UNIVERSITY^{OF} BIRMINGHAM

University of Birmingham Research at Birmingham

Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching

Carstea, Elfrida M.; Baker, Andy; Bieroza, Magdalena; Reynolds, Darren M.; Bridgeman, Jonathan

DOI:

10.1016/j.watres.2014.05.013

License:

Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Carstea, EM, Baker, A, Bieroza, M, Reynolds, DM & Bridgeman, J 2014, 'Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching', *Water Research*, vol. 61, pp. 152–161. https://doi.org/10.1016/j.watres.2014.05.013

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

NOTICE: this is the author's version of a work that was accepted for publication in Water Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Water Research, DOI 10.1016/j.watres.2014.05.013

Eligibility for repository: checked 22/05/2014

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- •Users may freely distribute the URL that is used to identify this publication.
- •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- •User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 24. Apr. 2024

Accepted Manuscript

Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching

Elfrida M. Carstea , Andy Baker , Magdalena Bieroza , Darren M. Reynolds , John Bridgeman

PII: S0043-1354(14)00358-3

DOI: 10.1016/j.watres.2014.05.013

Reference: WR 10667

To appear in: Water Research

Received Date: 3 March 2014
Revised Date: 26 April 2014
Accepted Date: 10 May 2014

Please cite this article as: Carstea, E.M., Baker, A., Bieroza, M., Reynolds, D.M., Bridgeman, J., Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching, *Water Research* (2014), doi: 10.1016/j.watres.2014.05.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Characterisation of dissolved organic matter fluorescence
2	properties by PARAFAC analysis and thermal quenching
3	
4	Elfrida M. Carstea ^{1,2*} , Andy Baker ³ , Magdalena Bieroza ⁴ ,
5	Darren M. Reynolds ⁵ , John Bridgeman ¹
6	
7	¹ School of Civil Engineering, University of Birmingham, B15 2TT, UK;
8	e.m.carstea@bham.ac.uk; j.bridgeman@bham.ac.uk
9	² National Institute of R&D for Optoelectronics, Atomistilor 409, 077125,
10	Magurele, Romania
11	³ Connected Waters Initiative, University of New South Wales, Sydney,
12	NSW 2052, Australia; a.baker@unsw.edu.au
13	⁴ Lancaster Environment Centre, Lancaster University, Lancaster,
14	LA1 4YQ, UK; m.bieroza@lancaster.ac.uk
15	⁵ Biological, Biomedical and Analytical Sciences, University of the West of
16	England, Bristol, BS16 1QY, UK; Darren.Reynolds@uwe.ac.uk
17	
18	Abstract
19	The fluorescence intensity of dissolved organic matter
20	(DOM) in aqueous samples is known to be highly influenced
21	by temperature. Although several studies have demonstrated
22	the effect of thermal quenching on the fluorescence of DOM,
23	no research has been undertaken to assess the effects of
24	temperature by combining fluorescence excitation - emission
25	matrices (EEM) and parallel factor analysis (PARAFAC)
26	modelling. This study further extends previous research on
27	thermal quenching by evaluating the impact of temperature on

28	the fluorescence of DOM from a wide range of environmental
29	samples, in the range 20° C - 0° C. Fluorescence intensity
30	increased linearly with respect to temperature decrease at all
31	temperatures down to 0° C. Results showed that temperature
32	affected the PARAFAC components associated with humic-like
33	and tryptophan-like components of DOM differently,
34	depending on the water type. The terrestrial humic-like
35	components, C1 and C2 presented the highest thermal
36	quenching in rural water samples and the lowest in urban water
37	samples, while C3, the tryptophan-like component, and C4, a
38	reprocessed humic-like component, showed opposite results.
39	These results were attributed to the availability and abundance
40	of the components or to the degree of exposure to the heat
41	source. The variable thermal quenching of the humic-like
42	components also indicated that although the PARAFAC model
43	generated the same components across sites, the DOM
44	composition of each component differed between them. This
45	study has shown that thermal quenching can provide additional
46	information on the characteristics and composition of DOM
47	and highlighted the importance of correcting fluorescence data
48	collected in situ.
49	
50	Keywords: fluorescence spectroscopy; thermal
51	quenching; dissolved organic matter; parallel factor analysis;

temperature correction

52

_	1
_	•
J	J

54	* corre	sponding aut	hor:	Elfrida	M.	Carst	ea,	School	of	Civil
55	Engineering,	University	of	Birmi	ngha	ım,	B15	5 2TT	Ι,	UK;
56	e m carstea@h	ham ac uk• +	44(0)	7763574	493					

57

58

1. Introduction

59	In recent years, fluorescence spectroscopy has been
60	increasingly applied to the analysis of aqueous dissolved
61	organic matter (DOM). The effectiveness of this technique in
62	water quality analysis has been proven by studies on numerous
63	types of water systems (Drozdowska, 2007; Kelton et al., 2007;
64	Murphy et al., 2008; Ghervase et al., 2012; Kothawala et al.,
65	2012; Carstea et al., 2014). Fluorescence has been correlated
66	with standard parameters such as biological oxygen demand
67	(Reynolds and Ahmad, 1997; Hudson et al., 2008; Hur and
68	Kong, 2008), total organic carbon (Vodacek et al., 1995),
69	nitrogen and chemical oxygen demand (Hur and Cho, 2012;
70	Bridgeman et al., 2013). Due to its potential, researchers have
71	applied fluorescence spectroscopy in studies such as the
72	monitoring of riverine DOM and diesel pollution (Spencer et
73	al., 2007; Carstea et al., 2010), analysis of recycled waters
74	(Henderson et al., 2009), evaluation of drinking water treatment
75	processes (Bieroza et al., 2009; Shutova et al., 2014),
76	monitoring of viral abundance in wastewater (Pollard, 2012),
77	quantification of pesticides (Ferretto et al., in press) or testing
78	of potable waters microbial quality (Cumberland et al., 2012).

