
 
 

University of Birmingham

Gusts caused by high-speed trains in confined
spaces and tunnels
Baker, C.J.; Gilbert, T.; Quinn, A.

DOI:
10.1016/j.jweia.2013.07.015

License:
None: All rights reserved

Document Version
Early version, also known as pre-print

Citation for published version (Harvard):
Baker, CJ, Gilbert, T & Quinn, A 2013, 'Gusts caused by high-speed trains in confined spaces and tunnels',
Journal of Wind Engineering and Industrial Aerodynamics, vol. 121, pp. 39-48.
https://doi.org/10.1016/j.jweia.2013.07.015

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Wind Engineering and Industrial Aerodynamics.
Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A
definitive version was subsequently published in Journal of Wind Engineering and Industrial Aerodynamics Volume 121, October 2013,
Pages 39–48. DOI: http://dx.doi.org/10.1016/j.jweia.2013.07.015

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Oct. 2020

https://doi.org/10.1016/j.jweia.2013.07.015
https://research.birmingham.ac.uk/portal/en/persons/christopher-baker(404705a9-d4bd-4a8f-b210-a98a5f1e28c5).html
https://research.birmingham.ac.uk/portal/en/persons/andrew-quinn(872cf132-02b7-442a-83a8-4d6f83aa4821).html
https://research.birmingham.ac.uk/portal/en/publications/gusts-caused-by-highspeed-trains-in-confined-spaces-and-tunnels(8fab47c2-6be1-466f-9ad1-b2dc42917860).html
https://research.birmingham.ac.uk/portal/en/journals/journal-of-wind-engineering-and-industrial-aerodynamics(9bc51ccb-6df8-424e-83e5-ce016a34b1d5)/publications.html
https://doi.org/10.1016/j.jweia.2013.07.015
https://research.birmingham.ac.uk/portal/en/publications/gusts-caused-by-highspeed-trains-in-confined-spaces-and-tunnels(8fab47c2-6be1-466f-9ad1-b2dc42917860).html


                             Elsevier Editorial System(tm) for Journal of 

Wind Engineering & Industrial Aerodynamics 

                                  Manuscript Draft 

 

 

Manuscript Number: INDAER-D-13-00018R2 

 

Title: Gusts caused by high-speed trains in confined spaces and tunnels

  

 

Article Type: Full Length Article 

 

Keywords: High speed trains; Air velocities; Slipstreams; Wakes; Gusts; 

Walls; Tunnels; Confined spaces 

 

Corresponding Author: Mr. Tim Gilbert,  

 

Corresponding Author's Institution:  

 

First Author: Tim Gilbert 

 

Order of Authors: Tim Gilbert; Christopher Baker, Professor; Andrew 

Quinn, PhD 

 

 

 

 

 

 



 We measure the velocity around a high-speed train in various confined spaces. 

 Moving-model experiments were carried out with a simplified ICE2. 

 Cases included the open air, walls, short tunnels, and a partially enclosed tunnel. 

 A pressure-driven piston effect causes high gust magnitudes in tunnels.  

 Tunnel length and cross-sectional area affect the gust magnitudes. 

 High lateral and vertical velocities occur in the partially-enclosed tunnel. 

Highlights (for review)



Gusts caused by high-speed trains in confined spaces and tunnels 

T Gilbert*, CJ Baker, A Quinn 

Birmingham Centre for Railway Research and Education, School of Civil Engineering, 

University of Birmingham 

* Corresponding author: School of Civil Engineering, The University of Birmingham, 

Edgbaston, Birmingham, West Midlands, B15 2TT, UK. Email: tkg614@bham.ac.uk. Tel: 

+447563791094.  

Keywords: High speed trains; Air velocities; Slipstreams; Wakes; Gusts; Walls; Tunnels; 

Confined spaces. 

 

MEMO: Please consider for publication for a possible special issue of WES 2012 (Wind 

Engineering Society 2012 Conference, University of Southampton, UK, 10-12 September 

2012)

*Manuscript

Click here to view linked References

mailto:tkg614@bham.ac.uk
http://ees.elsevier.com/indaer/viewRCResults.aspx?pdf=1&docID=2443&rev=2&fileID=79445&msid={87D5EB40-3984-4130-AD31-E6DAA00C36B0}


 

Abstract 

 

Little is known of the behaviour of transient air velocities and dynamic pressure loads 

generated by high-speed trains in confined spaces, or whether current methodologies for 

assessing transient gust loads in open spaces can be used in confined spaces. Experiments 

have been carried out in which a moving-model high-speed train passed walls, a partially-

enclosed tunnel, and single-track tunnels with a variety of cross-sectional areas and lengths. 

An open air control experiment has also been carried out. The train model was a simplified 

1/25 scale four-carriage ICE2 train travelling at 32m/s. Cobra Probes measured the three-

dimensional air velocity components at various positions inside the structures. The results 

show that the peak gust magnitudes increase in all confined cases compared to the open air. 

