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Spatial Decorrelation in GNSS-Based
SAR Coherent Change Detection

Qilei Zhang, Michail Antoniou, Wenge Chang, and Mikhail Cherniakov

Abstract—This paper analyzes the spatial decorrelation be-
tween repeat-pass bistatic synthetic aperture radar (BSAR) im-
ages with Global Navigation Satellite Systems as transmitters
and a fixed receiver. This study is needed in the development of
such a system to monitor temporal changes in a scene. The main
challenge is that, in this bistatic configuration, spatial coherence
heavily depends on the data acquisition geometry. The appropriate
theoretical framework to describe spatial coherence for this case is
developed by extending well-established monostatic models and,
in principle, can be applied to any fixed-receiver BSAR with a
spaceborne transmitter. Theoretical results are initially supported
by Monte Carlo simulations. Finally, the validity of the model is
confirmed by comparing real images.

Index Terms—Bistatic synthetic aperture radar (BSAR),
coherent change detection (CCD), GNSS-based SAR, spatial
decorrelation.

I. INTRODUCTION

VER the last few years, the feasibility of bistatic synthetic

aperture radar (BSAR) has been established. A number of
different topologies have been investigated, and their imaging
capability has been experimentally demonstrated [1]-[5]. Re-
search is now moving toward the exploitation of BSAR imagery
for Earth observation and monitoring [6]-[9].

One such BSAR configuration is Global Navigation Satel-
lite Systems (GNSS) based SAR. This technology comprises
navigation satellites (such as GPS, GLONASS, Galileo, and
Compass) as transmitters of opportunity, while the receiver
could be moving (airborne/on ground moving vehicle etc.)
or fixed on the ground [10]. In this paper, a fixed-receiver
configuration is assumed. Potentially, Galileo satellites are to
be used due to their much higher resolution performance (about
8 m < 5 m in range and azimuth, respectively) compared to
those provided by other navigation satellites. However, until
Galileo is fully operational, GLONASS is being used with a
resolution of 30 m < 5 m. The reader is prompted to [11]-[14]
for previous work with a moving receiver setup.
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The proposed application for such a system is surface dis-
placement monitoring in local areas. Some examples include
the following:

1) temporal change detection due to earthwork movement
in large engineering structures (e.g., highway earthworks,
bridges, and dams) or new infrastructure projects during
their construction stage;

2) slope stability monitoring, e.g., in open pit mines;

3) situational awareness in infrastructure networks
(highway/railway), particularly during adverse weather
conditions, to warn of incipient or actual faults (e.g.,
landslips in extreme rain or fallen trees in extreme wind
conditions).

Taking into account the permanent GNSS coverage of any
point on Earth, a fixed receiver overlooking an area of interest,
typically a few square kilometers wide, may potentially provide
persistent monitoring, which is one of the requirements for
the aforementioned applications. In addition, the multitude of
satellites viewing the same area from different angles (six to
eight satellites for a given GNSS) provides the option to choose
the best bistatic configuration in terms of resolution and shadow
reduction. Moreover, such applications do not require fine res-
olutions or large stand-off distances between the sensor and the
observation area (typically, they do not exceed 200 m), so the
coarse resolution and limited operational range of the proposed
technology do not pose any major limitations. Furthermore,
GNSS operate in the L-band, which makes them attractive
for Earth observation. Finally, the architecture of the receiving
segment is no different to that of a conventional navigation
receiver, which makes this technology more cost-effective.

As the first stage in this research, a coherent change detector
(CCD) is being built to detect temporal scene changes. Different
aspects of this technology have been considered on the theoret-
ical and practical levels in [15]-[18]. This technique compares
consecutive images of the same scene, temporally separated by
the revisit cycle of a single satellite, at the phase level. Assum-
ing that the interrogated surface has changed between satellite
passes, image pairs will be decorrelated, and this decorrelation
can be used to quantify the level of surface deformation. A
complete treatise of CCD for monostatic SAR can be found in
[19], where the theoretical and experimental work for detecting
fine-scale scene changes using repeat-pass SAR images has
been investigated both on the signal processing and physical
levels.