79	The intensive use of fluorescence spectroscopy in water quality
80	analyses arises from its advantages, which include high
81	sensitivity, small quantities of sample needed, very little or no
82	sample preparation and short measuring time (Coble, 1996;
83	Birdwell and Valsargis, 2010). However, the fluorescence
84	signal can be affected by so-called "matrix effects" which
85	include inner filter effects and fluorescence quenching
86	(Lakowicz, 2006; Henderson et al., 2009; Korak et al., 2014).
87	With regard to fluorescence quenching, it has been shown that
88	fluorescence spectroscopy is highly sensitive to temperature
89	variations. An increase in temperature increases the probability
90	of the excited electrons returning to ground state through
91	radiationless decay. Baker (2005) studied temperature
92	quenching on several types of water samples and observed a
93	decrease in fluorescence intensity ranging from 16 % to 48 %,
94	depending on the samples and DOM component analysed.
95	Elliott et al. (2006) observed a decrease in fluorescence of more
96	than 40 % for fluorophores produced by bacterial cultures
97	isolated from river samples and Seredynska-Sobecka et al.
98	(2007) studied thermal quenching on colloids obtaining similar
99	results. However, in each case the researchers did not study the
100	impact of temperature on DOM fluorescence below 10° C, due
101	to condensation which could form on the cuvette walls.
102	Patsayeva et al. (2004) and, more recently, Watras et al. (2011)
103	have analysed thermal quenching to almost 5° C and developed

104	a correction method for fluorescence spectra but both research
105	teams concentrated only on marine water samples.
106	Consequently, no research has been made, so far, to study
107	fluorescence thermal quenching below 5° C on water samples
108	from a wide range of different sources.
109	This study seeks to characterise the fluorescence
110	properties of DOM, from water samples with different sources,
111	using thermal quenching and the combination of excitation -
112	emission matrices (EEM) and parallel factor analysis
113	(PARAFAC). Several studies have shown that PARAFAC is a
114	powerful tool in separating and analysing DOM components
115	(Ohno et al., 2008; Yamashita and Jaffe, 2008; Gueguen et al.,
116	2011; Meng et al., 2013; Murphy et al., 2014; Sanchez et al.,
117	2014; Yang et al., 2014). Specifically, the aims of this study
118	were: (1) to investigate the response of DOM, from different
119	sources (urban and rural areas), at low temperatures for a better
120	understanding of DOM characteristics; (2) to evaluate the
121	impact of temperature on the most labile fractions of DOM; (3)
122	to assess the potential of applying the Watras et al. (2011)
123	correction tools at temperatures below 5° C; (4) to investigate
124	the use of EEM-PARAFAC tool combined with thermal
125	quenching to improve our understanding of DOM character. To
126	date, EEM-PARAFAC has not been applied to the investigation
127	of thermal quenching of DOM components from water samples
128	and could provide a better understanding of DOM properties.

1	2	Q
1	_	,

130	2. Materials and Methods
-----	--------------------------

^ 1	a 1	4 •	1		•
,	Somnia	NPANAPATIA	กกทศ	กทก	TICIC
4.	Mailli	e preparatio	II AIIU	ı allal	V.31.3

132	Samples were collected from two areas: Birmingham and
133	Buxton, located in the Midlands area, UK (Fig. 1). The
134	sampling sites, with different characteristics, were selected to
135	reflect a gradient from rural to urban areas. In Birmingham, 5
136	types of water were sampled, hereafter named: brook (Sutton
137	Park), lake (Sutton Park), pond (Edgbaston pond), surface
138	runoff from storm sewers (University of Birmingham campus)
139	and canal (Worcester and Birmingham Canal). Brook and lake
140	samples were collected from Sutton Park, which is a National
141	Nature Reserve and presents a relatively rural, pristing
142	character (http://www.birmingham.gov.uk/suttonpark). Canal
143	storm sewer and pond samples were collected from an urban
144	zone; however, the pond was located in a small park with lower
145	anthropogenic activity compared to canal and storm sewer
146	From Buxton, a river water sample was collected. Buxton town
147	is located along the Wye River, within The Peak District
148	National Park, having low anthropogenic impact, according to
149	the Environment Agency
150	(http://www.peakdistrict.gov.uk/microsites/sopr/landscape/river
151	-quality).
152	Water was sampled in polypropylene bottles, cleaned with
153	10 % HCl and thoroughly rinsed with deionised water prior to

154	use. All measurements were performed within 24h from
155	collection. The samples were measured for conductivity, pH,
156	dissolved organic carbon (DOC) and absorbance, from 200 nm
157	to 700 nm. Conductivity and pH were measured using a Myron
158	meter, absorbance measurements were made with a WPA
159	lightwave UV-VIS diode-array S2000 spectrophotometer and
160	DOC with a Shimadzu TOC-Vcpn analyzer.
161	Fluorescence EEMs were recorded using a Varian Cary
162	Eclipse spectrofluorometer, with the following parameters:
163	excitation wavelength domain 200 - 400 nm, emission
164	wavelength domain 280 - 500 nm, steps of 5 nm and 2 nm for
165	excitation and emission, respectively, and slits of 5 nm. The
166	instrument stability was checked by recording the Raman
167	values (at excitation wavelength 348 nm and emission
168	wavelength 395 nm) before each set of measurements. The
169	average Raman value was 24.38 a.u. with a standard deviation
170	of 0.58. The fluorescence intensity of all spectra were
171	normalized to a maximum value of 1000 a.u. and corrected to
172	the average Raman value. Every set of measurements was made
173	in triplicate in order to check the instrument reproducibility (±
174	5%).
175	The temperature was decreased gradually from $20^{0}\ \mathrm{C}$ to
176	0° C, by the use of a Peltier temperature controller, recording
177	EEMs at every 0.5° C. Each set of measurements lasted for 90
178	min, to ensure gentle cooling of the sample. Below 6^0 C,

179 condensation usually forms on the cuvette outer walls, but, in 180 this study, it was eliminated by inserting dessicant bags inside 181 the sample chamber. The reduction in condensation was 182 checked by recording fluorescence spectra at periodic time 183 intervals and at the established temperature range. The 184 conditions with no condensation were obtained when silica gel 185 bags had been kept in the sample chamber for 26 hrs. 186 Throughout the experimental period, the dessicant bags were 187 periodically replaced. All samples were filtered with 0.7 µm 188 Whatman GF/C paper filters prior to cooling and analysis.

2.2 PARAFAC analysis

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

PARAFAC was performed on a set of 697 EEMs (including triplicates) for varying temperatures for the six water sources described above. Although only 6 different water sources have been used in PARAFAC modelling, they provide a good variation in terms of spectral properties and a large any potential number of samples helped to avoid autocorrelation effects during the split-half validation. Prior to modeling, EEMs were pre-processed in Matlab using customwritten functions to remove redundant spectral areas ($\lambda ex < 220$ nm, $\lambda ex > \lambda em$, 2 $\lambda ex < \lambda em$, Raman and Rayleigh scatter) (Bieroza et al., 2011). Pre-processed EEMs were normalized to the Raman scatter peak of water using procedure described in Lawaetz and Stedmon (2009). The PARAFAC model was fitted and validated using the DOMFluor toolbox for Matlab

204	(Stedmon and Bro, 2008). The final four-component model was					
205	chosen based on the percentage of variance explained, core-					
206	consistency diagnostic (Bro and Kiers, 2003), the results of the					
207	split-half analysis and visual inspection of the excitation and					
208	emission loadings (Table 1).					

