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Abstract 

This is the first part of a two part paper that describes the results of an experimental investigation to 

measure the aerodynamic pressure forces on structures in the vicinity of railway tracks. The 

investigations were carried out in order to obtain a fundamental understanding of the nature of the 

phenomenon and to obtain data for a variety of railway infrastructure geometries of particular 

relevance to the GB situation, in order to provide material for a National Annex to the relevant 

Eurocode. The experiments were carried out on the moving model TRAIN Rig, with models of three 

different sorts of trains with different nose types, and a variety of infrastructures types – vertical 

hoardings, overbridges, station canopies and trestle platforms. The transient loads that were 

measured had a characteristic form – a positive pressure peak followed by a negative pressure peak. 

In general the magnitudes of the two peaks were different, and varied with infrastructure type and 

position, as well as with train type. As would be expected, the more streamlined the train, the lower 

were the magnitudes of the pressure transients. A comparison of the experimental results was made 

with a variety of existing model scale and full scale data and a broad consistency was demonstrated, 

within the limits that the rather different experimental conditions in the various cases would allow. An 

analysis of the scaling of these pressure transients was carried out, and it was shown that whilst there 

was a reasonable collapse around a theoretical formulation, the complexity of the flows involved 

meant that a general scaling formulation could not be achieved. Part 2 of this paper will consider the 

application of the results to the development of revised standards formulations.  

Keywords – train aerodynamics, aerodynamic pressures, bridges, hoardings, canopies, platforms  
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1. Introduction 

It is well known that passing trains generate unsteady transient aerodynamic pressures. This is 

illustrated in figure 1 (taken from [1]). Essentially as the train nose passes, the pressure rises rapidly 

above ambient pressure to a positive peak, then falls rapidly through ambient pressure to a negative 

(suction) peak, and then decays rather more slowly towards the ambient value. As the tail of the train 

passes, the process is reversed, with a negative peak followed by a positive peak.   These pressure 

transients result in transient forces on trackside and overhead structures. The design requirements for 

these structures are contained in the Eurocode EN 1991-2:2003 ‘Traffic Loads on Bridges’ [2]. The 

data on which this code is based were originally developed by the ERRI (European Railway Research 

Institute) D189 committee [3] and also forms the basis of a railway specific CEN (European 

Committee for Standardisation) standard [1]. The data are also used in the Technical Standards for 

Interoperability (TSI), which are being developed to allow trains to run across national boundaries 

within Europe. The infrastructure TSI [4] directs users to this document, whereas the rolling stock TSI 

[5] adopts rather different procedures for ensuring acceptable transient pressures from new trains, 

through the specification of transient pressure at specific points relative to the track.   

This paper reports a series of experiments that were carried out to investigate the nose pressure 

pulses of trains and their effect on trackside structures, using moving model train experiments. This 

investigation had two broad aims. The first was to investigate the fundamental nature of the transient 

pressure loading on trackside and overhead structures for a wide variety of structure shape and 

different types of train. Controlled model scale experiments allow a much greater number of tests to 

be carried out than was possible with the full scale experiments and panel method calculations 

reported in [3] and thus enables a greater physical insight of the phenomenon to be obtained. The 

second aim was more practical, and aimed generally at improving the Eurocode by providing reliable 

measurement data for a number of different types of train, that would supplement the earlier 

measurements and replace the data from the now obsolete panel method calculations. Also [2] was 

based on test data from operations with continental gauge rolling stock, which have significantly larger 

vehicle cross-sections than GB rolling stock. Since the aerodynamic pressure loads and the loadings 

imposed by slipstreams are dependent on the distance from the train side or roof, they are generally 

overstated when applied to the GB network. Thus there is a specific GB requirement for the 
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development of alternative design rules to those in [2], which can then be incorporated into a national 

annex to the code, and it is likely that such rules could result in significant economies for GB trackside 

and overhead structures. This work was thus funded by RSSB with support from the GB 

Aerodynamics Working Group. 