The next problem to tackle in this development is that image
decorrelation contains not only factors associated with temporal
scene displacements (temporal decorrelation) but also other
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Fig. 1. GNSS-based SAR geometry.

decorrelation factors that may corrupt it [20]. One of the main
decorrelation sources is spatial (or geometric) decorrelation
[21], which arises from the fact that it is difficult, if possible
at all, to have identical satellite trajectories in repeat passes.
Changes in the observation geometry between passes lead to
different relative positions between the radar and the scattering
centers within a resolution cell, and this results in changes to
the phase of the backscattered signals.

Analysis of the spatial decorrelation for monostatic SAR has
been well presented in the literature [22]-[26]. However, this
effect is essentially different for BSAR due to the different
geometries involved and even more for GNSS-based SAR with
its essentially asymmetric topology and the peculiarities of its
ambiguity function [17]. The main challenge is that, in bistatic
configurations, spatial coherence depends on the data acquisi-
tion geometry directly. This means that some acquisitions are
more robust to it, while in some others, a complete loss of
image coherence may occur, rendering any CCD impossible.
For this reason, this problem was studied both at the theoretical
and practical levels.

The aim of this paper is to present a spatial decorrelation
analysis for GNSS-based SAR. The theoretical model of spatial
decorrelation is developed based on the ‘speckle’ model [27]
and the generalized ambiguity function [28] in Section II.
Spatial decorrelation effects for three different GNSS-based
SAR configurations are calculated in Section I1l. Theoretical
results are confirmed by Monte Carlo simulation in Section IV,
followed by confirmation using experimental data in Section V.

Il. THEORETICAL MODEL

Considering two complex SAR image pixels s; and s,, the
correlation coefficient between them can be evaluated as [21]

— | s18; |
p= ———— 1
S$1S1  S2S,

where - denotes ensemble averaging. From (1), it can be seen
that 0 < p < 1, and the only condition for p =1 is s; = sj.
In practice, s; and s, consist of uncorrelated components due
to different decorrelation sources. In SAR interferometric or
CCD applications, there are three major decorrelation factors,
namely, thermal noise and temporal and spatial decorrelations
[20]. This paper only considers the latter factor.

Spatial decorrelation is due to the slightly different viewing
angles between two repeat-pass data acquisition geometries.
Fig. 1 shows the imaging geometry of GNSS-based SAR to be

used in this analysis. The point O is the center of a resolution
cell in the imaging scene. It is convenient to establish the
coordinate system in such a way that O is at the coordinate
origin and the X QY plane coincides with the ground plane.
The synthetic aperture center of the satellite trajectory is at
point T, and the velocity of the satellite is v. The position of
the satellite at point T is determined by (rro, 0T, Br), where
It is the distance from O to T and ot and B+ are the azimuth
and elevation angles of the satellite, respectively. The position
of the fixed receiver R can be determined by the corresponding
parameters (rro, ORr, Br)-

As shown in Fig. 1, P (x,y) is a point in the vicinity of O,
i.e., itis a point scatterer within the resolution cell. The distance
between P (x,y) and T can be expressed as

rr(X,y,rro, 01, Br) = rro — XCOS O COS Bt

+ysinar cosPBr. (2)

According to the “speckle” model [21], [27], the complex
image pixel s without the system thermal noise, measured at
position O, may be represented as the sum of complex returns
of all of the point scatterers within the resolution cell

. 2T
S = O(le) eXp _JT(rT(vaerO!aTyﬁT)

+Ir(X, Y, ro, OR, Br)) - W(X,y)dxdy. (3)
Equation (3) represents the image pixel after image formation
processing, where o (X, y) represents the complex backscatter
coefficient at each point on the plane, rgr is the distance from
target P (X,y) to the receiver, A is the radar wavelength, and
W (X, y) is the point spread function (PSF).