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

3. Results and Discussion

3.1 Fluorescence properties of DOM

The four fluorescence components identified in the water samples are shown in Fig. 2. Component 1 (λ_{ex} ~225 nm and ~330 nm, λ_{em} ~460 nm) is associated with terrestrial humic substances, being similar to the PARAFAC components found by Stedmon and Markager (2005), Murphy et al. (2008; 2011; 2014), Kowalczuk et al. (2009), Williams et al. (2010), Baghoth et al. (2011), Yamashita et al. (2011), Ishii and Boyer (2012), Kothawala et al. (2012), Maie et al. (2012) and Yamashita et al. (2013). These studies have shown that this component is ubiquitous in water systems, having a primary terrestrial source and a secondary microbial source of DOM. In addition, C1 is dominated by biological production and is partially degraded. According to Fellman et al. (2010) and Ishii and Boyer (2012), C1 has high molecular weight (>1000 Da) and presents a high degree of hydrophobicity and aromaticity. Component 2 (C2), found at λ_{ex} ~225 nm and ~330 nm, λ_{em} ~410 nm, belongs to the group of humic fluorophores,

229	based on the studies of Stedmon and Markager (2005), Murphy
230	et al. (2008; 2014), Williams et al. (2010), Yamashita et al.
231	(2011), Ishii and Boyer (2012), Maie et al. (2012). These
232	studies show that C2 is found mostly in DOM dominated by
233	terrestrial sources and is photochemically produced. C2
234	presents minimal biodegradation and, according to Ohno et al.
235	(2010), has low molecular weight (<665 Da).
236	The third component, C3, λ_{ex} ~225 and ~275 nm, λ_{em}
237	~350 nm, indicated the presence of a tryptophan-like fraction,
238	in accordance with the results of Stedmon and Markager
239	(2005), Williams et al. (2010), Murphy et al. (2011; 2014),
240	Maie et al. (2012), Yamashita et al. (2013), Shutova et al.
241	(2014). Furthermore, Fellman et al. (2010) and Kothawala et al.
242	(2012) found that this component is a product of
243	autochthonous, microbial processing.
244	Component 4 (C4) (λ_{ex} ~240 and ~320 nm, λ_{em} ~380 nm)
245	is linked to the humic substances, as shown by Stedmon and
246	Markager (2005), Murphy et al. (2008; 2011; 2014), Graeber et
247	al. (2012), Kothawala et al. (2012), Maie et al. (2012), Ishii and
248	Boyer (2012) and Yamashita et al. (2013). These studies
249	demonstrate that C4 indicates recent biological production and
250	is often defined as a microbial humic-like component (Murphy
251	et al., 2011; Maie et al., 2012; Yamashita et al., 2013). Ishii and
252	Boyer (2012) report that C4 has an intermediate molecular
253	weight, between C1 and C2.

254	The mean fluorescence values of component scores and
255	the relative abundance of each component to the total
256	fluorescence intensity are presented in Table 2. C1 and C2 are
257	most abundant at the brook and lake samples, followed by the
258	river and pond samples and are the least abundant at the canal
259	and storm sewer samples. The abundance of C3 and C4 is
260	higher at the canal and storm sewer samples compared to the
261	other samples. A correlation between C1 and C2 was observed
262	$(r_s=1.00,\ n=7,\ p<0.001),$ which indicated that all samples
263	contained both high and low molecular weight DOM
264	compounds and with hydrophobic and hydrophilic characters,
265	in almost equal proportions. In addition, a strong correlation
266	between C3 and C4 was calculated ($r_s = 0.93$, $n = 7$, $0.01 > p > 0.01$
267	0.005) showing a close relationship between the tryptophan-
268	like compound and the microbial humic-like fraction. Despite
269	the low degrees of freedom for both correlations ($df = 5$), given
270	by the replication in the dataset, the correlations were
271	considered significant since the components tendencies were
272	similar.
273	Based on these results, it was observed that the brook,
274	lake and river samples, which were collected from relatively
275	pristine areas, contained DOM with a strong humic-like
276	character, indicating low anthropogenic contamination. While
277	canal and storm sewer samples showed a high abundance of
278	tryptophan, typically associated with microbial material

279 (Kothawala et al., 2012), indicating the presence of 280 anthropogenic-derived matter (Meng et al., 2013; Carstea et al., 281 2014). The distinction between urban and rural samples is 282 better reflected by the C3/C1 ratio (Table 2): brook, lake and 283 river samples with a rural character had the lowest values, pond 284 sample had an intermediate urban and rural character due to the 285 sampling location in an urban park, and canal and storm sewer 286 with an urban impact showed the highest C3/C1 values. Canal 287 and storm sewer also presented similar values for DOC and 288 absorbance (Table 3). Furthermore, rural samples showed 289 higher DOC and absorbance values compared to the other 290 samples. The highest conductivity values were detected at the 291 canal and pond samples, while the lowest values were seen at 292 the storm sewer sample. The values for pH were recorded 293 within the range of 6.7 and 8.1.

3.2 Thermal quenching of humic-like components

294

295 The fluorescence response to temperature variation, between 20^o C and 0^o C, for the humic-like components C1, C2 296 297 and C4 is shown in Figure 3 (a, c and e). All three components exhibit a linear fluorescence increase with temperature 298 299 decrease. Similar linearity was reported in the studies of Baker 300 et al. (2005), Seredynska-Sobecka et al. (2007) and Watras et 301 al. (2011) on thermal quenching of DOM fluorescence, in the range of 45° C - 5° C. Although, PARAFAC components 302

showed similar linear trends at all samples, the degree of temperature impact was highly variable.

305 Figure 3 (b, d, f) presents the slope of fluorescence 306 intensity decrease per degree Celsius. C1 shows the highest 307 slope at the rural samples, lake and brook, followed by the 308 pond and storm sewer samples, while the lowest values have 309 been seen at the river and canal samples. Similar sample 310 variability of slope was observed at C2. The last humic-like 311 component, C4, presents the highest slope at the urban samples, 312 storm sewer and canal, whilst the lowest have been seen at the 313 rural samples. It must be noted that although the PARAFAC 314 model is consistent across all samples, the degree of thermal 315 quenching is variable between them. This suggests that each 316 humic-like PARAFAC component is comprised of more than 317 one fluorophore.