In tunnels, a ‘piston effect’ appears to have been a dominant cause of the increases in the 

peak gust magnitudes, as well as prolonged winds occurring before and after the train passed 

the probes. The tunnel length impacted considerably on the flow characteristics, and the 

partially-enclosed tunnel showed further increases in the gusts due to high lateral and vertical 

velocities.  



 

 

1. Introduction 

 

Passing trains impose transient slipstream gust loads on trackside workers and permanent or 

temporary trackside furniture. Codes of practice require that the maximum gust load 

generated by a passing train is treated as a design load. Research by Sterling et al. (2008) into 

the fundamentals of transient slipstreams of high-speed trains found that the flow field in the 

open air can be defined by four regions, including: a nose region in which an inviscid 

velocity fluctuation occurs; a boundary layer region in which a turbulent and highly three-

dimensional boundary layer develops along the length of the train on all sides; a near-wake 

region which is dominated by large-scale unsteady flow structures; and a far-wake region in 

which the slipstream velocity decays gradually. The relationship between the train’s 

aerodynamic shape and the transient slipstream has been studied in Baker et al. (2013a) and 

Baker et al. (2013b). The German Railways (DB) ICE2 train is the most widely and deeply 

researched high-speed train for transient aerodynamics, with many different assessment 

methods used, including: moving-model tests on straight tracks (Baker et al., 2001; Temple 

and Dalley, 2001), and rotating tracks (Del Valle, 2012); full-scale tests (Baker et al., 2013a; 

Baker et al., 2013b; Temple and Dalley, 2001); and CFD simulations, for example those 

which have used the ‘simplified ICE2’ or ‘ATM’ geometries (Krajnovic, 2009; Krajnovic et 

al., 2009; Hemida et al., 2012; Muld, 2012). 

 

Until now, little attention has been devoted to assessing transient slipstream velocity gusts in 

‘confined spaces’. These include tunnels (defined as 20m or longer by code of practice CEN 

(2006)), partially-enclosed tunnels which are slightly open to the atmosphere, and vertical 



surfaces running parallel to the tracks such as noise barriers. CEN (2003) provides a 

summary of the factors affecting slipstreams in tunnels - ‘the induced flow velocity depends 

on the train speed, the blockage ratio [the train area divided by the tunnel area], the length of 

the train, and of the tunnel respectively, the roughnesses [sic] of the train and the tunnel wall 

respectively, and on the initial air speed in the tunnel’. It was stated that an upcoming code of 

practice would discuss the issues further. However this has not yet been fulfilled. A German 

national regulation (Deutsche Bahn, 2003) includes a relationship between the maximum air 

velocity in tunnels, the train speed, and the ratio of the cross-sectional areas of the train and 

tunnel, but its use may lead to over-predictions of air velocity, as was found in a comparison 

between prediction and experiment reported in Busslinger et al. (2007).  

 

This investigation aims to establish how different configurations of confining infrastructure 

affect the transient slipstream velocities and maximum gust loads caused by a passing train. 

A parametric experimental study has been undertaken at the ‘TRAIN Rig’ moving-model 

facility in Derby (UK), which is owned and operated by the University of Birmingham. The 

experiments involved firing a simplified ICE2 model train past various instrumented 

trackside structures. This paper compares the flow patterns and maximum velocities with 

various geometric parameters associated with the trackside structures. The methodology is 

described in Section 2. In Section 3, the reliability of the data is checked against results from 

previous studies and duplicated experiments and measurements. The data is presented and 

analysed in Sections 4 and 5. 

  



 

2 Methodology 

 

2.1 TRAIN Rig, simplified ICE2 model and test speed 

 

The ‘TRAIN Rig’ moving-model facility consists of 150m long tracks along which model 

vehicles can be propelled at speeds of up to 75m/s. It is one of few aerodynamic facilities 

able to account for relative motion between vehicles, the ground, and complex structures such 

as train stations and tunnels. A simplified four-carriage 1/25 scale model ICE2 train was 

constructed, as shown in Fig. 1. The same train model and facility have been used in previous 

studies including Baker et al. (2001) and Temple and Dalley (2001), both of which provide 

datasets of open air transient slipstream measurements that are referred to in a comparison 

study in Section 3 of this paper. The former study also provides measurements of the model 

geometry. The test speed was 32m/s in order to match the test speed used in the former study 

for the benefit of the comparison study. The corresponding Reynolds number was 305,000 

based on the speed and body height of the train (143mm at 1/25 scale).  

 

The reduced Reynolds number of these experiments means that some inaccuracy due to the 

scale effect is unavoidable. In a CFD study on train wakes, Muld (2012) compared the 

boundary layer momentum thickness along the tail carriage of the simplified ICE2 with that 

of full-scale trains. This parameter affects the points of separation of the flow around the 

train’s tail, and hence the flow structures in the wake. It was found that the modelled four 

carriage train had a momentum thickness equivalent to a full-scale train with 12 carriages. 