According to [28], the PSF of GNSS-based SAR with a linear
satellite trajectory can be given as

2cos B OTP(x,y)

C'é'[

[W(x,y)| = tri

20 =" P(X,y)

- SINC X g

(4)
where tri(-) is the triangular function, specifying that the range
resolutions for transmitted signals of GNSS are pseudorandom
sequences, and sinc(-) specifies azimuth resolution. The param-
eter 3y is the bistatic angle (as shown in Fig. 1, the angle be-
tween vectors TO and RO), © is the unit vector in the direction
along the bisector of By, wg is the equivalent bistatic angular
speed, = is a unit vector along the satellite’s motion direction,
and P(x,y) is the position vector of a scattering point P rele-
vant to the origin. The parameter © is generally defined as the
direction of range resolution and = as that of azimuth resolution
[28]. In (4), & = 1/B and &g = 1/Tsys are the time delay and
Doppler resolutions, respectively, where B is the bandwidth
of the transmitted signal and Tsys is the dwell time on target.
On the basis that a fixed-receiver configuration is used, the
only differences between repeat-pass data acquisition geome-
tries are due to the trajectory of the satellite in each pass. This
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implies that the primary and repeat SAR images of the same
ground patch can be expressed as

2n

Sy = o(x,y)exp —j X (rr(X,¥,rro, 071, Br1)
+ rr(X,Y, 'ro, ORr, Br))
- W(X,y)dxdy (%)
|21
S2 = o(X,y)exp i (rr (X,¥,rro, 012, B72)

+ rr(X,Y, 'ro, ORr, Br))

- W (x,y) dxdy. (6)

Moreover, we assume that the coregistration of the primary
and repeat SAR images has been performed. Therefore, the
cross-correlation of the two signals is

$1S, = a(x,y)o (X,y)

2T
xexp —J5- (rr(X,y,rro, 071, Br1)
+re(X, Y, rro, Or, Br)) W(X,y)
2T
< exp JT (rr X,y ,rrg.0r2,Br2)
+ rR(X 1y ’ rROr GRI BR))
x W (x,y)dxdydx dy. )

Assuming that the imaged surface consists of uniformly
distributed and uncorrelated scattering centers [21]

o(x,y)o (X,y) =05 -8(xX—Xx,y—y) (®)

where gy is the average complex backscatter coefficient, then
(7) can be reduced to

.21
S1S; =0§ : EXp —17 (rr(X,y,rro,071,Br1)

—r1 (X,Y, 1g, 012, Br2))
x W (x,y)[* dxdy
— 2 .21
=00 &Xp ~J5- (fro —rro)
exp —jz%(x-u +y-V)
x W (x,y)[* dxdy )

where U and V are determined by the position offset of the
transmitter

U = cos 02 CoSBr2 — cos ATy COSPTy
V = sinoT1cos Bty — sinor2cos Pro.

(10)
(11)
Similarly, the autocorrelation of image pixels can be given as
W (x, y)I? dxdy.

S1S; = S8, =03 - (12)

v &% T Z
LN
”
R e & 0 ¥
\\\\\‘
,))
X

Fig. 2. Quasi-monostatic configuration.

Substituting (9) and (12) in (1) and simplifying, the corre-
lation coefficient caused by spatial decorrelation can be calcu-
lated by

exp —j & (x-U+y-V) [W(xy)* dxdy

3 13)
W (x,y)|” dxdy

p =
From (13), the spatial coherence isequalto 1ifU =V = 0. In
all other cases, 0 < p < 1. In addition, the calculation of (13)
is also dependent on the PSF W (X, y).

I1l. SPATIAL DECORRELATION FOR DIFFERENT
BISTATIC TOPOLOGIES

In this section, the spatial decorrelation for GNSS-based
SAR will be evaluated for different satellite geometries. The
first one is the quasi-monostatic configuration, where the satel-
lite flies directly behind the receiver. This configuration is
chosen as it bears the closest resemblance to a monostatic sys-
tem. The second case is the nadir-looking configuration, where
the satellite flies above the receiver. This is a more practical
scenario from an operational point of view since a low-gain
antenna can simply be pointed upward to record the direct satel-
lite signal for synchronization purposes. The final case is the
general bistatic case.