Overall, C1 exhibits a higher slope of fluorescence intensity decrease compared to C2 and C4, indicating that this component might be more environmentally impacted. Seredynska-Sobecka et al. (2007) reported that the humic-like fraction has high sensitivity to thermal quenching, especially at the small size fractions (< 0.1 μ m). Furthermore, Ohno et al. (2008), Yamashita and Jaffe (2008) and Mounier (2010) proved, by studying the interaction between DOM and metal ions, that this component was more likely to suffer fluorescence quenching, compared to the other humic-like components. This

318

319

320

321

322

323

324

325

326

327

328	indicated that C1 is more sensitive to environmental changes
329	relative to C2 and C4. Moreover, C2 and C4, which are
330	resistant to further degradation, after photochemical and
331	biological production and degradation (Ishii and Boyer, 2012),
332	are probably less affected by temperature changes. The high
333	slope of C1 could also be associated with the relative
334	abundance of fluorescence intensity, as higher slope has been
335	observed at samples with high abundance. Hence, C1 could be
336	more readily available for thermal quenching compared to C2
337	and C4.
338	3.3 Tryptophan-like component behaviour to
220	temperature changes
339	temperature changes
340	Tryptophan-like component, C3, shows the same linearity
340	Tryptophan-like component, C3, shows the same linearity
340 341	Tryptophan-like component, C3, shows the same linearity as the humic-like components (Fig. 4a), in accordance with the
340341342	Tryptophan-like component, C3, shows the same linearity as the humic-like components (Fig. 4a), in accordance with the results of Baker (2005) and Elliott et al. (2006). Furthermore,
340341342343	Tryptophan-like component, C3, shows the same linearity as the humic-like components (Fig. 4a), in accordance with the results of Baker (2005) and Elliott et al. (2006). Furthermore, variable gradients of fluorescence decrease per degree Celsius
340341342343344	Tryptophan-like component, C3, shows the same linearity as the humic-like components (Fig. 4a), in accordance with the results of Baker (2005) and Elliott et al. (2006). Furthermore, variable gradients of fluorescence decrease per degree Celsius (slope) have been observed (Fig. 4b). The highest slope has
340341342343344345	Tryptophan-like component, C3, shows the same linearity as the humic-like components (Fig. 4a), in accordance with the results of Baker (2005) and Elliott et al. (2006). Furthermore, variable gradients of fluorescence decrease per degree Celsius (slope) have been observed (Fig. 4b). The highest slope has been seen at the storm sewer and canal samples, followed by
340 341 342 343 344 345 346	Tryptophan-like component, C3, shows the same linearity as the humic-like components (Fig. 4a), in accordance with the results of Baker (2005) and Elliott et al. (2006). Furthermore, variable gradients of fluorescence decrease per degree Celsius (slope) have been observed (Fig. 4b). The highest slope has been seen at the storm sewer and canal samples, followed by the lake, pond and river samples, while the lowest has been
340 341 342 343 344 345 346 347	Tryptophan-like component, C3, shows the same linearity as the humic-like components (Fig. 4a), in accordance with the results of Baker (2005) and Elliott et al. (2006). Furthermore, variable gradients of fluorescence decrease per degree Celsius (slope) have been observed (Fig. 4b). The highest slope has been seen at the storm sewer and canal samples, followed by the lake, pond and river samples, while the lowest has been observed at the brook sample.
340 341 342 343 344 345 346 347 348	Tryptophan-like component, C3, shows the same linearity as the humic-like components (Fig. 4a), in accordance with the results of Baker (2005) and Elliott et al. (2006). Furthermore, variable gradients of fluorescence decrease per degree Celsius (slope) have been observed (Fig. 4b). The highest slope has been seen at the storm sewer and canal samples, followed by the lake, pond and river samples, while the lowest has been observed at the brook sample. In contrast to the humic-like components, C3 slope could
340 341 342 343 344 345 346 347 348 349	Tryptophan-like component, C3, shows the same linearity as the humic-like components (Fig. 4a), in accordance with the results of Baker (2005) and Elliott et al. (2006). Furthermore, variable gradients of fluorescence decrease per degree Celsius (slope) have been observed (Fig. 4b). The highest slope has been seen at the storm sewer and canal samples, followed by the lake, pond and river samples, while the lowest has been observed at the brook sample. In contrast to the humic-like components, C3 slope could be associated to a lesser extent with the relative abundance of

353 degree of thermal quenching relates to the exposure of the 354 fluorophore to the heat source. These findings suggest that C3, 355 belonging to storm sewer DOM, contains more exposed 356 tryptophan compared to the canal sample. The same 357 assumption could apply to the lake sample C3, which presents a 358 high slope value, despite the low abundance relative to river 359 and pond samples. The results suggest that free tryptophan 360 could be a dominant component in storm sewer and lake 361 samples and is, therefore, more easily quenched with increasing 362 temperature. 363 The various responses of PARAFAC components scores 364 to temperature fluctuations can have a large impact on in situ 365 fluorescence measurements, especially when comparing 366 experiments from several locations made in different seasons or 367 times of the day. Consequently, the fluorescence spectra need 368 to be corrected for temperature before comparison studies can 369 be made. The temperature correction tool, developed by Watras 370 et al. (2011), uses a temperature coefficient, which is the ratio 371 between the slope of the fluorescence intensity as a function of temperature change, from 20^o C to 5^o C and the intercept, at the 372 reference temperature of 20° C. However, their studies have 373 374 been performed on lake water and could not account for 375 variations between different types of water samples. The slope, 376 calculated in the present study, shows the same linear trend of increase below 5⁰ C, indicating that the temperature correction 377