This suggests that despite the relatively short length of this train and the low test Reynolds 



number, the wake flow structures are somewhat comparable to those occurring at full-scale in 

the open air. The data is compared with results from a previous full scale study in Section 3. 

 

The speed of the model as it passed airflow measurement instruments was estimated from 

readings made by light gates stationed adjacently to the entrances and exits of the structures. 

99% of the tested speeds were within 5.2% of the target speed of 32m/s. The uncertainty of 

the train speed measurement is 0.71%, based on a comparison between manually calculated 

speeds from recorded light gate data with automatically calculated speeds. 

 

2.2 Geometry and flow variables 

 

Positions and lengths in this paper are normalised by the train height. x/Z, y/Z, and z/Z are the 

longitudinal, lateral, and vertical directions, relative to the direction of travel, with x 

originating from the tip of the train’s nose, y from the track centre, and z from the railhead. 

The full-scale equivalent dimensions of the train are X=105.4m (length), Y=3.075m (width), 

and Z=3.9m (height). The 1/25-scale dimensions of the train (as built) are X=4.216m, 

Y=0.123m, and Z=0.156m. Some useful reference values are defined: The positions of the 

nose and tail of the train are x/Z=0 and 27 respectively; the distance of the side of the train 

from the track centre is y/Z=0.39; the height of the top of the train above the top of the rail is 

z/Z=1; the height of the top of the rail above the ground is z/Z=0.077; and the rail heads are 

approximately y/Z=0.39 apart (1.535m at full-scale). The flow velocities in the longitudinal 

(u), lateral (v), and vertical (w) directions, and the resultant velocity (U), were converted into 

dimensionless coefficient forms with the train speed denoted by V. The dimensionless groups 

are as follows: 



 

Where: 

 

Two dimensionless variables are defined for the infrastructure. These are the blockage ratio 

β, which is the cross-sectional area of the train divided by that of the tunnel, and the leakage 

ratio, α, which is the ratio of the width of a gap in the cross-section of a tunnel divided by the 

total internal perimeter of a tunnel. 

 

2.3 Test cases 

 

Cross-section views and geometric details of the structures and instruments used in the tests 

are included in Fig. 2 and Table 1. The structures included a pair of walls (W1), single-track 

tunnels (T1, T1-B, T2, T3), and a partially-enclosed single-track tunnel (T2-P). Open air 

control experiments have also been carried out (OA). The standardised wall separation of 

y/Z=0.84 was chosen to allow a continuous walkway to theoretically run alongside the tracks, 

so worker access during train operation would be permitted for train speeds of 200kph in the 

UK (RSSB, 2011) or 160kph in Germany (EUK, 1999). The tunnel cases allowed the effect 

of changing tunnel length to be assessed, as well as α and β. The tunnel lengths were x/Z=51 

(T1), 13 (T2), and 5 (T3), where β=0.23. The longest tunnel (T1) included a variation with a 

smaller cross-sectional area in which β=0.3 due to a lower ceiling height (T1-B). Tunnel T2 

included a partially-enclosed variation (T2-P) in which α=4.3%, due to a slit running along 

the length of the ceiling. This particular α value represents the largest possible gap size within 

the limitations of the apparatus. Although three smaller gap sizes were tested for a concurrent 



study on pressure transients (Gilbert et al., 2013), the velocity was not measured due to time 

constraints. Therefore only the largest gap size was tested. The tunnel cross sections were 

rectangular for two reasons. Firstly, it was possible to transition from vertical walls to tunnels 

by just installing a ceiling, therefore ensuring that one geometric variable was changed at a 

time. Secondly, the study on pressure transients required the use of rectangular tunnels. 

 

2.4 Instrumentation and ensemble analysis 

 

‘TFI’ Cobra Probes measured three components of flow velocity at various positions near the 

train. Results from three positions are included in this paper. Table 1 and Fig. 2 describe the 

positions of the probes, and the number of runs carried out for each test case. Probes C1 and 

C2 were positioned at identical heights, but C1 was situated close to the train’s side and C2 

was close to the wall, as can be seen in Fig. 2. Probes C2 and C3 were placed at near-

identical lateral distances from the train’s side, but at different heights. Probe C3 was placed 

close to the ground at a position which corresponds to the standing positions of trackside 

workers. . 