In the first two cases, it is possible to obtain a closed (or
quasi-closed) form solution for (13). In the general case, (13)
does not have an analytical solution, and therefore, spatial
decorrelation is evaluated numerically.

A. Quasi-Monostatic Configuration

As shown in Fig. 2, let us consider a particular configuration
named as the quasi-monostatic configuration, where ot =or =
1/2, and the satellite is assumed to move parallel to the X-axis.
In this case, the direction of ground range resolution R, is along
the Y -axis, and the direction of ground azimuth resolution R,
is along the X-axis. According to (4), we will have

y

W (X,y) = tri R - sinc Ro (14)
r a
where
— 3¢
Rr - ZCOS(;(Bb/Z) (15)
R, = JdA
a

- 20 *
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The PSF can be divided into the responses along the X- and
Y -axes. Therefore, the double integral shown in (13) can be
replaced by the multiplication of two one-variable integrals.
Then, according to the definition of Fourier transform, we
can get
y
R v

r

“F o tri? (16)

= g exp —j Z%y-Rr Votri(y)dy. (17)

From (16), we can conclude that the spatial decorrelation
effect of quasi-monostatic configuration consists of compo-
nents along both azimuth and range resolution directions. This
is quite different from the result of monostatic configuration,
where only the spatial decorrelation effect along the range
resolution direction is usually considered [21]. In the next
sections, the spatial decorrelation is evaluated for offsets in the
azimuth and elevation angles of the satellite separately.

Azimuth Offsets: If the elevation angle is assumed to be
fixed, i.e., Br1 = Br2 = B and only the azimuth angle offset
00 = a1y — a2 is considered, (16) reduces to

U =cosP - (cosar, — cosaTq1) = cosf3sinada

V =cosf - (sinary —sinar,) = cos B cosada (18)

where o = (ar1 + at2)/2. For the quasi-monostatic config-
uration and assuming that the offset is slight, then a = /2.
Hence, U =cosf-da, V =0. In this case, F(tri(y/R;),
V) =1, and (16) becomes

d
p:l_M.Ra_ (19)
A
Elevation Offsets: Similarly, if the azimuth angle is assumed
to be fixed, i.e., ar1 = a2 = /2 and only the elevation angle

offset 83 = Bt1 — B2 is considered, then

u=>0

V =sinp - 5p (20)
where B = (Bt1 + Bt2)/2. Thus
p=F tri2 2 sinp-op 1)

r

The spatial decorrelation coefficient due to different azimuth
(19) or elevation (21) offsets is plotted in Fig. 3 for an exam-
ple quasi-monostatic configuration. The calculation parameters
correspond to those of a GLONASS satellite and are listed in
Table I. It is assumed that the satellite azimuth and elevation
angles in the first pass are a1 = 90° and B+, = 60°. The 2-D
resolution can be calculated using (15) for the listed parameters
as Rg =3.04mand R, = 39.14 m.

It can be seen from Fig. 3 that the correlation coefficient
decreases as the angular offset increases, as expected. More-
over, the spatial decorrelation due to elevation offsets is much

0.9
E g 0.8
o 08 8 \
207 g 06
o o
506 s
5 g 0.4
£os g \
o O 0.2

0.4 \

\
0.3 0
0 1 2 3 4 0 02 0.4 0.6 0.8 1
Aziumth angle offset (3¢.) /deg Elevation angle offset (3p) /deg
(a) (b)

Fig. 3. Spatial decorrelation in quasi-monostatic configuration due to
(a) azimuth and (b) elevation angle offsets.