	ACCEPTED MANUSCRIPT
378	tool developed by Watras et al. (2011) can be applied even to
379	fluorescence spectra of samples measured below 5 ⁰ C.
380	
381	4. Conclusions
382	This study presents the first investigation of DOM
383	fluorescence properties, at low temperatures, with EEM-
384	PARAFAC. The impact of temperature on the individual
385	PARAFAC components in DOM, from several water samples,
386	was evaluated by decreasing the temperature from $20^{0}~\mathrm{C}$ to 0^{0}
387	C. This analysis extends the fluorescence thermal quenching
388	studies, made by other researchers, in the range of 45° C -5° C.
389	Results have shown that fluorescence intensity has a linear
390	increase, as temperature decreased from 20^{0} C to 0^{0} C. Thus,
391	the temperature correction tools developed by Watras et al.
392	(2011) can be applied to fluorescence spectra of samples
393	measured at temperatures below 5° C.
394	It has been found that temperature affects the PARAFAC
395	components associated with the tryptophan-like and humic-like
396	fractions differently, depending on DOM character of each
397	sample. The humic-like components, C1 and C2 present the
398	highest thermal quenching at the rural samples and the lowest
399	at the urban samples, while C4 show opposite results. The data
400	indicate that, while the PARAFAC model is consistent across

all samples, the degree of thermal quenching varies between

them, suggesting that each humic-like PARAFAC component

401

402

16

403	is comprised of more than one fluorophore. Furthermore,					
104	thermal quenching has shown that, among the humic-like					
405	components, C1 is more environmentally impacted but, at the					
106	same time, more readily available to quenching compared to C2					
407	and C4. The tryptophan-like component presents the highest					
408	slope of fluorescence decrease per degree Celsius in the urban					
409	samples and the lowest at the rural samples. Thermal quenching					
410	has evidenced that free tryptophan residues, from the					
411	tryptophan-like fraction, are dominant at the storm sewer and					
412	lake samples, due to the direct exposure of the fluorophore to					
413	the heat source.					
414	Considering that a growing body of literature stresses the					
415	importance of using fluorescence for in situ measurements, the					
416	analysis of temperature effects on DOM is highly important, as					
417	the fluorescence signal of each DOM component is variably					
418	quenched depending on temperature. Therefore, we recommend					
419	correction of the fluorescence spectra recorded at temperatures					
420	below 20 ⁰ C. However, it is necessary to be aware of the					
421	potential multi-fluorophoric nature of the PARAFAC humic-					
122	like components, which may lead to variable results between					
123	sites.					
124						
125	Acknowledgements					
126	The work of E.M. Carstea was partly supported by the					

European Commission Framework Programme 7, through a

427

428	Marie Curie Intra-European Fellowship (PIEF-GA-2012-							
429	329962).							
430								
431	References							
432	Baghoth, S.A., Sharma, S.K., Amy, G.L., 2011. Tracking natural							
433	organic matter (NOM) in a drinking water treatment plant using							
434	fluorescence excitation-emission matrices and PARAFAC. Water Research							
435	45 (2), 797–809.							
436	Baker, A., 2005. Thermal fluorescence quenching properties of							
437	dissolved organic matter. Water Research 39 (18), 4405-4412.							
438	Bieroza, M., Baker, A., Bridgeman, J., 2009. Relating freshwater							
439	organic matter fluorescence to organic carbon removal efficiency in							
440	drinking water treatment. Science of the Total Environment 407 (5), 1765-							
441	1774.							
442	Bieroza, M., Baker, A., Bridgeman, J., 2011. Classification and							
443	calibration of organic matter fluorescence data with multiway analysis							
444	methods and artificial neural networks: an operational tool for improved							
445	drinking water treatment. Environmetrics 22 (3), 256-270.							
446	Birdwell, J.E., Valsaraj, K.T., 2010. Characterization of dissolved							
447	organic matter in fogwater by excitation-emission matrix fluorescence							
448	spectroscopy. Atmospheric Environment 44 (27), 3246-3253.							
449	Birmingham City Council,							
450	http://www.birmingham.gov.uk/suttonpark [accessed in January 2014].							
451	Bridgeman, J., Baker, A., Carliell-Marquet, C.M., Carstea, E., 2013.							
452	Determination of changes in wastewater quality through a treatment works							
453	using fluorescence spectroscopy. Environmental Technology 34 (23), 3069-							
454	3077.							
455	Bro, R., Kiers, H.A.L., 2003. A new efficient method for determining							
456	the number of components in PARAFAC models. Journal of Chemometrics							
457	17 (5), 274-286.							

Carstea, E.M., Baker, A., Bieroza, M., Reynolds D.M., 2010.

458

459 Continuous fluorescence excitation emission matrix monitoring of river 460 organic matter. Water Research 44 (18), 5356-5366. 461 Carstea, E.M., Baker, A., Savastru, R., 2014. Comparison of river 462 and canal water dissolved organic matter fluorescence within an urbanised 463 catchment. Water and Environment Journal 28 (1), 11-22. 464 Coble, P.G., 1996. Characterisation of marine and terrestrial 465 dissolved organic matter in seawater using excitationemission matrix 466 spectroscopy. Marine Chemistry 51, 325-346. 467 Cumberland, S., Bridgeman, J., Baker, A., Sterling, M., Ward, D., 468 2012. Fluorescence spectroscopy as a tool for determining microbial quality 469 in potable water applications. Environmental Technology 33 (6), 687-693. 470 Drozdowska, V., 2007. Seasonal and spatial variability of surface 471 seawater fluorescence properties in the Baltic and Nordic Seas: results of 472 lidar experiments. Oceanologia 49 (1), 59-69. 473 Elliott, S., Lead, J.R., Baker, A., 2006. Thermal quenching of 474 fluorescence of freshwater, planktonic bacteria. Analytica Chimica Acta 564 475 (2), 219-225. 476 Fellman, J.B., Spencer, R.G.M., Hernes, P.J., Edwards, R.T., 477 D'Amore, D.V., Hood, E., 2010. The impact of glacier runoff on the 478 biodegradability and biochemical composition of terrigenous dissolved 479 organic matter in near-shore marine ecosystems. Marine Chemistry 121 (1-480 4), 112–122. 481 Ferretto, N., Tedetti, M., Guigue, C., Mounier S., Redon. R., Goutx, 482 M., In press. Identification and quantification of known polycyclic aromatic 483 hydrocarbons and pesticides in complex mixtures using fluorescence 484 excitation-emission matrices and parallel factor analysis, Chemosphere. 485 Ghervase, L., Cordier, A., Ibalot F., Parlanti, E., 2012. Storage effect 486 on fluorescence signal of dissolved organic matter components. Romanian 487 Reports in Physics 64 (3), 754-760.