 

The Cobra probes were calibrated by the manufacturer, and could detect maximum 

frequencies of 650Hz or 2000Hz (they came from two different batches). All data were low-

pass filtered digitally. The filter parameters changed depending on the type of analysis, so 

they are disclosed in the results. Two types of filter are referred to in this work - a 

Butterworth low-pass filter and a moving-average filter. A fifth order Butterworth low-pass 

filter has been applied to the time history results, with a cutoff frequency equivalent to 0.1 

seconds at full-scale. This cutoff frequency is based on the minimum recommendation made 

by Sterling et al. (2008) for risk assessing slipstream gust loads. The Butterworth filter was 



applied in forward and reverse to prevent phase-shifting. The moving-average filter window 

was centred to prevent phase-shifting. The moving-average filter is referred to only in Section 

5.2. Cobra probes have a 45 degree ‘cone of acceptance’ which limits their range of 

detection. Therefore the data from each individual scan is replaced with a zero (referred to as 

a ‘dropout’) if the flow angle exceeds an acceptable range of 45 degrees. Dropouts were 

highest around the nose and first carriage of the train. Dropouts were temporarily interpolated 

in the filtering process to prevent ripple in the time domain.  

 

The manufacturer’s uncertainty of the Cobra probes is 0.3m/s. This has been used in a 

propagation of error analysis to calculate the uncertainty of the maximum velocity normalised 

by train speed: two thirds of the maximum dimensionless velocities have uncertainties less 

than 2.9%, and five percent have uncertainties exceeding 5.2%.  

 

Velocity time histories are highly turbulent for individual runs, so run-to-run variation must 

be accounted for using the ‘ensemble averaging’ technique to avoid over- or under- 

predictions. Schultz (1990) measured the transient slipstream velocity caused by a simplified 

moving-model ICE1 passing through short double-track tunnels of three different lengths. 

However, the tests were not repeated, so it was impossible to quantify the maximum velocity 

accurately. The technique has been employed in many recent studies of the flow in the open 

air, most notably Del Valle (2012). The technique involves repeating each test multiple times 

to form an ‘ensemble’ of N time histories. In this work, the sample axis was converted into a 

distance axis (x-axis, measured in x/Z), and the ensemble runs were aligned to a common 

point at the train’s nose, so that x/Z=0 represented the train’s nose passing the probe. 

Moreover, speed differences between runs caused the ensembles to go out of alignment with 

increasing absolute values of x/Z, so the data were re-sampled to align the ensemble time 



histories to a common distance axis. The ensemble average was then obtained by calculating 

the average velocity for all samples at each increment on the distance axis.  

 

The uncertainty of the ensemble average has been examined using data for three Cobra 

probes in T1. The 95% confidence limit of the standard deviation of the mean (σ/√N) for the 

maximum velocities in the ensemble was 2-2.8% for N=15, 1.5-1.9% for N=25, and 1.1-1.2% 

for N=40.  

 

Table 1 provides details of the repeats completed for each probe and test case. N-values of 

higher than 40 were achieved by repeating measurements with longitudinally staggered 

Cobra probes, and low N-values occurred due to time constraints near the end of the test 

campaign.  

 

Variables Test cases 

OA W1 T1 T1-B T2 T2-P T3 

Length x/Z  51 51 51 13 13 5 

Wall separation y/Z  0.84 0.84 0.84 0.84 0.84 0.84 

Ceiling height z/Z   1.79 1.36 1.79 1.79 1.79 

Leakage ratio α (%)   0 0 0 4.3 0 

Blockage ratio β    0.23 0.3 0.23 0.23 0.23 

Probe name y/Z z/Z Ensemble Repeats, N 

C1 0.48 0.58 60 25 40 25 16 16 15 

C2 0.75 0.58 54 25 28 25 15 16 15 

C3 0.77 0.05 62 50 40 25 16 15 15 

 

Distance of probes from structure entrance (x/Z): 31 31 31 5 5 3 

Table 1: Details of the probe positions, test case geometries, and number of runs carried out 

for each case.  

 

 



 

3 Preliminary tests 

 

Open air tests have been undertaken to check the ability of the methodology to recreate 

results from previous studies, and to check the reliability of the results. Fig. 3(a) shows the 

boundary layer profile measured by six Cobra probes, averaged along the third carriage and 

plotted against moving-model data from Baker et al. (2001). The study had used the same 

simplified ICE2 model, test speed, and track profile. Fig. 3(b) shows an open air wake time 

history plotted against full-scale and moving-model data from Temple and Dalley (2001). 

Hot-wire anemometers had been used in both of the moving-model studies. The methodology 

for the full-scale study differed considerably - gust anemometers had measured the slipstream 

of an eight-carriage ICE2 train on ballasted track. The results show that the velocities 

measured by the Cobra probes are the same or higher than those measured by hot-wire 

anemometers in the boundary layer region. Moreover, the ensemble average gust peak behind 

the train’s tail is 12% lower than the full-scale measurement. However, the uncertainty of the 

ensemble average for the full-scale data was high, since the ensemble consisted of only seven 

runs. A two-sample t-test has been applied to the ensemble gust peaks to determine whether 

the difference between these results and full-scale results are significant to the p≤0.05 level. 

The p-value is 0.23, meaning that the differences are unlikely to be statistically significant. 

 

 

 

To further evaluate the reliability of the results, the open air experiments have been repeated. 