TABLE |
CALCULATION PARAMETERS
Parameters Value
Satellite effective velocity 3953 m/s

Carrier Frequency 1602.5625 MHz

Signal Bandwidth 5.11 MHz
Integration Time 300 s

Satellite-to-Target Range 77, 19284 Km
Receiver Azimuth Angle 90 deg
Receiver Elevation Angle S deg

Fig. 4. Nadir-looking configuration.

more sensitive than those due to azimuth offsets. The main
reason for this is the difference in the range and azimuth
resolutions. Inspection of (19) and (21) demonstrates that spa-
tial decorrelation due to azimuth offsets depends on azimuth
resolution, whereas that due to elevation offsets depends on
range resolution. Since R, R, for GNSS-based SAR, the
sensitivity to spatial effects is more pronounced in (21).

B. Nadir-Looking Configuration

As shown in Fig. 4, in the nadir-looking configuration, the
receiver is at the nadir point of the satellite, and it is assumed
that ar = ar = /2.

Since the distance from the transmitter to the target is far
longer than that from the receiver to the target, the elevation
angle and the bistatic angle satisfy B, = Bt = /2. Assuming
that the satellite’s motion is parallel to the X-axis as well, the
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Fig. 5. Spatial decorrelation effect in nadir-looking configuration.
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Fig. 6. Top view of the general bistatic configuration.

system impulse response can be expressed as in (14), and (16)
still holds, rewritten here for convenience
U y

1- —-Ry -F triz = |V

A Ry (22)

p =
However, in this case, the ground range resolution (15) changes
to Ry = cor.

If only the azimuth angle offset is considered, i.e., Br1 =
Bro =1/2,thenU =0,V = 0, and the correlation coefficient
is equal to 1. This means that, in the nadir-looking configura-
tion, there is no spatial decorrelation due to azimuthal offsets.
In terms of offsets in the elevation angle, assuming that o+, =
ot =1/2, then U =0, and V = sin3dB. According to the
definition of nadir-looking geometry, we get B = /2, and then,
V = 3. Therefore, the spatial decorrelation can be given as

y

r

p=F tri? ,0B

(23)

The spatial decorrelation versus the offset in satellite eleva-
tion angles is shown in Fig. 5 for the example of Table I. It
can be seen that the correlation coefficient decreases sharply
with the offset in elevation angle. For an error of 0.2°, the
correlation coefficient is approximately 0.1, whereas for the
quasi-monostatic case, it is equal to 0.5.

C. General Bistatic Configuration

In the general bistatic configuration, the PSF (4) cannot be
reduced to a simpler function as in (14) and also does not have
a closed-form solution. Therefore, spatial decorrelation in the
general case (13) is evaluated numerically.

360
320
280

Azimuth angle \deg

5 15 25 35 45 5 65 75 85

Elevation angle \deg

(a)

0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

Azimuth angle \deg

5 156 25 35 45 5 65 75 85
Elevation angle \deg

(b)

Azimuth angle \deg

35 45 55 65 75 85
Elevation angle \deg

(©)

0
5 16 25

Fig. 7. Spatial decorrelation in the general bistatic configuration versus satel-
lite azimuth/elevation angles for (a) v1, parallel to the X-axis; (b) v2, at a 45
angle to the X-/Y -axes; and (c) vz, parallel to the Y -axis.

Without loss of generality, it is assumed that the position of
the receiver is at agr = 90° and Br = 5°, while the position of
a GLONASS satellite (o, Br) varies (Fig. 6). The objective
is to investigate the behavior of the spatial decorrelation with
the different satellite positions for fixed azimuth and elevation
offsets. Apart from the position of the satellite, its motion
direction was also varied. That is because, from (4), it can
be seen that the impulse response of the system is related
to the effective angular velocity wg and = of the satellite.
For illustrative purposes, three representative motion directions
are considered (Fig. 6): parallel to the X-axis, parallel to the
Y -axis, and at a 45° angle to the X-/Y -axes.
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Fig. 8. Simulation result of the spatial decorrelation effect in the quasi-
monostatic configuration. (a) Spatial decorrelation due to the azimuth angle’s
offset. (b) Spatial decorrelation due to the elevation angle’s offset.