488	Graeber, D., Gelbrecht, J., Pusch, M.T., Anlanger, C., von Schiller,						
489	D., 2012. Agriculture has changed the amount and composition of dissolved						
490	organic matter in Central European headwater streams, Science of the Tota						
491	Environment 438, 435–446.						
492	Guéguen, C., Granskog, M.A., McCullough, G., Barber, D.G., 2011.						
493	Characterisation of colored dissolved organic matter in Hudson Bay and						
494	Hudson Strait using parallel factor analysis. Journal of Marine Systems 88						
495	(3), 423–433.						
496	Henderson, R.K., Baker, A., Murphy, K.R., Hambly, A., Stuetz,						
497	R.M., Khan, S.J., 2009. Fluorescence as a potential monitoring tool for						
498	recycled water systems: A review. Water Research 43 (4), 863-881.						
499	Hudson, N., Baker, A., Ward, D., Reynolds, D.M., Brunsdon, C.,						
500	Carliell-Marquet, C., Browning, S., 2008. Can fluorescence spectrometry be						
501	used as a surrogate for the biochemical oxygen demand (BOD) test in water						
502	quality assessment? An example from South West England. Science of the						
503	Total Environment 391 (1), 149–158.						
504	Ishii, S.K.L., Boyer, T.H., 2012. Behavior of reoccurring PARAFAC						
505	components in fluorescent dissolved organic matter in natural and						
506	engineered systems: a critical review. Environmental Science & Technology						
507	46 (4), 2006–2017.						
508	http://www.peakdistrict.gov.uk/microsites/sopr/landscape/river-						
509	quality [accessed in April 2014]						
510	Hur, J., Kong, D.S., 2008. Using synchronous fluorescence spectra to						
511	estimate biochemical oxygen demand (BOD) of urban rivers affected by						
512	treated sewage. Environmental Technology, 29 (4), 435-444.						
513	Hur, J., Cho J.W., 2012. Prediction of total nitrogen, BOD, and COD						
514	concentrations in a typical urban river using fluorescence excitation-						
515	emission matrix with PARAFAC and UV absorption indices. Sensors 12,						
516	972-986.						

517	Kelton, N., Molot, L.A., Dillon, P.J., 2007. Spectrofluorometric					
518	properties of dissolved organic matter from Central and Southern Ontario					
519	streams and the influence of iron and irradiation. Water Research, 41 (3)					
520	638 – 646.					
521	Korak, J.A., Dotson, A.D., Summers, R.S., Rosario-Ortiz, F.L., 2014					
522	Critical analysis of commonly used fluorescence metrics to characterize					
523	dissolved organic matter. Water Research 49, 327-338.					
524	Kothawala, D.N., von Wachenfeldt, E., Koehler, B., Tranvik, L.J.					
525	2012. Selective loss and preservation of lake water dissolved organic matter					
526	fluorescence during long-term dark incubations. Science of the Total					
527	Environment 433, 238-246.					
528	Kowalczuk, P., Durako, M.J., Young, H., Kahn, A.E., Cooper, W.J.					
529	Gonsior, M., 2009. Characterization of dissolved organic matter					
530	fluorescence in the South Atlantic Bight with use of PARAFAC models					
531	Interannual variability, Marine Chemistry 113 (3–4), 182–196.					
532	Lakowicz, J.R., 2006. Principles of Fluorescence Spectroscopy					
533	Third edition, Publisher Springer New York, Lakowicz, J.R., 2006					
534	Principles of Fluorescence Spectroscopy. Third edition, Publisher Springer					
535	New York., ISBN 978-0-387-46312-4.					
536	Lawaetz, A., Stedmon, C., 2009. Fluorescence intensity calibration					
537	using the Raman scatter peak of water. Applied Spectroscopy 63 (8), 936-					
538	940.					
539	Maie, N., Yamashita, Y., Cory, R.M., Boyer, J.N., Jaffé, R., 2012					
540	Application of excitation emission matrix fluorescence monitoring in the					
541	assessment of spatial and seasonal drivers of dissolved organic matter					
542	composition: Sources and physical disturbance controls. Applied					
543	Geochemistry 27 (4), 917–929.					
544	Meng, F., Huang, G., Yang, X., Li, Z., Li, J., Cao, J., Wanga, Z.					
545	Sun, L., 2013. Identifying the sources and fate of anthropogenically					

546	impacted dissolved organic matter (DOM) in urbanized rivers. Water					
547	Research 47 (14), 5027-5039.					
548	Mounier, S., Zhao, H., Garnier, C., Redon, R., 2010. Copper					
549	complexing properties of dissolved organic matter: PARAFAC treatment of					
550	fluorescence quenching. Biogeochemistry 106 (1), 107–116.					
551	Murphy, K., Stedmon, C.A., Waite, D., Ruiz, G., 2008.					
552	Distinguishing between terrestrial and autochthonous organic matter sources					
553	in marine environments using fluorescence spectroscopy. Marine Chemistry					
554	108 (1-2), 40-58.					
555	Murphy, K.R., Hambly, A., Singh, S., Henderson, R.K., Baker, A.,					
556	Stuetz, R., Khan, S.J., 2011. Organic matter fluorescence in municipal water					
557	recycling schemes: toward a unified PARAFAC model. Environmental					
558	Science & Technology, 45 (7), 2909-2916.					
559	Murphy, K.R., Stedmon, C.A., Wenig, P., Bro R., 2014. OpenFluor-					
560	an online spectral library of auto-fluorescence by organic compounds in the					
561	environment. Analytical Methods 6 (3), 658-661.					
562	Ohno, T., Amirbahman, A., Bro, R., 2008. Parallel factor analysis of					
563	excitation-emission matrix fluorescence spectra of water soluble soil organic					
564	matter as basis for the determination of conditional metal binding					
565	parameters. Environmental Science and Technology 42 (1), 186–192.					
566	OpenStreetMap contributors, CC BY-SA, Open Database License.					
567	(2010) Map of the United Kingdom Ordnance Survey data © Crown					
568	copyright and database right 2010-12. http://www.openstreetmap.org/					
569	[accessed January 2014].					
570	Patsayeva, S., Reuter, R., Thomas, D.N., 2004. Fluorescence of					
571	dissolved organic matter in seawater at low temperatures and during ice					
572	formation, EARSel eProceedings 3, 227-238.					
573	Pollard, P., 2012. Fluorescence instrument for <i>in situ</i> monitoring of					
574	viral abundance in water, wastewater and recycled water. Journal of					
575	Virological Methods 181 (1), 97-102.					