Two-sample t-tests have been applied to ensemble velocity time histories and velocity 

maxima. The tests revealed that the maximum velocities are likely to come from the same 



statistical distributions, with p-values ranging from 0.13 to 0.55 for the four repeated 

experiments. The differences between ensemble averages have been found by comparing 

whether the ensemble velocities come from the same statistical distributions. The only 

significant differences occur in the nose region in which near-inviscid flow reduces the 

standard deviation considerably. A further reliability test involved staggering two probes 

along the x-axis and taking double measurements for given test cases. The differences 

between the maximum velocities are likely to be insignificant, with p-values ranging from 

0.25 to 0.37. The differences between the time histories were insignificant. In conclusion, it is 

presumed that this methodology is acceptable in relation to previous accepted methodologies 

for similar reduced-Reynolds number tests in the open air, which gives increased confidence 

in the results for confined cases. 



4 Results 

 

 

4.1 Open air flow field 

 

Fig. 4 shows fundamental flow structures around the ICE2 in the open air, based on 

measurements in past studies. Fig. 4(a) is a surface representation of the results from moving-

model tests reported in Baker et al. (2001). The boundary layer begins to grow along the 

second carriage (x/Z>6.7), and appears to reach a constant thickness by x/Z=20. Gust peaks 

occur around the train’s nose and tail. Fig. 4(b) is from a CFD study by Hemida et al. (2012), 

showing a time-averaged two-dimensional quiver plot of a dominant flow structure in the 

near-wake of a simplified ICE2. The flow structure comprises helical vortices which are 

alternately shed from the left and right sides of the train’s tail, causing powerful velocity 

transients. Although not visible in either figure, at low-heights the near-wake is also 

dominated by a coherent peak in longitudinal velocity, which extends far from the train’s side 

in the lateral axis. At greater heights, such as in Fig. 4(a), the near-wake is dominated by 

separated shear layers, in which the velocity decays quickly in comparison to the low-height 

measurements.  

 

Open air data from these experiments is shown in Fig. 5. It may be regarded as control data 

against which to compare the confined results. The ensemble average data for Probe C1 

shows high velocities in the boundary layer region, due to the close proximity of the probe to 

the train’s side. For Probes C2 and C3, the velocities in the boundary layer region are low, 

due to their greater lateral separations from the train’s side. A high-magnitude peak velocity 

occurs at low heights in the near-wake region, and has been captured by Probe C3. The peak 



gusts are denoted by markers. They are clustered in the boundary layer region for Probe C1 

and in the wake for Probes C2 and C3.  

 

4.2 Walls 

 

Fig. 6 shows the results for vertical walls. The velocity in the boundary layer region is very 

similar to that in the open air at all probe positions. However, the decay of the velocity in the 

near-wake region is much more gradual, which prolongs the gust duration. For Probe C1, a 

larger proportion of the peak gusts occur in the near-wake region compared to the open air. 

The data for Probe C2 shows that the ensemble average peak velocity in the near-wake region 

is approximately three times higher than the open air. All of the peak gusts occur in the near-

wake region. The data for Probe C3 is only available in the near-wake region. It shows a 

small increase in the magnitude of the ensemble average peak velocity, relative to the open 

air, combined with a slower decay after the peak. These results suggest that the constraint 

caused by the walls most significantly affects the flow in the near-wake, causing stronger 

low-height gusts than in the open air, the effects of which are detected at higher positions.  

 

4.3 Tunnels 

 

As a train enters a tunnel, a number of relevant pressure phenomena occur. Firstly a pattern of 

pressure waves is set up by compression and expansion wave-fronts which reflect internally 

from the entrance and exit portals of the tunnel, causing rapid pressure changes. Secondly, a 

‘piston effect’ is induced by the combined effects of compression of the air ahead of the 

train’s nose and expansion behind the train’s tail. This is characterised by a sustained velocity 

occurring ahead of the train’s nose and slowly decaying far behind the tail. Third of all, the 



flow pattern takes a finite time to change after entering the confined space. The combination 

of the aforementioned phenomena creates a complex flow pattern which is not repeatable at 

any different location in the tunnel and cannot be perfectly recreated in reduced scale tests. 

These results must be regarded as a qualitative indication of the flow patterns in tunnels. 

 

Fig. 7 shows the results for fully-enclosed tunnels of three lengths. The results for T1-B are 

omitted because the flow patterns are similar to T1. In the region between the train’s nose 

entering the tunnel and reaching the probe, a fluctuation occurs due to a passing compression 

wavefront, and then the velocity increases as a favourable pressure gradient is created in the 

direction of the tunnel exit. The effect is more noticeable in the longer tunnels. In T1-B, β is 

30% higher than T1, and the peak velocity in the nose region is approximately 40% higher. 