The spatial decorrelation was numerically calculated using
(13) for the different conditions mentioned previously. In the
calculations, the satellite azimuth angle is chosenas 0° < ot <
360°, and its elevation angle is 5° < 3+ < 85°. The obtained
results are plotted in Fig. 7 for equal azimuth and elevation
offsets of Aa = AP = 0.1°, which can be expected in practice.

Fig. 7 demonstrates the dependence of the spatial decorre-
lation on the data acquisition geometry. For the same angular
offsets, spatial decorrelation varies with the satellite position
as well as its motion direction. In addition, the figure shows
that some bistatic configurations are more immune to spatial
decorrelation than others. For example, in Fig. 7(a), for ar =
50° and Bt = 70°, the correlation coefficient is higher than 0.9,
whereas for ot = 275° and B+ = 70°, it is lower than 0.3 for
the same angular offset. This means that CCD schemes should
be built around the particular data acquisition geometries to
minimize spatial errors.

IV. SIMULATION

In this section, the validity of the analytical derivations
made previously is tested using Monte Carlo simulations. It
is assumed that a set of 10000 scattering centers is located
randomly within a resolution cell. Based on (2) and (4), the
corresponding image signal s; was obtained by coherent super-
position. Subsequently, changes in the satellite’s position were
added, and the corresponding image signal s, was calculated
in the same way. The correlation coefficient between the two
images was then calculated directly using (1). This process was
repeated 1000 times to get the ensemble average. This number
of realizations was established by trial and error, and beyond
this number, the difference in obtained results was insignificant.

A comparison between the simulated and theoretical results
for the quasi-monostatic configuration is shown in Fig. 8. It
can be seen that the simulation result is in agreement with the
theoretical derivation. Any difference between the simulated
and theoretical results is accredited to the truncated impulse
response used in the simulations. This is not a special problem
in BSAR and has also been encountered with monostatic SAR
data [21].

Similarly, Fig. 9 compares the theoretical and simulated re-
sults for the nadir-looking configuration. In this case, there is al-
most a one-to-one correspondence between the obtained results.

Comparison of analytical results with simulated ones sup-
ports the validity of the developed theoretical models for the

e  Simulated

. 08 Calculated
=
2o
Qo
T 0.6
o
o
s
E 0.4
g
j=3
© 02

L)

D)

0 ®ececsess
0 0.2 0.4 0.6 0.8 1

Elevation angle offset (5p3) /deg

Fig. 9. Simulation result of the spatial decorrelation effect in the nadir-looking
configuration.

High-Gain Helical Antenna
-“_._7'

Fig. 10. GNSS-based SAR experimental prototype.

quasi-monostatic and nadir-looking configurations. This also
implies that the “speckle” model offers a reasonable description
of the GNSS-based SAR image signal, and this theory applies
also for the more general BSAR case with a spaceborne trans-
mitter and a fixed receiver. Furthermore, from the decorrelation
values obtained, it can be seen that the corresponding config-
urations can be realized in practice to deliver a CCD based on
GNSS-based SAR.

To confirm the theoretical model for the general bistatic
configuration, working with experimentally obtained data was
preferred to simulated ones. The experimental methodology
and results, as well as their comparison with the developed
theoretical model, are presented in the next section.

V. EXPERIMENTAL VERIFICATION

Experiments were conducted to measure spatial image decor-
relation using experimental GNSS-based SAR data and to
compare it to the theoretical expectations based on the afore-
mentioned analysis. The geometrical configuration of the ex-
perimental data belongs to the general bistatic configuration.
Data were acquired by a prototype system, developed at the
University of Birmingham [6] and deployed on the roof of
a five-story building (Fig. 10). The system used a low-gain
antenna pointed toward the satellite for signal synchroniza-
tion, while a high-gain helical antenna was pointed toward an
observation area for imaging. The details of the imaging exper-
iment conducted are listed in Table II.
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TABLE I
EXPERIMENTAL PARAMETERS

Parameters Value
Satellite effective velocity 3395 m/s
Carrier Frequency 1604.8125 MHz
Signal Bandwidth 5.11 MHz
Integration Time 250's
Satellite-to-Target Range 77, 19516 Km
Transmitter Azimuth Angle 157.4 deg
Transmitter Elevation Angle 67.8 deg
Receiver Azimuth Angle 180 deg
Receiver Height 35m
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Fig. 11. (a) Experimentally obtained PSF. (b) Theoretical expectation.