The work described in this paper was carried out using the TRAIN Rig – a moving model aerodynamic 

facility in Derby, owned and operated by the University of Birmingham 

(http://www.birmingham.ac.uk/research/activity/railway/research/train-rig.aspx). 1/25th scale models 

of three train types were used, with the loads being measured on a variety of trackside structures. The 

technique of model testing is based on the well established techniques of dimensional analysis, which 

allow the results of properly conducted model tests to be related directly to full scale conditions. The 

experimental set up and data analysis techniques are set out in section 2 of this paper. Section 3 then 

describes the main experimental results, and these are compared as far as possible with the results 

of other investigations in section 4. The results are discussed in terms of the scaling of the pressure 

coefficient time histories, in section 5 and the basic conclusions that arise from these experiments are 

then set out in section 6. In a companion paper (Part 2), these results will be used to investigate the 

adequacy of the current design criteria and to develop new, GB specific, design curves.  

2. Experimental methodology 

2.1 The TRAIN Rig and experimental models  

The TRAIN (Transient Railway Aerodynamics INvestigation) Rig is a highly versatile moving model rig 

that can be used for a wide variety of aerodynamic investigations (Figure 2). In broad terms, it 

consists of a 150m long track along which model vehicles can be propelled, in both directions, at 

speeds of up to 75m/s.  For the work described in this report, the Rig was operated at a nominal 

model speed of 40m/s (which was repeatable to within ±1ms
-1

 for any one run). In the current situation 

it specifically allows transient static pressures to be measured on trackside structures. As will be seen 

below, by suitably non-dimensionalising the measured pressures with the model velocity, this data 

can be applied directly to full scale conditions.  

http://www.birmingham.ac.uk/research/activity/railway/research/train-rig.aspx
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Experiments were carried out at a model scale of 1/25th for both the train and structure models. Three 

model trains were used in the experiments: 

 The leading car and half a trailing car of the Class 390. 

 A two car Class 158 multiple unit. 

 A Class 66 locomotive. 

These three vehicles represent the leading vehicles of a streamlined passenger train, a non-

streamlined passenger train and an aerodynamically rough freight train respectively. Photographs of 

the 1/25
th
 scale models are shown in Figure 3. 

A number of different structure models, also at 1/25th scale, were also tested. These are described 

below, using the co-ordinate system illustrated in figure 4. This has an origin at the top of rail level at 

the centre of the track with x, y and z being the along track, across track and vertical distances 

respectively. On some occasions it is convenient to use the edge of the platform as the origin, and the 

co-ordinates from this point are y’ and z’. The positions of the structures are defined by Y and Y’ 

laterally from the track centre and the platform edge respectively, and by h vertically from the top of 

rail. The structures tested were as follows. 

 2m high hoardings, with return corners placed at the trackside and on platforms, at Y= 1.45m, 

1.95m and 2.75m  (0.7m, 1.2m and 2.0m from the nearest rail) and Y’ = 0.2m, 0.7m and 1.2m 

from the platform edge. Pressures were measured at the centre line of the hoarding, 0.25, 0.75, 

1.25 and 1.75m from the baase.  

 Overbridges of different widths and heights mounted symmetrically above the track – specifically 

10m wide overbridges, with height above the track h= 4.5m, 5.0m, 5.5m and 6.0m to represent 

the wide structure condition implicit within [2], and h= 4.5m high overbridges 10.0m, 6.0m, 3.0m 

and 1.5m wide to permit consideration of pressure variability with width. Pressures were 

measured 0.5, 1.5, 2.5 and 3.5m either side of the bridge centreline for the two wider bridges, 

and 0.38, 1.13, 1.88 and 2.63m from the bridge centreline for the two narrower bridges. 

 Platform canopies of different heights with different back wall positions. The modelled heights 

above the track were h = 4.0m, 4.7m, 5.4m and 6.0m and the modelled back wall distances Y = 

3.45m, 3.85m, 4.25m and 4.75m (2.7m, 3.1m, 3.5m and 4.0m from the nearest rail)  - 16 
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configurations in total to permit consideration of typical GB canopy structures. Pressures were 

measured 0.21, 0.62, 1.04, 1.45, 1.87, 2.28, 2.70 and 3.11m from the edge of the canopy 

nearest the track. 