The piston-effect is the dominant flow structure causing this increase, as it is fundamentally 

related to blockage ratio, and also because other localised flow changes due to moving the 

boundaries were minimised by using only the ceiling height to control β - the ceiling was far 

from the probes. Moving on to the boundary layer region, the obvious difference compared to 

the open air is that the ensemble average velocity in the longest tunnel is noticeably lower 

and the thickness of the boundary layer is reduced. This finding is backed up by observations 

by Sakuma et al. (2010) of the boundary layer around a train in a tunnel. The form parameter 

(H) may provide firmer confirmation. Although estimating H is inaccurate with just four 

probes (two of which are not mentioned elsewhere in this paper, but were located between 

Probes C1 and C2 on the y-axis), changes between test cases may be significant. H is defined 

by: 

 



In T1-B, H stabilises from the second carriage to the tail, reaching 1.1, which is lower than 

1.2 which was calculated for the open air and wall results. This decrease indicates a boundary 

layer typical of a less favourable pressure gradient. In the shorter tunnels, the ensemble 

average and spatial distribution of the gust peaks for Probe C1 in the boundary layer region 

are closer to those seen in the results for the walls. This suggests that the decreased length of 

the tunnel and the corresponding reduction in the distance of the probes from the tunnel 

entrance act as key variables in determining the flow patterns in the boundary layer region. 

Moving on to the near-wake region, the velocity in the longest tunnel is higher than that 

recorded in the wall case. As the tunnel’s length reduces, the gust peaks detected by Probe C1 

shift towards the boundary layer region, showing a convergence with the results for the open 

air and walls. Interestingly, the ensemble average peak for Probe C3 in T3 is higher than that 

in T2. This appears to be caused by a tighter spatial distribution of the gust peaks, rather than 

an increase in velocity magnitudes. The results are analysed further in Section 5. 

 

4.4 Partially-enclosed tunnel 

 

Fig. 8 shows the results for T2-P, which is a partially-enclosed variant of T2 in which 

α=4.3%. The flow patterns in the nose region remain similar to those in T2, but the flow 

patterns in the boundary layer region are similar to those in the less confined wall and open 

air cases. In the near-wake region, the locations and magnitudes of the gust peaks are more 

tightly distributed, causing higher ensemble average peak magnitudes. The results for Probe 

C2 show a high near-wall velocity (Probe C2). This is analysed further in Section 5. 



 

5 Discussion 

 

5.1 Velocity components in the near-wake 

 

This section will explore the contribution of each velocity component to the resultant velocity 

peaks, by deconstructing the ensemble average velocity data presented in Section 4 into the 

longitudinal, lateral and vertical components. Only the near-wake region is considered, 

because it is a critical region in which hazardous gusts occur, and the results suggest that the 

flow patterns in this region are the most sensitive to the parametric changes studied. Fig. 9 

shows the data for the open air (OA), tunnels of two lengths (T1 and T2), and the partially-

enclosed tunnel (T2-P). A Butterworth low-pass filter smoothed the data further to a cut-off 

frequency equivalent to 0.25 seconds, to make interpretation easier at the expense of minor 

peak attenuation. 

 

The results show that confinement causes the longitudinal velocity to increase to a similar 

magnitude at all probe positions, which for Probe C2 represents a great change compared to 

the open air results. This observation may be due to the piston effect, as the pressure and 

velocity changes associated with this effect are near-one-dimensional. The longitudinal 

velocity component, and hence the piston effect, may therefore be a dominant cause of the 

increased wake velocity peak magnitudes in the confined cases. By comparison, the lateral 

and vertical velocity components, which are associated with the helical vortex structures in 

the near-wake region, do not appear to have much influence on the results. The longitudinal 

velocity is higher in T2-P than in T2, which suggests that a small opening in the cross-section 



of the tunnel is not sufficient to dissipate the piston-induced flow sufficiently to reduce the 

maximum transient gust velocity in the wake region. 

 

The lateral velocity does not change significantly between cases. However, the results for 

Probes C1 and C2 show a stronger peak magnitude of vertical velocity in T2-P than in T2. 

The greatest increase occurs close to the wall surface (Probe C2). The opening in the ceiling 

may be responsible for inducing the high vertical velocity towards or away from the opening, 

depending on the instantaneous pressure difference between the tunnel and the surrounding 

environment. This would explain why the results for Probe C2 in Fig. 8 show a higher 

ensemble average velocity peak than the other probes. We may conclude that the lateral and 

vertical velocity only increase in certain circumstances, and also that Probe C3 did not detect 

any significant changes in these velocity components due to its close proximity to 

constraining boundaries.  

 

5.2 Low height gusts in confined spaces 

 

In this section, statistical gust analysis methodologies have been applied to the velocity data. 