As a first test on the experimental data and the image forma-
tion outputs, image formation was applied to the direct satellite
signal recorded through the low-gain antenna. Effectively, this
signal served as a point target located at zero range from the
receiver. Therefore, the output of the image formation algorithm
in this case should be the corresponding PSF. This PSF was then
compared to the theoretically expected one from the relative
satellite-receiver geometry [17]. The two results are shown in
Fig. 11. The color scale in the figure is in decibels, with 0 dB
representing the highest intensity in the image.

Comparison of the PSFs in Fig. 11 shows a nearly one-to-
one correspondence between the experimental and theoretical
results, verifying the validity of the experimental data. As a
next step, image formation was applied to signals reflected
from the observation area to obtain its image, using all of
the available dwell time on target (250 s). Fig. 12(a) shows a
satellite photograph of the area, obtained from Google Earth.
Fig. 12(b) shows the obtained image, superimposed on the
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Fig. 12. (a) Satellite photograph of the observation area. (b) GNSS-based
SAR image superimposed on (a).
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Fig. 14. Satellite (a) azimuth and (b) elevation angle offsets versus the
temporal separation between images.

photograph of Fig. 12(a). The color scheme in the figure is the
same as in Fig. 11.

Inspection of Fig. 12 shows that the image echo intensity
matches well with the expected reflectivity of the scene. For
example, buildings (area 1) and trees (area 2) appear as high-
intensity echoes, while grassy areas have low intensity values.

To evaluate spatial decorrelation, as well as its variation
with the difference in satellite viewing angles, the following
methodology was followed. A master image was generated,
using data from the start time of acquisition and for a dwell
time Tsys that was less than the dwell time on target (Fig. 13).
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Fig. 15. Coherence maps for (a) 1-, (b) 10-, and (c) 20-s temporal separation between the master and slave images.

Then, a set of slave images was generated, with the same Tsys
but starting N seconds later than the master image, with N from
1to 30 s. In other words, N is the temporal separation between
images. It is noted here that all images were formed on exactly
the same ground plane using a backprojection algorithm, and
therefore, an image coregistration step was not required. The
different temporal separations correspond to different satellite
viewing angles in each image, allowing spatial decorrelation to
be measured by extracting the correlation coefficients between
the master image and all of the slave images through (1). This
methodology was chosen for three main reasons. First of all,
since all images were obtained from the same data set, thermal
and temporal decorrelation should be minimal, allowing the
measurement of only spatial decorrelation. Second, varying the
temporal separation between images could allow a visualization
of how spatial decorrelation varies with the satellite viewing
angles. As listed in Table 11, the reference azimuth and elevation
angles are 157.4° and 67.8°, respectively. The variation of the
satellite azimuth and elevation angle offsets with respect to the
time offset is shown in Fig. 14. It can be seen that, even with
30-s separation, which is not realistic from practical experience
(repeat-pass satellite measurements have been made with a
minimum of 1-s accuracy [18]), the difference between satellite
viewing angles is only fractions of a degree. This is because
navigation satellites are in medium Earth orbit, allowing for
very long distances to any point on Earth. Finally, this scheme
simulates a real repeat-pass acquisition, where the repeat-
pass image is acquired with some time offset due to practical
reasons.

Example coherence maps between the master image and
slave images with temporal separations of 1, 10, and 20 s are
shown in Fig. 15. These maps show the correlation coefficient
between images, computed using a spatial sliding window, 20
by 20 points wide, in a similar fashion to [25].

