival. 64�

1.3. Overview 65�

In response to low temperatures and water stress, polar terrestrial invertebrates express a suite of 66�
responses and strategies. However, these two stressors are often faced concurrently and the level of 67�
crossover between the strategies employed in response is considerable. A further interaction that may 68�
be faced currently, and will likely occur more frequently in the future, is that between high 69�
temperature and low water availability. Climate change is resulting in higher temperatures in summer 70�
and throughout the year in some polar regions (Arctic Council, 2005; Convey et al. 2009; Turner et71�
al. 2009), increasing the potential for summer drought. The manner in which the resident invertebrate 72�
fauna, and potential colonisers, are able to tolerate and respond to this combination of stressors is 73�
therefore also pertinent.  74�

It is important to note that the adaptations shown by polar terrestrial invertebrates are not necessarily 75�
uniquely different from non-polar species, simply that their adaptations are, in some cases, more 76�
developed because of the more extreme conditions they experience (Convey 1996). Studies on non-77�
polar invertebrates are therefore also highly informative, and throughout this review these will be used 78�
to complement and expand on the concepts introduced for their polar counterparts. Further, there are 79�
certain stress tolerance strategies that are potentially relevant to polar systems that have only been 80�
described in non-polar invertebrates to date.  81�
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2. Responses to low temperature  82�

Invertebrates that live in the polar regions can be at constant risk of their body fluids freezing and any 83�
associated injury (Mazur 1977). This risk is generally ameliorated by adoption one of two strategies - 84�
freeze-tolerance (= tolerance of internal ice formation) or freeze-avoidance (= avoidance of internal 85�
ice formation) (Bale 2002; Cannon and Block 1988; Convey 1996; Storey and Storey 1988; 86�
Zachariassen 1985). 87�

2.1. Freeze-tolerance 88�

Various polar invertebrates have been shown to use this strategy, including Diptera (e.g. Belgica 89�
antarctica [Benoit et al. 2009a], Eretmoptera murphyi [Worland 2010] and Heleomyza borealis 90�
[Worland et al. 2000]), Lepidoptera (e.g. Gynaephora groenlandica [Strathdee and Bale 1998]), 91�
Coleoptera (e.g. Hydromedion sparsutum and Perimylops antarcticus [Worland and Block 1999]) and 92�
nematoda (e.g. Eudorylaimus coniceps [Convey and Worland 2000]). While the continental Antarctic 93�
nematode, Panagrolaimus davidi (Wharton and Ferns 1995), has been shown to survive intracellular 94�
ice formation, perhaps indicative of a more general ability within polar nematodes, this form of injury 95�
is thought to be lethal to most other invertebrates (Block 1990). The vast majority of freeze-tolerant 96�
invertebrates therefore restrict ice formation to extracellular compartments. Key to this process is the 97�
accumulation of ice nucleating agents (INAs), such as specialised proteins (Block et al. 1990), food 98�
particles, crystalloid compounds (Lee et al. 1996) and microorganisms (Klok and Chown 1997; 99�
Worland and Block 1999), which act as heterogeneous surfaces for the promotion of water molecule 100�
aggregation (Bale 2002). By accumulating these agents in the haemolymph and gut, as well as in 101�
other tissues (Izumi et al. 2009), ice formation (which occurs at the supercooling point or SCP) is 102�
encouraged to take place extracellularly at high sub-zero temperatures (-3 to -10oC) (Duman and 103�
Horwath 1983; Worland et al. 1992, 1993; Worland and Block 1999). At these temperatures, ice 104�
crystal growth is relatively slow, allowing water to move from the cytoplasm of cells and join the 105�
newly formed ice crystals. The cytoplasm therefore becomes more concentrated and the cell less 106�
susceptible to lysis via intracellular freezing (Worland and Block 1999). It should be noted that some 107�
invertebrates require an external trigger to survive internal ice formation. In the case of the wood 108�
centipede, Lithobius forficatus, inoculative freezing occurs at approximately -1°C and is essential for 109�
subsequent survival in the freeze-tolerant state (Tursman et al. 1994). Other invertebrates that require 110�
or may require inoculative freezing include nematodes and the midge, B. antarctica (Convey and 111�
Worland 2000; Elnitsky et al. 2008; Wharton 2003a, 2003b, 2011b). 112�

However, freeze-tolerant invertebrates are still at risk from any one ice crystal in the extracellular 113�
space becoming too large and puncturing cells from the outside. They therefore also produce 114�
antifreeze proteins (AFPs) and/or antifreeze glycolipids (AFGLs). AFPs and AFGLs arrest the 115�
expansion of large crystals and instead promote the growth of many small crystals in a process called 116�
ice recrystallisation inhibition (Duman et al. 2004). AFGLs may also stabilise membranes and prevent 117�
the propagation of ice into the cytosol, and slow the growth of extracellular ice, reducing the rate of 118�
water flux and solutes across the cellular membrane (Walters et al. 2011). Even with the help of AFPs 119�
and AFGLs, ice formation is still able to distort proteins, membranes and other structures. Freeze-120�
tolerant invertebrates thus accumulate polyhydric alcohols and sugars, such as glycerol, sorbitol and 121�
trehalose. Intracellularly, these cryoprotectants stabilise proteins and membranes, and prevent 122�
freezing, while extracellularly their function is to limit the osmotic imbalance that occurs during 123�
freezing, by maintaining water content above the “critical minimum cell volume” (Calderon et al. 124�
2009; Holmstrup et al. 1999; Montiel 1998). Polyols and sugars also provide other benefits and aid 125�
metabolism. 126�
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2.2. Freeze-avoidance 127�

In contrast to freeze-tolerant species, invertebrates which are freeze-avoiding are unable to withstand 128�
any internal ice formation (Bale 1996; Cannon and Block 1988; Storey and Storey 1988; Zachariassen 129�
1985). While seemingly disadvantageous in an environment which experiences temperatures close to 130�
an invertebrate’s SCP, these invertebrates avoid the dangers of both extracellular ice formation and 131�
subsequent cellular dehydration that occur in freeze-tolerant species. Freeze-avoiding invertebrates 132�
range from Alaska (e.g. the red flat bark beetle, Cucujus clavipes puniceus [Sformo et al. 2010]) and 133�
the High Arctic (e.g. the mite, Diapterobates notatus [Coulson et al. 1995]) to the Antarctic continent 134�
(e.g. Cryptopygus antarcticus [Block and Worland 2001; Cannon and Block 1988]), and outnumber 135�
freeze-tolerant species in almost all cases. Freeze avoiding invertebrates can be separated into several 136�
different categories to better define them ecologically and physiologically. These include, for 137�
instance, true freeze-avoiding (lower lethal temperature [LLT] = SCP), chill tolerant (show minimal 138�
pre-freeze mortality), chill susceptible (die well above their SCPs) and opportunistic survival (unable 139�
to survive below their developmental threshold) (see Bale 1993). The SCP can also vary greatly 140�
between and within species, and such classifications can thus become misleading. For example, the 141�
summer-acclimatised polar collembolan, Megaphorura arctica, is classified as true freeze-avoiding or 142�
chill tolerant, while the temperate aphid Myzus persicae is classified as chill susceptible. The reader 143�
may therefore infer that summer acclimatised M. arctica is more cold tolerant. However, M. arctica in 144�
summer has a high SCP of only -6oC (Worland 1996), which is higher than the LLT of M. persicae 145�
(Clough et al. 1990). 146�

Mechanistically, freeze-avoidance revolves around a process termed supercooling - the prevention of 147�
internal ice formation below the environmental freezing point. Enhanced supercooling is principally 148�
achieved via three processes, and thus involves fewer core stress response mechanisms than freeze 149�
tolerance (Bale 2002). The first is the removal of INAs and has been shown to lower the SCP by up to 150�
20oC in some invertebrates (Zachariassen et al. 1980; Burns et al. 2010). INAs are often removed by 151�
moulting or ecdysis, the removal of the outer layer of the body and gut contents, which is a necessary 152�
stage in the somatic development of arthropods (Hawes et al. 2007). Recent studies have shown that 153�
moulting is highly dependent on temperature. For example, both the proportion of C. antarcticus 154�
moulting at any one time (Worland and Convey, 2008) and the expression of moult-associated genes 155�
(Burns et al. 2010) increase as temperatures fall, suggesting that the timing of moulting is an 156�
important adaptive developmental trait. Starvation (Cannon and Block 1988; Sømme and Block 1982) 157�
and food selection (Bokhorst et al. 2007; Worland and Lukešová 2000) may also be adaptive 158�
processes which aid INA removal. While these processes help to rid INAs from the gut, or on the 159�
cuticle, those in the rest of the body remain largely unaffected. To arrest ice nucleation here, as well 160�
as any remaining INAs in the gut, freeze-avoiding invertebrates initiate a second element of the 161�
supercooling process - the accumulation of AFPs. Through a non-colligative mechanism (thermal 162�
hysteresis) of adsorption onto, and consequently inhibition of, embryonic ice crystals or INAs (Clark 163�
and Worland 2008; Davies and Sykes 1997), AFPs reduce an organism’s SCP relative to its melting 164�
point (MP) (Bale 2002). Thermal hysteresis has been recorded in a number of polar terrestrial 165�
invertebrates, including Antarctic and Arctic mites (A. antarcticus [Block et al. 2009] and Phauloppia 166�
sp. [Sjursen and Sømme 2000]), Antarctic Collembola (e.g. C. antarcticus [Block et al. 2009] and 167�
Gressittacantha terranova [Hawes et al. 2011]), Alaskan beetles (e.g. Cucujus clavipes [Sformo et al. 168�
2010]) and Alaskan lacewings (e.g. Hemerobius simulans [Duman et al. 2004]). AFPs provide further 169�
protection by stabilising the supercooled state and preventing inoculative freezing (Bale 1993), and 170�
preserving membranes during phase transitions (Duman et al. 2004). In a similar manner to freeze-171�
tolerant species, freeze-avoiding invertebrates also utilise polyols, sugars and amino acids for 172�
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cryoprotection and the relative enhancement of metabolism at lower temperatures (Block et al. 2009; 173�
Clark and Worland 2008; Muise and Storey 2001). Polyols and sugars also help to lower the SCP in a 174�
non-colligative manner like AFPs (Lee et al. 1996).   175�

2.3. Commonalities between freeze-tolerance and freeze-avoidance 176�

2.3.1. Responses to chilling injury 177�

Freeze-tolerance and freeze-avoidance are mechanistically distinct from each other. However, there is 178�
also commonality between the two strategies, as organisms deploying them are both susceptible to, 179�
and therefore must also guard against, chilling injury. Chilling is defined as cooling sufficient to 180�
induce damaging effects or even death in the absence of freezing (Hayward et al. 2014). Extreme 181�
chilling injury can result from rapid cooling (cold shock or acute stress), as well as long-term 182�
exposure to low temperatures (chronic stress) and/or experience of temperature extremes (Czajka 183�
1990). In truth, chilling and cold stress are relative terms, and the temperatures at which they occur 184�
will depend on multiple factors, ranging from the species’ evolutionary history and geographic origin, 185�
to an individual’s physiological status and recent thermal history. Chilling-induced damage includes 186�
the loss of integrity, fluidity, and thus function, of the membrane (Izumi et al. 2009), the deterioration 187�
of intracellular organelles (Strange and Dark 1962), the disruption of enzymes and electrochemical 188�
ion potentials (Denlinger and Lee 2010), and the destruction of whole cells through apoptosis (Yi et189�
al. 2007). 190�

The plasma membranes which surround cells of all life forms allow for the selective transfer of 191�
solutes across the cell, intra- and inter-cellular communication, the application of energy harnessed 192�
through transmembrane ion gradients, and function as a barrier to pathogens and toxins (Hazel 1995). 193�
It is therefore necessary for plants, microbes and animals, including invertebrates, to maintain 194�
membrane fluidity and function as temperature falls. Homeoviscous adaptation is a process which 195�
permits the maintenance of membrane fluidity, in particular through alterations in the composition of 196�
membrane phospholipid fatty acid chains (Hazel 1995). Desaturase enzymes are known to play a 197�
fundamental role in membrane responses to low temperature, by raising the number of unsaturated 198�
fatty acids (UFAs) relative to saturated fatty acids (SFAs) (Murray et al. 2007; Hayward et al. 2007). 199�
These UFAs introduce more double bonds (or kinks) into the phospholipid matrix and so reduce 200�
phospholipid aggregation. The fluidity of the membrane and the transition phase (Tm = fluid to gel) 201�
are also influenced by the position of double bonds and the length of fatty acid chains (Baenzinger et202�
al. 1992), and some invertebrates, including M. arctica, respond by augmenting these attributes 203�
(Bahrndorff et al. 2007). 204�

HSPs also play an important role in response to chilling injury, as they are involved in refolding and 205�
stabilising denatured proteins, recovering microfilament dynamics and regulating apoptosis at low 206�
temperatures (Benoit and Lopez-Martinez 2012; Clark and Worland 2008; Tammariello et al. 1999; 207�
Yi et al. 2007). HSPs have been shown to be constitutively expressed in larva of the Antarctic midge, 208�
B. antarctica, which experience chronic cold, while adults, found in more variable environments, only 209�
expressed HSPs as a direct response to stress (Rinehart et al. 2006). The latter scenario represents the 210�
‘classic’ HSP response, as seen in non-polar species like the potato beetle, Leptinotarsa decemlineata 211�
(Yocum 2001) and the onion fly, Delia antiqua (Chen et al. 2006), amongst others. Direct evidence of 212�
their contribution to stress tolerance has also been shown in the firebug, Pyrrhocoris apterus (Kostal 213�
and Tollarova-Borowanska 2009), and the flesh fly, S. crassipalpis (Rinehart et al. 2007). In both 214�
species, injection with hsp70 double-stranded RNA (RNAi) was used to suppress hsp70 mRNA and 215�
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protein levels, which resulted in reduced survival (Rinehart et al. 2007), or restricted ability to repair 216�
chilling injury and mate successfully (Kostal and Tollarova-Borowanska 2009). 217�

Further mechanisms suggested to play roles in chilling injury include mitochondrial degradation, 218�
which reduces metabolism and energy use (Levin et al. 2003), the accumulation of polyols and 219�
sugars, which act as cryoprotectants (Montiel et al. 1998), and the build-up of amino acids, which 220�
may serve as a reserve for HSPs or stabilise supercooling (Kostal et al. 2011). A modification of the 221�
schematic representation of freeze-avoidance and freeze-tolerance strategies of Bale (2002), which 222�
now includes the molecular and physiological responses to chilling (common to both strategies), is 223�
presented in Fig. 1. 224�

2.3.2. Vitrification 225�

Under crystalline conditions, cells eventually degrade and lose their viability when exposed to chronic 226�
chilling or cold shock (Katkov 2006). Freezing can also irreversibly damage cells. Vitrification (or the 227�
attainment of a glass-like state) in contrast does not lead to such injuries. Vitrified fluids behave more 228�
like a solid and yet also show little change in their molecular state. Under these conditions, an 229�
organism’s fluids are stable and immune from molecular degradation. It is speculated that vitrification 230�
could further aid freeze-avoidance and freeze-tolerance strategies of polar terrestrial invertebrates. 231�
Clarke et al. (2013) concluded that vitrification occurs in a number of unicellular organisms, 232�
including bacteria, and photosynthetic and heterotrophic eukaryotes, when cooled slowly in the 233�
presence of extracellular ice. Cellular dehydration resulting from the movement of water out of the 234�
cell to join newly formed ice crystals and the subsequent increase in fluid viscosity inside the cell, 235�
under slow rates of cooling, allows these unicellular organisms to vitrify prior to intracellular 236�
freezing. 237�

Clarke et al. (2013) hypothesised that vitrification would also occur in the cells of freeze-tolerant 238�
multicellular organisms, where ice formation in the extracellular space, rather than in the 239�
environment, would encourage intracellular dehydration and the consequential formation of a glass 240�
state. As an example, Clarke et al. (2013) postulated that the Alaskan tenebrionid beetle, Upis 241�
ceramboides, would vitrify. Upis ceramboides freezes at high sub-zero temperatures and is able to 242�
survive in this frozen state to -60°C (Miller 1978). It is likely that the dehydration induced by 243�
extracellular ice formation would eventually also lead to glass formation, and would only be limited 244�
by the rate at which the beetle is cooled (Miller 1978).  245�

In the presence of ice in the environment, several polar freeze-avoiding organisms are known to 246�
desiccate in a process called cryoprotective dehydration, e.g. the beetle Cucujus clavipes (Bennet et247�
al. 2005) and M. arctica (Worland et al. 1998). These organisms also accumulate a number of 248�
polyhydric alcohols and sugars, such as trehalose, which increase the viscosity of cellular fluid. It has 249�
thus previously been speculated that they may also be capable of vitrification. A recent study (Sformo 250�
et al. 2010) indicates that this is the case, having shown the Arctic red flat bark beetle, C. clavipes 251�
puniceus, to vitrify at a very low temperature (-58°C). As a consequence, 43% of the beetles were able 252�
to survive between -70 and -73°C, and a further 7% were able to survive -100°C (Sformo et al. 2010). 253�
Although the ecological relevance of vitrification in this beetle is questionable, with temperatures in 254�
Alaska rarely falling to -58°C, confirmation of the presence of this trait is significant. 255�

2.3.3. Acclimation and cooling rates 256�

The variation in temperature between summer and winter in the Antarctic and Arctic is great, and 257�
temperatures annually can vary by tens of degrees in buffered microhabitats, and by as much as 100oC 258�
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on exposed soil and rock surfaces (Convey 1996). There are some invertebrates, such as the nunatak 259�
inhabiting springtail, Cryptopygus sverdrupi (Sømme 1986), which manage this scenario by 260�
remaining in a cold hardy state all year round. Larvae of B. antarctica also constitutively express Hs 261�
(Rinehart et al. 2006).  However, the vast majority of polar invertebrates are not in a constant state of 262�
readiness for the winter months and instead acclimatise (Deere et al. 2006), preparing themselves 263�
physiologically and improving their low temperature tolerance in the lead-up to winter. Examples of 264�
acclimation have been shown in the chironomid E. murphyi (Worland 2010), the beetle, Hydromedion 265�
sparsutum (Bale et al. 2000), the aphid, Myzus polaris (Hazell et al. 2010), the mite H. belgicae 266�
(Hawes et al. 2007), the collembolan, C. antarcticus (Worland et al. 2007), the nematode, Plectus267�
murrayi (Adhikari et al. 2010), and a number of other polar invertebrates (and also temperate 268�
invertebrates, which similarly experience a distinct summer to winter transition). The change in 269�
temperature from summer to winter is gradual, allowing evolution to optimise the rate at which 270�
invertebrates acclimatise to this slow rate of cooling. It is well known that faster cooling rates reduce 271�
the survival of freeze-tolerant species, raise the SCP of freeze-avoiding species, and reduce the 272�
capacity of these animals to respond to chilling injury (Sinclair et al. 2003). 273�

Acclimation to low temperatures can also occur on a shorter timescale of minutes to hours via rapid 274�
cold hardening (RCH) (Lee et al. 2006a; Yi et al. 2007). RCH was first described in the flesh fly, S.275�
crassipalpis (Lee et al. 1987), and has since been observed in a wide range of other organisms, 276�
including polar species such as B. antarctica (Lee et al. 2006a), E. murphyi (Everatt et al. 2012), H.277�
belgicae (Hawes et al. 2007; Worland and Convey 2001), C. antarcticus and the mite, Alaskozetes 278�
antarcticus (Worland and Convey 2001). The response generally provides only moderate survivorship 279�
benefits, however, with survival typically being extended for, at most, 10 hours at the discriminating 280�
temperature (DT = temperature at which there is between 10 and 20% survival upon exposure for 2 281�
hours), or lowering the DT by just 2-3oC (Bale 2002). However, there are exceptions. Following 282�
RCH, the LLT of E. murphyi larvae decreased by up to 6.5oC, and survival of larvae of the same 283�
species was maintained above 80% for at least 22 h at the DT (Everatt et al. 2012).  284�

RCH also impacts on sub-lethal characteristics, including at temperatures above 0°C. In the fruit fly, 285�
Drosophila melanogaster, courting and reproduction were 35 and 55% greater at 16oC, respectively, 286�
following RCH (Shreve et al. 2004). Further sub-lethal improvements have included the maintenance 287�
of the proboscis extension reflex and grooming behaviour in flesh flies (Kelty et al. 1996), the 288�
preservation of learning and spatial conditioning (Kim et al. 2005), and the sustenance of flight 289�
(Larsen and Lee 1994). Similar improvements are likely to be found in polar invertebrates though, as 290�
yet, they have not been explored. 291�

The survival and behavioural improvements of RCH are likely to be highly advantageous and may 292�
allow invertebrates to adjust quickly to, and track, environmental temperatures on both a temporal 293�
(daily) and spatial (microhabitat) scale (Kelty and Lee 1999; Powell and Bale 2004, 2005, 2006; 294�
Shreve et al. 2004; Worland and Convey 2001). Analogous to acclimation over weeks and months, a 295�
gradual rate of cooling that is more in line with nature tends to elicit greater protection (Chidawanyika 296�
and Terblanche 2011; Kelty and Lee 1999, 2001; McDonald et al. 1997; Wang and Kang 2003). As 297�
suggested by Wang and Kang (2003) and others, this enhanced protection is presumably because of 298�
the greater time these individuals spend at protection-inducing temperatures. 299�

Although the ecological role of RCH is well established, relatively little is known about the 300�
physiological mechanisms underlying the response. Recent studies suggest that RCH is driven by a 301�
calcium signalling cascade involving calmodulin, which allows cells to sense changes in temperature 302�
and trigger downstream physiological responses (Teets et al. 2008). Protection against cold-induced 303�
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apoptosis is likely to be one such physiological response. RCH is able to impair apoptosis by down-304�
regulating promoters of the response and up-regulating apoptosis inhibitors. In D. melanogaster and 305�
S. crassipalpis, apoptosis was reduced by >34% following RCH (Yi et al. 2007; Yi and Lee 2011). 306�
RCH also involves a homeoviscous adaptation response. With the use of solid state NMR 307�
spectroscopy, Lee et al. (2006b) were able to demonstrate enhanced membrane unsaturation and a 308�
subsequent rise in membrane fluidity in B. antarctica following RCH. Metabolic adjustments, 309�
including the accumulation of polyols and sugars during RCH and the minimisation of metabolic 310�
perturbations during cold shock recovery, may likewise play a key role (Michaud and Denlinger 2007; 311�
Overgaard et al. 2007; Teets et al. 2012). However, the universality of homeoviscous adaptation and 312�
metabolic adjustment is in question, as some invertebrates show an RCH response in the absence of 313�
either the elevation of polyols and sugars or alterations in membrane composition (MacMillan et al. 314�
2009). Because apoptosis inhibition and homeoviscous adaptation, as well as metabolic adjustments 315�
to a large degree, concern responses to chilling injury, this suggests that chilling injury, rather than 316�
freezing damage, is the primary target of RCH in the chill-susceptible and freeze-tolerant 317�
invertebrates studied. The same cannot be said for some freeze-avoiding invertebrates, however, such 318�
as C. antarcticus, in which the SCP is lowered during RCH (Worland and Convey 2001). Worland 319�
and Convey (2001) also confirmed that the body water content and solute concentration of freeze-320�
avoiding invertebrates were unaffected by RCH, and hypothesised that RCH in these organisms could 321�
be understood by the inhibition of INAs, though this remains unconfirmed. 322�

3. Responses to low water availability 323�

Water is a requirement for all life on Earth (Hodkinson et al. 1999). Without it, living organisms are 324�
exposed to desiccation and its associated injuries, which include protein denaturation and unwanted 325�
macromolecular interactions (Sano et al. 1999; Tang and Pikal 2005), crystalline to gel membrane 326�
phase transitions (Hazel 1995), oxidative damage (Lopez-Martinez et al. 2008), mechanical stress and 327�
the rapid influx of water following rehydration (Bayley and Holmstrup 1999). The possibility of such 328�
injuries is particularly high in the Antarctic and Arctic, where water is unavailable for extended 329�
periods of the year (Block et al. 2009). Invertebrates protect against this threat physiologically 330�
through the adoption of one of two strategies, desiccation resistance or desiccation tolerance (Fig. 2, 331�
Danks 2000). 332�

3.1. Desiccation resistance 333�

Desiccation resistance is defined as the capacity to prevent water loss from the body. The extent to 334�
which this occurs varies greatly amongst polar invertebrates (and invertebrates in general), leading to 335�
the recognition of three groups - hygric, which have little or no control over their water loss, 336�
transitional and mesic, which are increasingly able to regulate the loss of their body water (Eisenbeis 337�
1983). The mesic status of some invertebrates is partly due to their lowered cuticular permeability. 338�
Reduced permeability is largely achieved through the modulation of the wax layer, which coats the 339�
cuticle and consists of bipolar molecules with hydrophobic and hydrophilic ends (Speight et al. 2008). 340�
In the majority of invertebrates, the hydrophobic ends face outward and limit the rate of water loss. 341�
However, mesic species go a little further and tend to either accumulate or increase the length of 342�
hydrocarbons or hydrophobic molecules, resulting in tighter packing and a greater reduction of water 343�
loss (Benoit et al. 2007a). For instance, the mesic mite, A. antarcticus, experienced a lower rate of 344�
water loss than the mites, Hydrogamasellus antarcticus and Rhagidia gerlachei, which had two to 345�
three times less hydrocarbons. A. antarcticus was also shown to have a high critical transition 346�
temperature of 25oC, below which hydrocarbons remained stable and cells remained relatively 347�
watertight (Benoit et al. 2007a).  348�
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The accumulation of polyols and sugars, and subsequent absorption of water, has also proven a 349�
beneficial strategy in a number of Antarctic species, such as C. antarcticus (Elnitsky et al. 2008b) and 350�
B. antarctica (Benoit et al. 2009a), which are able to depress the rate of water loss through the 351�
accumulation of osmolytes. Perhaps the best example of this is given by the non-polar collembolan, 352�
Folsomia candida. Having lost almost half of its osmotically active water under 98.2% RH, this 353�
collembolan was able to recover nearly all of the loss within 5-7 d, via the accumulation and synthesis 354�
of myo-inositol, glucose and trehalose (Bayley and Holmstrup 1999; Timmermans et al. 2009). There 355�
are also some species, including astigmatid mites, that are able to maintain an equilibrium with the 356�
environment at between 70 and 98% RH from the outset (Benoit et al. 2007a, 2009a). Further means 357�
of resisting desiccation are freezing (Convey 1992), membrane alterations and metabolic suppression 358�
(Michaud et al. 2008) as well as specialised respiration (Convey et al. 2003; Danks 2000; Slama 359�
1988). 360�

Further, recent studies on species of Drosophila have shown a correlation between body melanisation 361�
and desiccation resistance, which corresponds with the aridity of the flies’ local climate. Parkash et al. 362�
(2008a, b) demonstrated greater desiccation resistance in darker morphs of Drosophila melanogaster 363�
and D. immigrans that were predominantly found in drier, high altitude habitats, as compared with 364�
their lighter counterparts found at lower altitudes. Likewise, lower desiccation resistance of D.365�
melanogaster and D. ananassae during the rainy season was correlated with lower melanisation 366�
(Parkash et al. 2009, 2012). Greater desiccation resistance in strains of D. melanogaster selected for 367�
higher levels of melanisation, and the reverse in those selected for lower levels, has now provided 368�
direct evidence of the phenomenon (Ramniwas et al. 2013).  369�

3.2. Desiccation tolerance 370�

For polar invertebrates that are less desiccation resistant, an ability to tolerate water loss is crucial for 371�
survival (Danks 2000). Some invertebrates are particularly tolerant - Dendrobaena octaedra cocoons 372�
(Holmstrup and Zachariassen 1996) and larvae of B. antarctica (Hayward et al. 2007) are able to 373�
endure >75% loss of their water content, and some nematodes and tardigrades are able to survive the 374�
loss of virtually all of their osmotically active water and most of their osmotically inactive water in a 375�
process called anhydrobiosis during which metabolism ceases (Crowe and Madin 1975; Hengherr et 376�
al. 2010; Watanabe et al. 2002; Wharton 1993, 2003b, 2011; Wharton and Worland 2001). The 377�
mechanisms which these organisms utilise to confer tolerance are many and include the accumulation 378�
of polyols and sugars, the activation of HSPs and Late Embryogenesis Abundant (LEA) proteins, 379�
membrane remodelling and oxidative damage repair (Gusev et al. 2010; Watanabe 2006). 380�

3.2.1. Polyols and sugars 381�

Polyols and sugars are produced in response to desiccation in a number of polar invertebrate groups, 382�
including nematodes (e.g. Plectus murrayi [Adhikari et al. 2010]), midges (e.g. B. antarctica [Benoit 383�
et al. 2009a]), beetles (e.g. H. sparsutum [Bale et al. 2000]) and Collembola (e.g. C. antarcticus 384�
[Elnitsky et al. 2008b]). Of these, B. antarctica has been especially well studied. As a result of water 385�
loss and de novo synthesis, larvae of this species raise the level of glycerol and trehalose two to three 386�
fold (Benoit et al. 2007b). Two hypotheses have been put forward for the function of polyols and 387�
sugars during desiccation. The first is that polyols and sugars, particularly trehalose, are used for the 388�
replacement of water. Subsequently, cellular damage and deleterious protein interactions, which 389�
would otherwise occur in the absence of water, are reduced (Benoit et al. 2009a). The second 390�
hypothesises is that the low molecular weight compounds aid the production of amorphous sugar 391�
glasses (e.g. through the formation of hydrogen bonds with membrane phospholipids [Sakurai et al. 392�
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2008]). These glasses stabilise proteins and membranes by minimising physical and chemical 393�
reactions involving molecular diffusion, such as solute crystal nucleation (Bahrndorff et al. 2009; 394�
Danks 2000; Hengherr et al. 2009). It should also be noted that the mechanisms responsible for the 395�
survival of desiccation tolerance are not necessarily universal. There are some anhydrobiotic 396�
invertebrates, such as the tardigrade, Milnesium tardigradum (Hengherr et al. 2008) and rotifers 397�
(Caprioli et al. 2004; Lapinski and Tunnacliffe 2003), which do not seem to accumulate trehalose or 398�
any other carbohydrate molecules. It has been suggested, because of the presence of anhydrobiosis in 399�
many taxonomic groups, that the ability has evolved several times and, during each evolutionary 400�
event, different mechanisms have been exploited (Alpert 2006).   401�

3.2.2. HSPs and LEA proteins 402�

Protein denaturation is a common injury following desiccation. HSPs are induced in direct response to 403�
protein damage, and are well recognised as being involved in the reformation or degradation of 404�
affected proteins (Benoit and Lopez-Martinez 2012; Feder and Hofmann 1999). Thus, it is 405�
unsurprising that HSPs are up-regulated in response to desiccation in several invertebrates, including 406�
tardigrades (Hengherr et al. 2008), Collembola (Timmermans et al. 2009) and Antarctic midges 407�
(Lopez-Martinez et al. 2009). The group of proteins known as LEA proteins has also been shown to 408�
play a role in desiccation tolerance in a number of invertebrates, including polar species (Bahrndorff 409�
et al. 2009; Browne et al. 2002, 2004; Gal et al. 2004; Goyal et al. 2005; Watanabe et al. 2003). LEA 410�
proteins possess many of the same attributes as HSPs, being able to prevent protein aggregation and 411�
preserve enzymatic activity. These proteins may also be able to suppress unwanted macromolecular 412�
interactions and maintain membrane fluidity in vitro (Bahrndorff et al. 2009), reduce water loss, 413�
prevent ice crystal formation (Bokor et al. 2005) and stabilise sugar glasses (Wolkers et al. 2001). 414�
There is even evidence that LEA proteins are fragmented into smaller, but still functional, 415�
components in response to increased desiccation and are thereby better able to counteract damage 416�
(Kikiwada et al. 2006).  417�

3.2.3. Membrane remodelling 418�

As with low temperature, the loss of water from cells and membranes leads to the transition of the 419�
plasma membrane from a crystalline to a gel phase (Hazel 1995). Some invertebrates ameliorate this 420�
stress via homeoviscous adaptation. In B. antarctica, enzymes such as �9 FAD and fatty acyl CoA �9 421�
desaturases are used to increase unsaturation, and thus also fluidity, of the membrane (Lopez-422�
Martinez et al. 2009). However, membrane remodelling in this midge may also involve the 423�
replacement of unsaturated membrane fatty acids with saturated forms. Although seemingly 424�
counterintuitive, this substitution minimises the impact of singlet oxygen, a product of desiccation, 425�
which reacts directly with polyunsaturated fatty acid side chains and subsequently causes lipid 426�
peroxidation (Lopez-Martinez et al. 2009).  427�

3.2.4. Oxidative damage repair 428�

Desiccation of invertebrates results in the production of reactive oxygen species (ROS), such as 429�
hydrogen peroxide and superoxide radicals. ROS cause numerous injuries, including the disruption of 430�
membrane fluidity, apoptosis of mitochondria, denaturation of proteins and fragmentation of DNA 431�
(Lopez-Martinez et al. 2008). Antioxidants, primarily superoxide dismutase (SOD), catalase and 432�
glutathione peroxidase, are accumulated in organisms in response to these injuries and inhibit ROS. 433�
Such accumulation has been observed in a number of organisms, including plants (Jenks and Wood 434�
2007), nematodes (Reardon et al. 2010) and the Antarctic midge, B. antarctica (Lopez-Martinez et al. 435�
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2008). However, antioxidants are unable to completely arrest the effects of oxidation in some species. 436�
There is therefore a need for other defences, such as apoptosis of damaged cells or a DNA repair 437�
system. The latter is used in the midge, Polypedilum vanderplanki, and is achieved through the up-438�
regulation of Rad23 and Rad51, which are genes associated with the repair of DNA breaks (Gusev et 439�
al. 2010). 440�

3.2.5. Additional mechanisms 441�

There are several other processes known to be involved in desiccation tolerance which may be utilised 442�
by polar invertebrates. These include cytoskeletal reorganization, such as the synthesis of actin, 443�
tropomyosin and myosin for the maintenance of the cytoskeleton (Lopez-Martinez et al. 2009; Li et 444�
al. 2009), the accumulation of aquaporins for the efficient transport of water and solutes from and into 445�
the body (Li et al. 2009; Philip et al. 2008, 2010), the removal and redistribution of osmolytes during 446�
rehydration (Bayley and Holmstrup 1999; Hayward et al. 2007), the regulation of autophagy (Teets et447�
al. 2012), the down-regulation of metabolism and ATP production (Teets et al. 2012), and the 448�
possession of a high initial water content (Hayward et al. 2007). 449�

4. Links between low water availability and low temperature tolerance 450�

The responses of invertebrates to low temperature and low water availability are not exclusive, and 451�
there is considerable linkage between the two. This linkage is especially apparent in environments 452�
which frequently experience both stresses sequentially or in tandem. The fellfields of the Antarctic 453�
and tundra of the Arctic are prime examples of such environments (Block et al. 2009; Strathdee and 454�
Bale 1998). 455�

4.1. Cross-tolerance following stress acclimation 456�

There is increasing awareness that a sub-lethal exposure of an invertebrate to low relative humidity 457�
(RH) not only improves tolerance to low RH, but also to low temperature. This phenomenon can now 458�
be understood through the interrelationship that exists between low temperature and low water 459�
availability. Both stressors result in similar injuries and physiological challenges, including reduction 460�
of the fluidity, and thus stability and function, of plasma membranes (Bayley et al. 2001), impairment 461�
of protein folding (Ring and Danks 1994) and, in the case of freezing, increase of pH and osmolality 462�
of cellular fluid (Ring and Danks 1994). It therefore follows that the physiological mechanisms 463�
induced by an invertebrate in response to these stresses are also similar, or at least complementary. 464�
Several studies have suggested that the mechanisms used in response to low temperature evolved 465�
from those used in response to low water availability either as aquatic organisms colonised the land, 466�
or as they moved from generally less stressful tropical and temperate latitudes towards the poles 467�
(Block 1996; Ring and Danks 1994, 1998). 468�

4.1.1. Polar examples469�

Perhaps the best-described example of cross-tolerance in a polar terrestrial invertebrate is that in the 470�
flightless Antarctic midge, B. antarctica. Following desiccation at 0-98.2% RH, larvae of B.471�
antarctica show significantly higher survival at -10 and -15oC, as compared with fully hydrated larvae 472�
(Benoit et al. 2009a; Hayward et al. 2007). There is now also evidence that the closely related 473�
Antarctic midge, E. murphyi, and the Antarctic nematode, Plectus murrayi, are capable of cross-474�
tolerance, with significantly improved survival of E. murphyi larvae at -18oC, and enhanced survival 475�
of the nematode at -10oC, following desiccation (Adhikari et al. 2010; Everatt et al. in press). Similar 476�
examples of cross-tolerance are found at lower latitudes in the goldenrod gall fly, Eurosta solidaginis, 477�



12�
�

which exhibits reduced water loss after low temperature acclimation, and in the collembolan, F.478�
candida, which shows enhanced low temperature tolerance after acclimation at 98.2% RH (Holmstrup 479�
et al. 2002; Levis et al. 2012; Williams and Lee 2008). 480�

4.1.2. Mechanisms of cross-tolerance 481�

In B. antarctica, several physiological mechanisms that are common in response to both low 482�
temperature and desiccation have been proposed to underlie cross-tolerance. Following a preliminary 483�
analysis of desiccation-responsive solutes using Fourier Transform Infrared (FT-IR) spectroscopy and 484�
discrimination function analysis, Hayward et al. (2007) found the polysaccharide region of the spectra 485�
to change considerably. They went on to suggest that polyols and sugars, which serve as cryo- and 486�
osmo-protectants, play an important role in conferring cross-tolerance. Benoit et al. (2007b, 2009a) 487�
further demonstrated the level of glycerol and trehalose to increase in larvae of B. antarctica 488�
following exposure to 75 and 98% RH, and later showed, by injecting exogenous trehalose into 489�
larvae, that an enhanced concentration of trehalose leads to greater low temperature tolerance. Shared 490�
metabolites produced in response to desiccation and low temperature were also shown in larvae of B.491�
antarctica by Michaud et al. (2008). These studies show that the accumulation of polyols and sugars 492�
at the organismal level are important in desiccation and cross-tolerance. However, tolerance in B.493�
antarctica may not be as straightforward as a simple accumulation. Williams and Lee (2011) have 494�
demonstrated that glycerol and sorbitol are not only accumulated in E. solidaginis, but are also moved 495�
from extra- to intra-cellular fluids during exposure to low temperature or desiccation. This movement 496�
may be especially important in freeze-tolerant invertebrates, such as B. antarctica, in which cells lose 497�
water to the extracellular space and become susceptible to injuries associated with desiccation. 498�
Polyols and sugars may subsequently act to replace water or aid in the formation of amorphous glass 499�
inside the cell (Calderon et al. 2009). The transfer of these solutes across the cellular membrane is 500�
likely orchestrated by water- and small uncharged solute specific-channels known as aquaporins or 501�
aquaglyceroporins. These were first identified in human kidney and red blood cells, but have since 502�
been found in yeast, plants, arthropods, birds, anurans and non-human mammals (Beuron et al. 1995; 503�
Muller et al. 2006; Nielsen et al. 1993; Preston et al. 1992). Using the aquaporin inhibitor, mercuric 504�
chloride (HgCL2), Izumi et al. (2006) and Philip et al. (2008) demonstrated reduced freezing survival 505�
and therefore a direct role of aquaporins in the rice stem borer, Chilo suppressalis, and E. solidaginis, 506�
respectively. Philip and Lee (2010) further confirmed the role of aquaporins by showing that AQP3-507�
like proteins and AQP4-like proteins increase from summer to winter in E. solidaginis following low 508�
temperature initiation.  509�

Further mechanisms which have been suggested as important in the cross-tolerance of B. antarctica 510�
include heat shock proteins (HSPs) and antioxidants. Although HSPs (smHsp, Hsp70 and Hsp90) are 511�
constitutively expressed in larvae of B. antarctica, both slow and rapid desiccation are able to further 512�
up-regulate them (Lopez-Martinez et al. 2009; Teets et al. 2012). HSPs are used during stress to 513�
reform or degrade damaged proteins and other macromolecular structures. It is plausible that up-514�
regulation of these proteins following desiccation could repair proteins at low temperature and 515�
improve low temperature tolerance (or vice versa). A caveat to this hypothesis is that, in S.516�
crassipalpis, the up-regulation of HSP transcripts after desiccation did not provide any further 517�
tolerance to low temperature (Tammariello et al. 1999). However, it should be recognised that 518�
transcript up-regulation is not direct evidence of protein synthesis. Thus, it remains unclear if the 519�
utilisation of HSPs is a cross-tolerance mechanism universally utilised by invertebrates. LEA proteins 520�
are also up-regulated under desiccation in a number of invertebrates, such as nematodes, rotifers, 521�
chironomids and Collembola (Bahrndorff et al. 2009; Browne et al. 2002; Kikiwada et al. 2006; 522�
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Tunnacliffe et al. 2005). It has therefore been suggested that they may likewise play a role in cross-523�
tolerance, as has already been established for a number of plant species (Kosova et al. 2007).  524�

The loss of water under freezing and desiccation leads to the production of ROS, and Lopez-Martinez 525�
et al. (2008, 2009) have shown that antioxidants and detoxification enzymes, including superoxide 526�
dismutase, catalase, metallothionein and cytochrome P450 monoxygenase, are up-regulated in 527�
response to desiccation in larvae of B. antarctica. These same antioxidants and detoxification 528�
enzymes would likely provide similar protection against oxidative damage in larvae that are frozen. 529�

Similar physiological symptoms are also seen with respect to the membrane. Under desiccation and 530�
low temperature, phospholipid fatty acid chains of the membrane pack together, resulting in the loss 531�
of membrane fluidity and function (Hazel 1995). Most invertebrates arrest these changes by raising 532�
the level of unsaturation of phospholipid fatty acids and introducing kinks into the membrane (Hazel 533�
1995). In B. antarctica, evidence of unsaturation is shown in relation to both desiccation (Lopez-534�
Martinez et al. 2009) and low temperature (Lee et al. 2006b). It is therefore likely that the 535�
unsaturation induced in response to one stress may provide protection in response to the other stress. 536�
Further support for this hypothesis is provided by the collembolan, F. candida. Unsaturation of 537�
phospholipid fatty acids takes place under desiccation (98.2% RH) in this species but, importantly, the 538�
time spent at 98.2% RH which leads to a significant change in unsaturation (196 h) is the same as that 539�
required at 98.2% RH to give a significant change in low temperature tolerance (Bayley et al. 2001; 540�
Holmstrup et al. 2002).  541�

The sub- Antarctic flightless midge E. murphyi is freeze-tolerant and is hypothesised to use similar 542�
cross-tolerance mechanisms to B. antarctica. This is plausible, not only based on their close 543�
phylogenetic relationship (Allegrucci et al. 2006, 2012), but also because the physiological 544�
comparisons to date have been analogous. In particular, their low temperature tolerance and rapid cold 545�
hardening responses are very similar (Everatt et al. 2012; Lee et al. 2006). 546�

4.2. Cross-tolerance following anhydrobiosis 547�

Examples of improved low temperature tolerance have so far been restricted to invertebrates 548�
experiencing only partial desiccation. However, there are a number of invertebrates which are capable 549�
of surviving the loss of virtually all of their body water (Crowe and Madin 1975). These invertebrates 550�
are said to be cryptobiotic, or more specifically, anhydrobiotic (Sømme 1996), and include polar 551�
nematodes (Treonis et al. 2000; Wharton and Barclay 1993; Wharton 2003b, 2011a), and non-polar 552�
crustaceans (Crowe and Clegg 1973), rotifers (Tunnacliffe and Lapinski 2003), tardigrades (Hengherr 553�
et al. 2008), and midge larvae (Gusev et al. 2010; Sakurai et al. 2008). When in a state of 554�
anhydrobiosis, such invertebrates show a remarkable ability to survive low temperature. The 555�
tardigrade, Adorybiotus coronifer, for example, is able to survive cooling to -196oC (Ramløv and 556�
Westh 1992), while others are able to survive in liquid helium (-271°C) (Shuker 2001). Invertebrates 557�
like tardigrades can also survive extreme conditions even in their hydrated state. The Antarctic 558�
tardigrades, Echiniscus jenningsi, Macrobiotus furciger and Diphascon chilenense, show survival 559�
after 590 days at -22oC, good survival at -80oC and even some survival at -180oC. Surprisingly when 560�
anhydrobiotic, tolerance of low temperatures is actually attenuated in these species (Sømme and 561�
Meier 1995). 562�

The mechanisms which anhydrobiotic invertebrates use to survive the loss of all their osmotically 563�
active water and confer tolerance at low temperature may be similar to those previously described, 564�
though it is postulated that, because the level of desiccation is greater, the strength of these 565�
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mechanisms may be greater also. The accumulation of polyols and sugars, particularly trehalose, 566�
conform to this hypothesis in a number of anhydrobiotic invertebrates, including nematodes (Crowe 567�
and Madin 1975; Madin and Crowe 1975), midge larvae (Watanabe et al. 2002) and tardigrades 568�
(Ramløv and Westh 1992). In the tardigrade, A. coronifer, and members of the Macrobiotidae family, 569�
the accumulation during entry into anhydrobiosis is particularly pronounced, increasing the level of 570�
trehalose by up to 20-fold (Hengherr et al. 2008; Ramløv and Westh 1992). Increases in trehalose 571�
found in B. antarctica are, in contrast, less obvious (Benoit et al. 2007b). The role of polyols and 572�
sugars, as with partially-desiccated invertebrates, has been attributed to water replacement and/or 573�
vitrification (Danks 2000). The latter is now seen as being essential in some anhydrobiotic 574�
invertebrates. Using FTIR analysis and differential scanning calorimetry (DSC), Sakurai et al. (2008) 575�
show larvae of the midge P. vanderplaanki to form a glass-like state during anhydrobiosis. 576�
Significantly, larvae were unable to successfully rehydrate when artificially taken out of this state.  577�

4.3. Cross-tolerance following selection 578�

To examine whether cross-tolerance to one stress could be enhanced by selecting for improved basal 579�
tolerance to another stress (i.e. without prior acclimation), Bubliy and Loeschcke (2005) artificially 580�
selected for either cold or desiccation tolerance in the fruit fly, D. melanogaster, and subsequently 581�
exposed selected individuals to the opposing stress. They found that individuals selected for 582�
desiccation resistance had greater low temperature tolerance at 0.5oC. Sinclair et al. (2007) also found 583�
that selection for desiccation resistance in D. melanogaster resulted in a decreased chill coma 584�
recovery time, approximately 2 min less (15% reduction) than control flies. However, Sinclair et al. 585�
(2007) did not find a discernible improvement in the low temperature survival of D. melanogaster 586�
following desiccation resistance selection. Likewise, selection for low temperature tolerance did not 587�
result in an improvement in the flies’ desiccation resistance/tolerance (MacMillan et al. 2009). The 588�
lack of cross-tolerance was suggested by MacMillan et al. (2009) to indicate that changes in basal 589�
tolerance are not responsible for cross-tolerance. Yet, because there are some studies, including those 590�
mentioned (e.g. Bubliy and Loeschcke 2005), which do show cross-tolerance through selection of 591�
basal tolerance, it was also suggested that other selective pressures as part of the experimental design 592�
may act to break up linkage gene groups associated with multiple stress tolerance (MacMillan et al. 593�
2009). As outlined in this review, multiple physiological processes underpin both cold and desiccation 594�
tolerance, and artificial selection experiments are unlikely to target all the underlying genetic 595�
mechanisms. 596�

4.4. Cryoprotective dehydration 597�

Cryoprotective dehydration was first discovered by Holmstrup (1992) in cocoons of the earthworm, 598�
Dendrobaena octaedra, and has since been described in nematodes (e.g. Panagrolaimus davidi 599�
[Smith et al. 2008]), enchytraeid worms (e.g. Fridericia ratzeli [Pedersen and Holmstrup 2003]), 600�
Collembola (Elnitsky et al. 2008b; Sorensen and Holmstrup 2011; Worland et al. 1998) and even 601�
mammalian cells (Pegg 2001). This process occurs in an environment in equilibrium with the vapour 602�
pressure of ice. Under these conditions, invertebrates continue to lose water along a diffusion gradient 603�
between their supercooled body fluids and the surrounding ice until the vapour pressure of their body 604�
fluids is equal to that of the environment (Wharton et al. 2003a). The subsequent concentration and de605�
novo synthesis of solutes (Elnitsky et al. 2008a) causes the SCPs of invertebrates to be reduced and 606�
their MPs to become equilibrated with the ambient temperature (Elnitsky et al. 2008a; Holmstrup et607�
al. 2002; Pedersen and Holmstrup 2003). In this state, the risk of freezing is eliminated (Elnitsky et al. 608�
2008). 609�
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Cryoprotective dehydration is perhaps best exemplified in the Arctic collembolan, M. arctica. The 610�
response was first described in this collembolan by Worland et al. (1998) and Holmstrup and Sømme 611�
(1998), who showed the SCP of M. arctica to fall as low as -30oC when the temperature was reduced 612�
to -12.4oC. The melting point (MP) was also shown to decrease with temperature (Holmstrup and 613�
Sømme 1998), and was later shown by Holmstrup et al. (2002) to decline in parallel with the 614�
environmental temperature, before equilibrating with this temperature after a 1-6 day lag period. 615�
Cryoprotective dehydration is not restricted to freeze-avoiding invertebrates such as M. arctica, but 616�
also extends to freeze-tolerant species. For instance, larvae of B. antarctica have been demonstrated to 617�
lose water in the presence of ice when cooled to -3oC, and have subsequently shown to have a three-618�
fold depression of their MP (Elnitsky et al. 2008a). 619�

The solutes accumulated during cryoprotective dehydration are similar in B. antarctica and M. arctica 620�
and include glucose and trehalose (Elnitsky et al. 2008a; Holmstrup et al. 2002). Glucose is likewise 621�
accumulated during cryoprotective dehydration in the earthworm, F. ratzeli (Pedersen and Holmstrup 622�
2003). Other polyols, sugars and amino acids may also be involved in the process (Elnitsky et al. 623�
2008a). The accumulation of these solutes has already been shown to lower the SCP and MP, and they 624�
may also lead to a vitrified state, as has been shown in at least one invertebrate, the red flat bark 625�
beetle, C. c. puniceus (Sformo et al. 2010).  626�

For cryoprotective dehydration to be a viable strategy, invertebrates must possess low desiccation 627�
resistance (cuticular permeability) and high desiccation tolerance (Bahrndorff et al. 2007). The former 628�
is required for the transport of water from the supercooled body fluids to the external environment at a 629�
rate equivalent to that of the lowering of ice vapour pressure with temperature (Holmstrup et al. 630�
2002), while desiccation tolerance is imperative if the organism is to survive considerable water loss.  631�

5. Links between low water availability and high temperature tolerance, and tolerance 632�

to other stresses 633�

Cross-tolerance between desiccation and high temperature has been identified in a number of 634�
organisms, including plants, cysts of crustaceans, rotifers (Mertens et al. 2008), tardigrades (Hengherr 635�
et al. 2009; Hinton 1951, 1960), and midges, including B. antarctica (Benoit et al. 2009a; Sakurai et636�
al. 2008). However, examples such as these are infrequent, especially for polar organisms. This is 637�
partly explained by the lack of studies that have investigated the effect of desiccation on heat 638�
tolerance, but also by the fact that some organisms seem not to show cross-tolerance. For example, 639�
desiccation failed to improve heat tolerance in the bed bug, Cimex lectularius (Benoit et al. 2009b). In 640�
addition, larvae of the Antarctic midge, E. murphyi, failed to show greater survival at 37 and 38.5oC 641�
following 2, 4 and 8 days at 98.2% RH, and even exhibited lowered survival at 37oC following 12 642�
days of desiccation (Everatt et al. in press).  643�

Unlike the response to desiccation and low temperature stresses, some of the physiological changes 644�
that occur as a result of desiccation are different, and opposing, to those incurred as a result of high 645�
temperature. For example, the phospholipid fatty acids of the cell membrane under low temperature 646�
pack together, and transition from crystalline to gel phase, resulting in lowered membrane fluidity. 647�
Under high temperature, the phospholipid fatty acids spread apart, leading to the opposite outcome 648�
(Hazel 1995). Membrane remodelling in response to desiccation and high temperature is subsequently 649�
also antagonistic, and a prior desiccation exposure will therefore result in lowered protection. The 650�
lowered protection with regard to membrane fluidity and other processes may counteract the 651�
protection gained through physiological mechanisms that are similar between desiccation and high 652�
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temperature, such as the activation of HSPs and accumulation of polyols and sugars (Benoit et al. 653�
2009a).  654�

If this is generally the case, then cross-tolerance between desiccation and high temperature would not 655�
be expected in any organism. Yet, it does occur. It may be significant that a large proportion of the 656�
organisms that to date have shown cross-tolerance between these two stresses are anhydrobiotic 657�
(Hengherr et al. 2009; Hinton 1951, 1960; Mertens et al. 2008; Sakurai et al. 2008). In general, 658�
metazoan animals are only able to survive above 47°C temporarily (Addo-Bediako et al. 2000; 659�
Nicholas 1984; Schmidt-Nielsen 1997), and any further improvement in heat tolerance requires an 660�
animal to enter an anhydrobiotic state. This has been shown in Polypedilum vanderplanki, which 661�
when in anhydrobiosis was able to survive temperatures 59oC higher than when it was in its hydrated 662�
state (Hinton 1951, 1960; Sakurai et al. 2008). It is known that anhydrobiotic organisms have a 663�
tendency to vitrify, and also that any damage incurred as a result of denaturation, aggregation and 664�
disintegration by immobilisation ceases or slows when in this glass-like state (Crowe et al. 1998, 665�
2002). These organisms may therefore not suffer the injurious changes to the membrane that would 666�
otherwise occur for non-anhydrobiotic species, and would instead only receive greater tolerance at 667�
high temperatures from being in a vitrified state. While this explanation is appropriate for 668�
anhydrobiotic organisms, the same is not true of partially desiccated organisms like B. antarctica, 669�
which are not vitrified when cross-tolerance is conferred to high temperatures. It is possible that the 670�
relative contribution of membrane remodelling and other opposing processes to cross tolerance is 671�
lower in these organisms. Instead, other physiological responses, including the accumulation of 672�
trehalose and the activation of HSPs (Benoit et al. 2009a), which are similar between desiccation and 673�
high temperature tolerance, may compensate.  674�

In addition to cross-tolerance between desiccation and low and high temperature, cross-tolerance has 675�
also been observed between desiccation and other stresses. In particular, desiccation has been 676�
observed to improve tolerance of low-Linear Energy Transfer (LET) and high-LET radiation 677�
(Gladyshev and Meselson 2008; Gusev et al. 2010; Jonsson et al. 2008; Watanabe et al. 2007), CO2 678�
and N2 exposure (Ricci et al. 2005), and high hydrostatic pressure (Seki and Toyoshima 1988). While 679�
for low temperature exposures, cross-tolerance has been reported to salinity (Elnitsky et al. 2009), 680�
anoxia (Yoder et al. 2006) and high temperature (Yoder et al. 2006).  681�

6. Ecology of cross-tolerance 682�

6.1. Ecological conditions 683�

Although cross-tolerance has been shown to be of benefit to several polar invertebrates under 684�
laboratory conditions, there remain a number of ecological conditions that must be met for it to be 685�
successful in the field. One of these concerns the rate at which an organism is desiccated prior to or 686�
during low temperature exposure. Benoit et al. (2009a) discovered that faster rates of desiccation (2-687�
13%/h) resulted in significantly less protection at -15oC in B. antarctica, than rates of 0.4-0.5%/h, 688�
even though percentage water loss was equivalent between treatments during low temperature 689�
exposure. It was subsequently shown that the level of trehalose was considerably lower in larvae 690�
desiccated more quickly (Benoit et al. 2009a). Other processes, such as the accumulation of 691�
alternative polyols and sugars, are also speculated to be affected in a similar way in B. antarctica. 692�
Completely desiccated or anhydrobiotic organisms are likewise affected by the rate of desiccation. 693�
Tardigrades, before entering anhydrobiosis, must first restructure their bodies into a tun-like form 694�
(Baumann 1992; Crowe 1972; Wright 1989). The formation of this tun shape is essential for the 695�
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protection of internal organs and for the reduction of water loss during anhydrobiosis (Sømme 1996). 696�
Tun formation can only take place under slow desiccation (Wright 1989).     697�

The rate at which an organism is cooled is also important for cross-tolerance, particularly for freeze-698�
avoiding invertebrates which utilise cryoprotective dehydration. If the SCP of these invertebrates is to 699�
remain below the ambient temperature, desiccation must proceed at a pace equivalent to that of the 700�
rate of cooling. This cannot occur if the rate of cooling is too rapid (Elnitsky et al. 2008b; Wharton et 701�
al. 2003a). The importance of a slow cooling rate is also observed during low temperature 702�
acclimation, over the long-term (Sinclair et al. 2003), as well as over the short-term in the form of 703�
RCH (Chidawanyika and Terblanche 2011; Kelty and Lee 1999, 2001; McDonald et al. 1997; Wang 704�
and Kang 2003). Rates of cooling in the Arctic and Antarctic generally tend to be slow and are 705�
sufficient to permit cryoprotective dehydration. For example, in the McMurdo Dry Valleys of 706�
continental Antarctica, natural cooling rates can average 0.021oC min-1 (Sinclair and Sjursen 2001).  707�

A further ecological condition that must be met by partially and severely desiccated, or 708�
cryoprotectively dehydrated, organisms, is the avoidance of inoculative freezing (= induction of 709�
freezing whilst in direct contact with ice). This is because inoculative freezing can initiate ice 710�
nucleation above an organism’s SCP. For freeze-avoiding organisms this poses an inherent survival 711�
risk, while for freeze-tolerant organisms, inoculative freezing terminates desiccation and subsequently 712�
reduces the potential for cross-tolerance. Inoculative freezing is most likely to occur under moist 713�
conditions, in which ice crystals regularly pass through the cuticle and into orifices (Olsen et al. 1998; 714�
Salt 1963; Zachariassen and Kristiansen 2000). This increase in freezing under moist conditions has 715�
been shown in both the enchytraeid worm, Fridericia ratzeli (Pedersen and Holmstrup 2003), and the 716�
midge B. antarctica (Elnitsky et al. 2008). These authors therefore speculate that the microhabitat 717�
preference of some invertebrates may be influenced by the risk of inoculative freezing. 718�

6.2. Sub-lethal characteristics 719�

While survival is relevant to the “success” or fitness of a species, there are a number of other 720�
attributes which may be impacted upon by the sequential or simultaneous occurrence of stresses. 721�
These attributes are referred to as sub-lethal characteristics and include courtship, reproduction, 722�
foraging, predator avoidance and activity (e.g. Kelty and Lee 1999; Korenko et al. 2010). Because 723�
sub-lethal characteristics are affected by stresses less extreme and therefore more regularly 724�
encountered in nature than those which cause mortality, the importance of sequential or 725�
simultaneously occurring stresses may be greater than that of simple survival of extremes. However, 726�
there are only a handful of studies which have addressed this subject. Sinclair et al. (2007) 727�
demonstrated that D. melanogaster which had previously been selected for greater desiccation 728�
resistance/tolerance had a shorter, and thus improved, chill coma recovery time as compared with 729�
controls. Everatt et al. (2013) showed that the critical thermal minimum (CTmin, the low temperature 730�
at which an organism no longer shows coordinated movement) and chill coma (low temperature at 731�
which electrophysiological activity ceases completely) of C. antarcticus were negatively affected by 732�
prior desiccation on concentrated sea water. However, due to the limited number of such studies, and 733�
that they have focussed only on the thermal thresholds of activity to date, it is not yet possible to draw 734�
conclusions on the effect of sequential and simultaneous stresses on sub-lethal characteristics. 735�

6.3. Climate warming 736�

Over the last two to three decades, climate warming has received considerable public attention and 737�
has become the focus of the largest scientific collaboration in human history. There is now an almost 738�
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universal consensus that atmospheric CO2 levels are rising as a result of human activity and are 739�
leading to warming on a global scale. Temperatures have so far risen, on average, by 0.85oC across 740�
the Earth’s surface over the last century (IPCC 2013). The rate of increase in temperature has been 741�
particularly high in certain polar regions (‘polar amplification’), averaging 2oC over the past 50 years 742�
(Arctic Council 2005; Convey et al. 2009; Turner et al. 2009). Furthermore, general circulation 743�
models suggest these temperature trends will continue (Convey et al. 2009; Turner et al. 2009). Water 744�
availability is also likely to change as a result of climate warming. Precipitation is predicted to 745�
increase by 0.5-1% per decade at higher latitudes (Walther et al. 2002; Turner et al. 2009). However, 746�
as temperatures rise, snow cover is expected to decrease and melt is expected to occur earlier in the 747�
season. In turn, the thawing of glaciers and evaporation of meltwater are also expected to take place 748�
earlier in the summer season (Avila-Jimenez et al. 2010; Walther et al. 2002).  749�

Polar terrestrial invertebrates will therefore increasingly experience warmer and drier summers. 750�
Understanding the capability of these invertebrates to tolerate high temperature and low water 751�
availability either sequentially or simultaneously thus becomes increasingly significant. As discussed 752�
above, the level of cross-tolerance between high temperature and low water availability is variable. 753�
While invertebrates like the midge, B. antarctica, are afforded greater heat tolerance following prior 754�
desiccation, others including the closely related midge, E. murphyi, and the collembolan, C.755�
antarcticus, are incapacitated once desiccated (Benoit et al. 2009a; Everatt et al. 2013,in press). The 756�
success of polar invertebrates in a warming climate will therefore be species specific. However, recent 757�
studies have demonstrated that some of these invertebrates possess considerable basal heat tolerance 758�
over both short and long timescales, and the heat tolerance shown far exceeds that required during 759�
current and foreseeable Antarctic and Arctic summers (Deere et al. 2006; Everatt et al. 2013, in press; 760�
Sinclair et al. 2006; Slabber et al. 2007). The Collembola, C. antarcticus and M. arctica, for example, 761�
are able to survive above 30oC for a number of hours and at 10oC for over 40 days (Block et al., 1994; 762�
Hodkinson et al., 1996; Everatt et al. 2013, in press). The level of tolerance these invertebrates show 763�
is in line with the thermal sensitivity hypothesis, that the sensitivity of terrestrial invertebrates to 764�
higher temperature exposure decreases with increasing latitude (Addo-Bediako et al. 2000; Deutsch et 765�
al. 2008).  766�

7. Conclusions and future directions 767�

Many polar terrestrial invertebrates are ancient and have likely spent the last few million years honing 768�
their physiology to the extreme environments in which they live (Convey and Stevens 2007; Marshall 769�
1996; McGaughran et al. 2010). The tolerance these animals have to sub-zero temperatures and 770�
desiccation stress has been known for many decades, yet it is only relatively recently that 771�
investigations into the molecular mechanisms underpinning these physiological adaptations have 772�
begun. Molecular responses to sub-lethal chilling also remain poorly characterised, and disentangling 773�
the processes underpinning chill vs. extreme cold or freezing damage is an important future challenge. 774�
A possible route to addressing this would be to undertake more detailed time series investigations of 775�
the stress response cascade to declining temperature. This includes key functional, i.e. not just 776�
tolerance, phenotypes such as activity thresholds and metabolic adaptation as set out in Fig. 1. 777�
Crucially, future studies need to more directly address mechanism, rather than simple correlations 778�
between molecular and phenotypic changes that currently dominate the literature. This extends to 779�
understanding responses to multiple stressors in tandem, which is another current knowledge gap. The 780�
protection afforded against one stress following exposure to another was no doubt pivotal in the 781�
persistence of many species during historic climate transitions, as well as important currently during 782�
winter in the polar regions. This is perhaps most evident in animals which cryoprotectively dehydrate 783�
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like M. arctica, whose sole strategy of surviving winter relies on cross-tolerance to cold and 784�
desiccation. 785�

A benefit of cross-tolerance between high temperature and desiccation has received even less 786�
attention, but is a combination of stressors which may occur more frequently in polar environments 787�
under continued climate warming. While some species show cross-tolerance, others do not, and 788�
further work is required to establish a baseline for different species groups, as well as for polar 789�
terrestrial invertebrates generally. However, it should be noted that many of these invertebrates show 790�
a level of heat tolerance that is far greater than is required for even medium term predictions of 791�
climate warming. Thus, physiological approaches must be guided by more detailed studies of current 792�
microclimate conditions, and models forecasting rates of environmental change, to better predict 793�
winners and losers under different climate scenarios. A greater threat to survival may in fact be 794�
competition from newly colonising species – and investigating the physiological ‘suitability’ of 795�
species whose distribution boundaries place them on the doorstep of polar environments is another 796�
important research objective (Everatt et al. 2012; Frenot et al. 2005).   797�

To end, this review has shown the almost boundless flexibility and adaptability enlaced into the 798�
physiology of invertebrates, when faced with a single stressor or multiple stressors. Such is their 799�
adaptability that they have been able to thrive in many habitats, even those as extreme and 800�
inhospitable as the Arctic and Antarctic. The review has also highlighted the importance of looking at 801�
all factors together and not simply investigating single factors in isolation. As the field of invertebrate 802�
stress ecophysiology grows, so will the need for a cross-disciplinary approach. 803�
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 1461�

Highlights 1462�

- Invertebrates are vulnerable to extremes of temperature and low water availability. 1463�

- They express a suite of features in response to each stressor individually. 1464�

- However, stresses usually occur simultaneously in nature. 1465�

- Cross-tolerance is observed between temperature and water stress. 1466�

- This is discussed in light of climate warming and the invertebrates’ ecology. 1467�

 1468�
Figure Captions 1469�
 1470�
Figure 1 Schematic representation of the molecular and physiological processes underpinning 1471�
chilling, Freeze Tolerance (FT) and Freeze Avoidance (FA) strategies in terrestrial invertebrates.  1472�
Chilling/cold stress responses can be induced in parallel or more sequentially - the order in which 1473�
temperature induces each mechanism will be species specific and potentially vary depending on the 1474�
rate of temperature change.  Common chilling responses (light grey) are shared by both FT and FA 1475�
strategies to limit chilling injury.  Fundamental differences between FT (white) and FA (dark grey) 1476�
include the synthesis of ice nucleating agents (INAs) in FT (white) vs. INA removal in FA.  FT 1477�
insects also uniquely produce osmoprotectants to control cellular dehydration during extracellular 1478�
freezing.  Both strategies employ cryoprotectants (e.g. glycerol and trehalose) and antifreeze proteins 1479�
(AFPs); and can potentially undergo vitrification.  For FT species these strategies facilitate controlled 1480�
freezing and limiting freezing damage, while in FA species these adaptations enhance the supercooled 1481�
state/reduce the risk of ice-crystal formation.  See main text for details of relevant studies.   Adapted 1482�
from Bale (2002). 1483�
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 1484�
Figure 2 Schematic representation of the molecular and physiological processes underpinning 1485�
Desiccation Tolerance (DT) and Desiccation Resistance (DR).  The three categories of desiccation 1486�
resistance are Mesic (highly resistant to water loss), Transitional (intermediate resistance) and Hygric 1487�
(limited desiccation resistance). At polar latitudes in particular, limited desiccation resistance 1488�
necessitates increased desiccation tolerance.  The purpose of DR mechanisms (white) is to reduce 1489�
water loss.  The purpose of DT mechanisms (dark grey) is to limit desiccation-induced damage.  1490�
Some strategies are used by both DR and DT (light grey).  See main text for further details. 1491�
 1492�
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