Gust analysis methods are typically used for assessing transient dynamic loads on objects, or 

risk assessing the safety of passengers and trackside workers. An EU-wide ‘TSI’ code for 

high-speed trains (CEN, 2008) imposes limit criteria on the slipstream loads acting on 

trackside workers. The limit criteria must be met by all high-speed rolling stock operating 

across national borders under interoperability legislation. A methodology is defined in the 

TSI code (referred to herein as the ‘TSI methodology’) for assessing conformance to the limit 

criteria, but it stipulates open air operation only. The lack of a methodology for assessing 

gusts in tunnels provides an opportunity to try different approaches, two of which are used in 



this section. Both methods rely on results for Probe C3, which was placed in the ‘TSI 

position’. The first method, the ‘TSI method’, used a 1 second window moving-average filter 

to smooth each individual run, and followed the TSI methodology requirements as closely as 

possible. The second method, the ‘0.1 second method’, relied instead on a fifth order 

Butterworth low-pass filter with a cutoff frequency corresponding to 0.1 seconds, which is 

the same filter that was used in the time history graphs presented earlier. The latter method 

was used to account for the inherent problem of over-smoothing in the TSI method, which is 

an effect discussed in Baker et al. (2013b). As explained previously, 0.1 seconds is the 

minimum recommended filter window size for risk assessing slipstream gust loads. Both 

methods relied on calculating the mean  and standard deviation σ of the values of the peak 

gusts, of which there were N for each test case (see Table 1), and U2σ: 

 

Discussion in Baker et al. (2013b) reveals that this statistical approach is valid based on 

analysis of full-scale open air experimental data. Therefore U2σ may be interpreted as the 5% 

probability level gust. Table 2 shows the results of this assessment. Extra columns show U2σ 

converted to units of metres per second by multiplying U2σ by the ICE2 operational speed of 

V=280kph, so the velocity may be compared with the TSI gust limit of 22m/s.  

 

Test case Runs, N TSI method 0.1s method 

 σ U2σ  U2σ (m/s)  σ U2σ U2σ  

(m/s) 

OA 62 0.21 0.04 0.29 22 0.32 0.085 0.49 38 

W1 50 0.25 0.028 0.3 24 0.35 0.068 0.49 38 

T1 40 0.3 0.037 0.38 29 0.44 0.067 0.58 45 

T1-B 25 0.32 0.042 0.4 31 0.52 0.096 0.72 56 

T2 16 0.25 0.024 0.29 23 0.37 0.067 0.51 39 

T2-P 15 0.26 0.027 0.31 24 0.42 0.048 0.51 40 

T3 15 0.24 0.031 0.3 24 0.37 0.061 0.49 38 

Table 2: Gust analysis results for all test cases. 

 



Firstly, the open air U2σ value is compared with results from a previous study. The flow 

around a double-unit (16 carriages) ICE2 was measured at full-scale in accordance with the 

TSI methodology, and was reported in Baker et al. (2013b). U2σ was found to be between 

0.27 and 0.28. The finding in this study of 0.29 is in close agreement. The small difference 

may be explained by different experimental approaches and levels of uncertainty.  

 

The results show that the highest values of U2σ occur in the longest tunnels. The shorter 

tunnels have similar U2σ values to the open air. Assessment of the regularity of exceedence of 

the gust limit based on the probability distributions generated by the TSI method reveals that 

U2σ in the short tunnels exceeds the gust limit two to three times more regularly than the open 

air, even in the shortest tunnel. It cannot therefore be assumed that no change in U2σ equates 

to no change in risk. U2σ in T2-P is very similar to that in T2, but the limit is exceeded three 

times more regularly than in T2.  

 

The differences in the results between the TSI method and the 0.1s method are due to the 

relationship between the filter width and the gust length scale, which affects the gust peak 

attenuation. The gust magnitude limit should be varied accordingly with the filtered gust 

duration. The 22m/s limit is clearly not relevant when the filter design differs from that 

required in the TSI methodology. We may conclude that the cut-off frequency is an important 

consideration in designing a risk assessment methodology for confined flows, both in terms 

of the predicted gust magnitude and the relative changes between test cases. The probability 

of limit exceedence is more capable than U2σ for distinguishing which test cases cause higher 

risks than others.  

 

5.3 Velocity in the far wake 



 

In tunnels, the velocity in the far-wake region provides a level of natural ventilation. This 

section compares the far-wake velocity results between test cases. Fig. 10(a) shows the 

ensemble average velocity in the far-wake region, for the open air (OA) case, and tunnels of 

three lengths (T1-T3). The results show that the ensemble average velocity in the shortest 

tunnel is similar to that in the open air - the velocity is initially high but decays rapidly. The 

velocity in the longest tunnel remains high long after the train has passed. This behaviour is 

likely to be a specific feature of the piston effect. Fig. 10(b) shows that in the high blockage 

ratio tunnel (T1-B), the velocity is highest close to the centre of the tunnel cross-section 

(Probe C1), and lowest in the lower corner (Probe C3) - a finding which is repeated for the 

other cases. Further analysis reveals that in the confined cases, the wake velocity reaches 

1m/s (for V=280kph) three to four times further from the rear of the train than in the open air. 