As expected, Fig. 15 shows that, as the temporal separation
(and therefore angular separation) between images increases,
the coherence between them decreases.

To compare experimental spatial decorrelation results with
theoretical ones, as shown in Fig. 12(b), two representative
areas within the image were selected. The first one is located
around (630, —116) m in the image of Fig. 12. In this area,
there is a strong compressed echo from a single building, which
is a student accommodation hall [Fig. 16(a)]. The second one
is located around (694, —398) m and contains a patch of trees
[Fig. 16(b)], which were also detected with a sufficiently high
signal-to-noise ratio (SNR).

(b)

Fig. 16. Objects selected for spatial decorrelation evaluation within the imag-
ing scene. (a) Building. (b) Trees.

For both targets, the SNR and the signal-to-background ratio
(SBR) [29] were estimated. The first parameter is the ratio be-
tween the compressed echo intensity for the targets in question
and the mean receiver thermal noise level, while the second
parameter is the ratio between the compressed echo intensity
for the same targets and the mean echo intensity of areas in
the image where there are no distinct objects (e.g., flat grassy
areas), which we define as “background.” The background
consists of receiver thermal noise, compressed echo sidelobes
from other targets in the image (since the transmitted waveform
is a pseudorandom sequence, transmitted continuously), and
terrain reflections. The mean thermal noise level was found by
measuring the noise floor of our receiver, while the mean back-
ground level was estimated directly from the obtained image in
Fig. 12. The SNR/SBR values for the building and tree areas
were found to be 22.41/21.9 and 17.27/16.7 dB, respectively,
which were sufficient for further processing. It is also noted
here that both target areas were located at distances between
650 and 700 m from the receiver, while at the application level,
it is expected that the receiver would be placed no more than
200 m than the area to be monitored. It is also worth mentioning
that, according to these figures, an intensity level of —20 dB in
the image of Fig. 12 is dominated by receiver thermal noise.

The coherence between the master and slave images for
different time offsets was recorded from the obtained coherence
maps for each of the objects in Fig. 16. The reader is prompted
to Fig. 14 to translate time offsets to the particular satellite
azimuth/elevation angle. The measured coherence plots are
shown in Fig. 17. For comparison, the corresponding theoretical
coherence values were calculated based on (13) and the experi-
mental parameters and were plotted on the same graph. Averag-
ing windows, 20 = 20 pixels (image samples) wide, were used
for the evaluation of the experimental curves in Fig. 17.
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Fig. 17. Experimental versus theoretically predicted spatial coherence for

(a) building area and (b) tree area.

Fig. 17 shows that the experimentally obtained spatial coher-
ence is consistent with the theoretical predictions made using
the model developed in this paper, confirming its validity. It
also shows that, in GNSS-based SAR, spatial decorrelation
effects are not so dramatic as in the traditional spaceborne SAR
cases and can be further minimized by choosing the appropriate
satellite trajectories for change detection. In this example, even
a time offset of 15 s between repeat passes leads to a spatial
coherence higher than 0.9. There are some deviations between
the theoretical and practical results in Fig. 17, which may be
attributed to the complexity of the target structures and the
experiment itself. Even so, these deviations appear at temporal
image separations (10 s or longer) which are not expected in
practice.

VI. CONCLUSION

This paper has described spatial decorrelation and its effects
in CCD using GNSS-based SAR. A theoretical model has
been developed for this case by extending existing monostatic
SAR theory, and it was verified using both simulated and
experimental data. This model can also be applied to the generic
BSAR case. It was found that spatial coherence is sensitive to
the data acquisition geometries to a high degree, where, in many
cases, a complete loss of coherence can occur for very small
geometrical errors. However, there were many cases where the
data collection geometry is much more robust to such errors,
and these are the recommended geometries for the further CCD
exploitation. Having already found in previous work that our
system is robust to atmospheric errors too, the next step in this
research is to conduct full-scale trials to assess the practical
performance of GNSS-based SAR for CCD.
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