576	Reynolds, D.M., Ahmad, S.R., 1997. Rapid and direct determination				
577	of wastewater BOD values using a fluorescence technique. Water Research				
578	31(8), 2012–2018.				
579	Sanchez, N.P., Skeriotis, A.T., Miller, C.M., 2014. A PARAFAC-				
580	based long-term assessment of DOM in a multi-coagulant drinking water				
581	treatment scheme, Environmental Science and Technology 48 (3), 1582-				
582	1591.				
583	Seredynska-Sobecka, B., Baker, A., Lead, J.R., 2007.				
584	Characterisation of colloidal and particulate organic carbon in freshwaters				
585	by thermal fluorescence quenching. Water Research 41 (14), 3069 – 3076.				
586	Shutova, Y., Baker, A., Bridgeman, J., Henderson, R.K., 2014.				
587	Spectroscopic characterisation of dissolved organic matter changes in				
588	drinking water treatment: From PARAFAC analysis to online monitoring				
589	wavelengths. Water Research 54, 159–169.				
590	Spencer, R.G.M., Pellerin, B.A., Bergamaschi, B.A., Downing, B.D.,				
591	Kraus, T.E.C., Smart, D.R., Dahlgren, R.A., Hernes, P.J., 2007. Diurnal				
592	variability in riverine dissolved organic matter composition determined by				
593	in situ optical measurement in the San Joaquin River (California, USA).				
594	Hydrological Processes 21 (23), 3181-3189.				
595	Stedmon, C.A.; Markager, S., 2005. Resolving the variability in				
596	dissolved organic matter fluorescence in a temperate estuary and its				
597	catchment using PARAFAC analysis. Limnology and Oceanography 50 (2),				
598	686–697.				
599	Stedmon, C.A., Bro, R., 2008. Characterizing dissolved organic				
600	matter fluorescence with parallel factor analysis: a tutorial. Limnology and				
601	Oceanography-Methods 6, 572-579.				
602	Vodacek, A., Hoge, F.E., Swift, R.N., Yungel, J.K., Peltzer, E.T.,				
603	Blough, N.V., 1995. The use of in situ airborne fluorescence measurements				
604	to determine UV absorption coefficients and DOC concentrations in surface				
605	waters. Limnology and Oceanography, 40 (2), 411-415.				

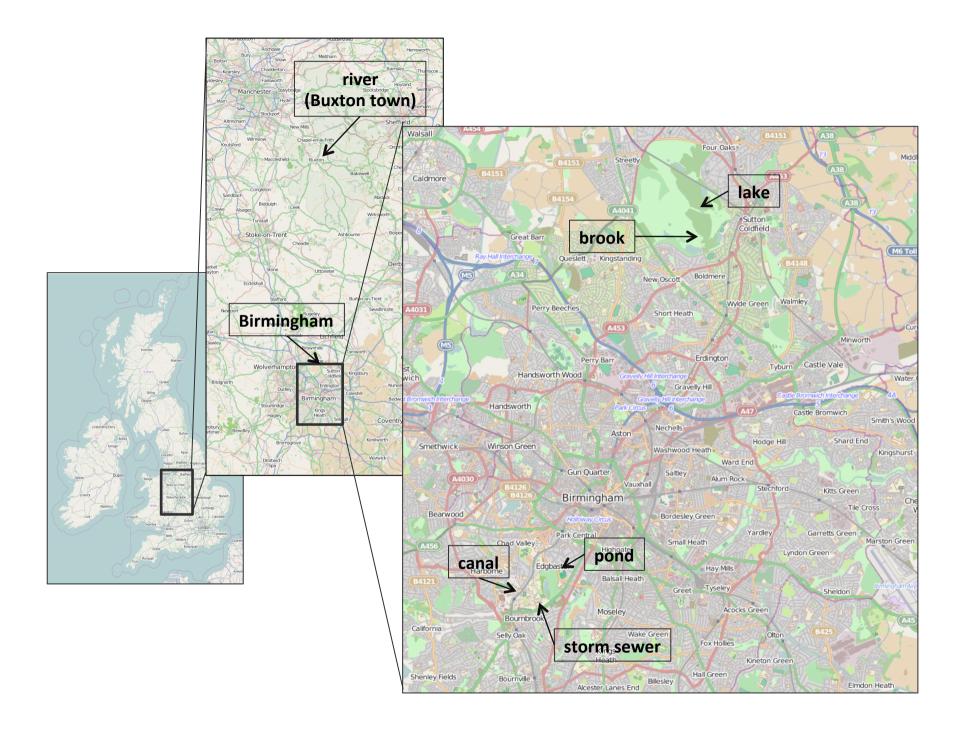
- 606 Watras, C.J., Hanson, P.C., Stacy, T.L., Morrison, K., Mather, J., Hu, 607 Y.H., Milewski, P., 2011. A temperature compensation method for CDOM 608 fluorescence sensors in freshwater. Limnology and Oceanography-Methods 609 9, 296–301. 610 Williams, C.J., Yamashita, Y., Wilson, H.F., Jaffe, R., Xenopoulo,s 611 M.A., 2010. Unraveling the role of land use and microbial activity in 612 shaping dissolved organic matter characteristics in stream ecosystems. 613 Limnology and Oceanography 55 (3), 1159–1171. 614 Yamashita, Y., Jaffé, R., 2008. Characterizing the interactions 615 between trace metals and dissolved organic matter using excitation-emission 616 matrix and Parallel Factor Analysis. Environmental Science & Technology 617 42 (19), 7374-7379. 618 Yamashita, Y., Kloeppel, B.D., Knoepp, J., Zausen, G.L., Jaffé, R., 619 2011. Effects of watershed history on dissolved organic matter 620 characteristics in headwater streams. Ecosystems 14 (7), 1110-1122. 621 Yamashita, Y., Boyer, J.N., Jaffé, R., 2013. Evaluating the 622 distribution of terrestrial dissolved organic matter in a complex coastal 623 ecosystem using fluorescence spectroscopy. Continental Shelf Research 66,
- 624 136–144.
- Yang, L., Shin, H.S., Hur, J., 2014. Estimating the concentration and
- 626 biodegradability of organic matter in 22 wastewater treatment plants using
- fluorescence excitation emission matrices and Parallel Factor Analysis.
- 628 Sensors 14, 1771-1786.