 

6 Conclusions and further work 

Moving-model experiments have been carried out to measure the transient slipstream velocity 

caused by a simplified ICE2 train model passing walls, single-track tunnels of varying 

lengths and cross-sectional areas, and a partially-enclosed tunnel which was formed by 

creating an opening in the ceiling of a tunnel through which air could enter and leave. An 

open air control experiment was carried out. From the analysis in the previous sections, the 

following conclusions can be drawn: 

(a) An assessment of the maximum transient gust velocity at the 5% probability level, for 

a low-height trackside position, reveals that vertical walls close to the train increase 

the maximum gust velocity compared to the open air. Relative increases also occur as 

a result of: transitioning from walls to tunnels; increasing the length of a tunnel; 

decreasing the cross-sectional area of a tunnel; and creating an opening to form a 

partially-enclosed tunnel. In all of these confined cases, gusts occur over a longer 

duration than in the open air. The combined increases in gust durations and 

magnitudes may result in exceptionally high loads on objects. 

(b) In tunnels, a high longitudinal airflow occurs upstream of the train’s nose and in the 

wake due to a piston effect - a simple flow structure which moves the internal air 

column within a tunnel in a near-one-dimensional manner. The magnitude of the peak 

piston-induced velocity is dependent on tunnel length and cross-sectional area. It has 

been found to be a dominant cause of very high gust loads in the near-wake region, at 

all positions inside tunnels, due to its superposition with lateral and vertical velocity 

peaks. It is also responsible for the reduced rate of decay of the velocity which 

extends the durations of the maximum gusts as well as the time taken for the air to 

return to ambient conditions, which affects the ventilation characteristics of tunnels.  



(c) When a partially-enclosed tunnel is formed by creating a small opening in a tunnel, 

high velocities occur in the direction of the opening in the wake region. This causes 

the resultant gust velocity to increase relative to enclosed tunnels. The highest gusts 

occur close to the walls due to vertical flow, which may result in exceptionally high 

gust loads on near-wall objects. 

(d) In calculating a characteristic gust for comparing different confined spaces, and which 

may be used for assessing risks caused by gust loads, two low-pass filtering 

methodologies have been compared. The characteristic gust magnitude varies 

significantly due to the different levels of attenuation of the gust peaks caused by the 

filters. Filter design is therefore a crucial consideration in carrying out such 

assessments. Moreover, for some test cases the characteristic gusts were very similar, 

but a different parameter based on the regularity of limit exceedence revealed 

significant differences between them. 

(e) Preliminary open air experiments were carried out. Repeated experiments and 

measurements produced time histories which closely corresponded with each other 

along most of the train, and the peak velocities were found to come from the same 

statistical distribution. The peak velocities in the open air appear to come from the 

same statistical distribution as one calculated for results from a past full-scale study, 

despite an average velocity peak 12% lower than full-scale. It may be concluded that 

this methodology is acceptable and the results for confined spaces are likely to be 

reliable.  

 

In future work, the effect of changing the train’s geometry should be tested so we may 

understand whether these observations hold for trains with different aerodynamic shapes. 

Some of the observations are difficult to interpret without taking into account the pressure 



field around the train, so further work is needed to interpret the relationship between pressure 

gradients and the boundary layer and wake flows. Moreover, some transient flow patterns 

have not been identified in this paper, as they are hidden by the ensemble averaging 

technique. Therefore, the individual runs from this dataset should be analysed further. 
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Figure captions 

Fig. 1. Photograph of the simplified ICE2 model. 

Fig. 2. Cross-section views and photographs of the test structures. All dimensions are 

common to W1, apart from the height of T1-B.  

Fig. 3. Validation against previous moving-model and full-scale experiments: (a) Boundary 

layer profile along the third carriage, using data from Baker et al. (2001); (b) Time history of 

the wake, using data from Temple and Dalley (2001). 

Fig. 4. Velocity data for the ICE2 train from past studies. (a) Surface plot on an x-y plane, 

showing the velocity next to the train side. Adapted from Baker et al. (2001); (b) Time-

averaged quiver plot of the secondary velocity components in the near wake (Hemida et al., 

2012). 

Fig. 5. Open air: Ensemble average and ensemble peaks of the resultant velocity for Probes 

C1 to C3.  

Fig. 6. Walls (W1): Ensemble average and ensemble peaks of the resultant velocity for 

Probes C1 to C3.  

Fig. 7. Tunnels: (a) T1 (longest); (b) T2; (c) T3 (shortest). Ensemble average and ensemble 

peaks of the resultant velocity for Probes C1 to C3.  

Fig. 8. Partially-enclosed tunnel (T2-P): Ensemble average and ensemble peaks of the 

resultant velocity for Probes C1 to C3.  

Fig. 9. The longitudinal (u/V), lateral (v/V) and vertical (w/V) velocity components in the near 

wake, for four test cases, for Probes C1 to C3. 

Fig. 10. Ensemble average of the resultant velocity in the far wake for different: (a) Test 

cases; (b) Measurement positions in tunnel T1-B. 
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