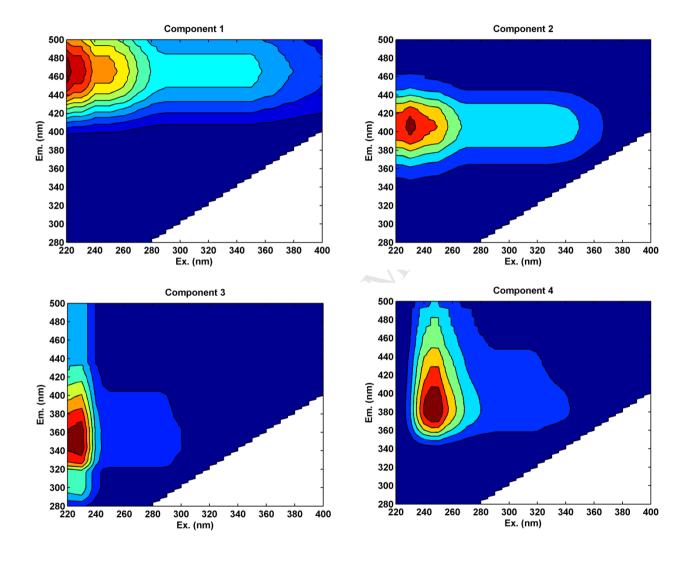
- 629 Figure captions
- 630 Fig. 1 Map with the sampling points from Birmingham and
- 631 Buxton (Map of UK adapted from © OpenStreetMap
- contributors, CC BY-SA, Open Database License 2010).
- 633 Fig. 2. Excitation and emission matrices of the four PARAFAC
- 634 components.
- 635 Fig. 3 Linear relationship between PARAFAC scores and
- 636 temperature, and the slope: (a) and respectively (b) component
- 1, (c) and (d) component 2, (e) and (f) component 4.
- 638 Fig. 4 Linear relationship between PARAFAC scores and
- temperature (a) and the slope (b) for component 3.

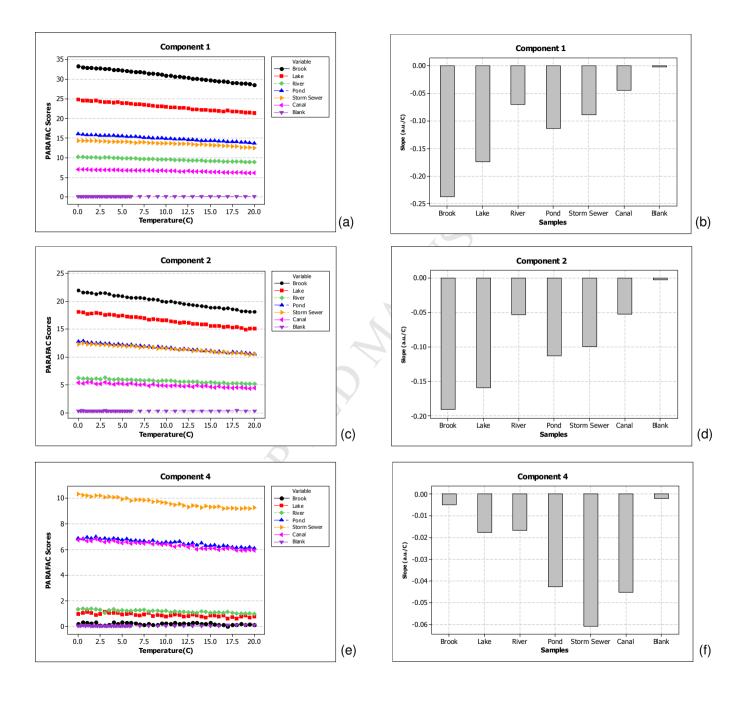
Table 1. A summary of the PARAFAC models fitted to fluorescence dataset with the following constraints: sample mode – non-negativity, excitation and emission modes – non-negativity and unimodality

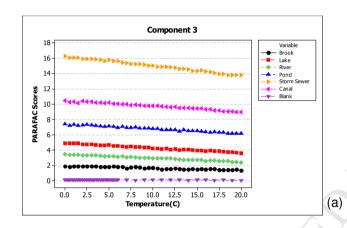
Number of components	Convergence (Yes, No)	Sum of squares of errors	Total variance explained (%)	Core-consistency (%)	Split-half analysis validation (Yes, No)
1	Yes	27056	96	100	Yes
2	Yes	23183	96	-87	Yes
3	Yes	5540	99	41	Yes
4	Yes	4860	99	6	Yes
5	Yes	4124	99	0	Yes
6	Yes	4021	99	2	Yes
7	Yes	3669	99	1	Yes

Table 2. DOM fluorescence results of the water samples.


Samples	Mean value of component scores (a.u.) (SD*)						Relative abundance of fluorescence intensity (%)**			
	C1	C2	C3	C4	C3/C1	Total	C1	C2	C3	C4
Brook	30.9	20.0	1.7	0.2	0.1	52.8	59	38	3	0
	(1.4)	(1.1)	(0.2)	(0.1)						
Lake	23.0	16.5	4.3	0.9	0.2	44.7	51	37	10	2
	(1.0)	(1.0)	(0.4)	(0.1)						
River	9.5	5.7	3.0	1.2	0.3	19.3	49	29	15	6
	(0.4)	(0.3)	(0.3)	(0.1)						
Pond	14.9	11.7	6.8	6.6	0.5	39.9	37	29	17	16
	(0.7)	(0.7)	(0.4)	(0.3)						
Storm	13.6	11.5	15.0	9.7	1.1	49.8	27	23	30	19
Sewer	(0.5)	(0.6)	(0.8)	(0.4)						
Canal	6.6	4.9	9.8	6.4	1.5	27.6	24	18	35	23
	(0.3)	(0.3)	(0.4)	(0.3)						
Blank	0.1	0.3	0.1	0.0	-	0.6	22	52	19	7
	(0.0)	(0.0)	(0.0)	(0.0)						


^{*}SD – standard deviation


^{**}Calculated according to Yamashita and Jaffe (2008) as percentage of the total fluorescence.


Table 3. Standard data for the analysed water samples.


Samples	DOC (mg/L)	рН	Conductivity (µS/cm)	Absorbance at 350 nm (cm ⁻¹)
Brook	7.75	8.1	413	0.089
Lake	8.71	6.8	288	0.078
River	5.55	6.7	340	0.021
Pond	2.96	7.3	687	0.023
Storm Sewer	4.96	7.0	98	0.035
Canal	4.79	6.8	747	0.039

- We investigated DOM fluorescence properties, at low temperatures, with EEM-PARAFAC
- \bullet Fluorescence intensity increases linearly as temperature decreases from 20 0 C to 0 0 C
- DOM PARAFAC components are variably quenched and this is sample specific
- Each humic-like PARAFAC component might be comprised of more than one fluorophore