 A trestle platform to represent newer GB platform structures, an increasing number of which are 

of lightweight construction. Pressures were measured 0.19, 0.56, 0.94, 1.31, 1.69, 2.06, 2.44 

and 2.81m from the edge of the platform nearest the track. 

Photographs of the 1/25
th
 scale models are shown in figures 5. Full details of both the train and the 

structure models can be found in [6]. 

The model speed of 40m/s and scale of 1/25th resulted in a Reynolds number based on model height 

of 3.2 x 105, above the value of 2.5 x 105 specified in [1]. Preliminary tests were carried out on the 

overbridge structure (see below) at lower vehicle speeds of 20m/s and 30m/s , and no noticeable 

changes in the results were found when they were plotted in a dimensionless form. 

2.2 Instrumentation 

The model speed was measured using pairs of opposing photoelectric position finders and reflectors 

separated by 10m along the TRAIN Rig track. A bespoke interface unit automatically calculated the 

average speed of the train through the 10m test area based on the time taken for each of the beams 

to be broken. The approximate vehicle speed was predetermined from the tension in the firing cable, 

and a nominal value of 7.6-7.8kN was used for each run. This resulted in a vehicle speed of 40m/s ± 

1m/s. Generally for each of the cases listed in the last section, two or three repeat runs were carried 

out. 

The static pressure was measured using a total of 16 Sensor Technics HCLA12X5PB differential 

amplified pressure transducers, connected to a Measurement Computing LGR5325 A/D converter 

and data logger. Transducers with a ±1250Pa range were selected to avoid pressure signal clipping. 

The drawback was that a lower signal-to-noise ratio resulted for the structures furthest from the train. 

However the noise, position offset and other characteristics were acceptable for the required accuracy 

and were accounted for in post-processing and error analysis over a range of pressures. The 

transducers provided a linear frequency response up to a ceiling of 2kHz, above which no higher 
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physical frequencies were captured. This meets the requirements of [1] for moving-model pressure 

measurements at this scale and speed. The sampling rate was significantly higher and linear 

smoothing was applied in post-processing (described in Section 3.1). 

For the runs with the overbridge models, the hoarding models and the trestle platform model, the 

transducers were connected between the surface pressure tappings and a reference pressure 

measurement position beneath the TRAIN Rig track i.e. the pressure variation on the surface of the 

structure next to the track / train was measured. For the canopy models however the differential 

pressure between the top and bottom of the model was measured. For the overbridge, hoarding, and 

trestle tests the transducers were flush-mounted in the tappings, whilst for the canopy tests the 

transducers were connected remotely via 34mm long silicone tubes with internal diameters of 1.8mm. 

For all the data that is presented below, the results are plotted in conventional pressure coefficient 

form defined as 

   
 

      
          (1) 

where p is the measured pressure (relative to ambient),  is the density of air and V is the train 

velocity. This format effectively removes the effect of small variations in velocity from the pressure 

measurements, and the theory of dimensional analysis then allows these results to be applied to the 

full scale situation (assuming scale - Reynolds’ number - effects are small). The pressure coefficient 

variation is described in terms of a distance relative to a fixed point at the trackside, expressed in full 

scale values.  This procedure removes the effects of small scale velocity changes on the time scale 

and makes the results immediately applicable to the full scale situation. The figures that follow thus 

show the pressure coefficient distribution with reference to a fixed position on the train, the pressure 

coefficient effectively moving with the train.  

We thus have two prime experimental variables – the pressure coefficient, and the distance relative to 

the train. A proper appreciation of the results that follow requires an indication in the uncertainty of 

these parameters. We consider first the pressure coefficient. From the above definition, the three 

physical parameters that are used in the calculation are pressure, vehicle speed and density. Now a 
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calibration of the pressure transducers shows that, for pressure differences of around 1000Pa (which 

will be seen is in the region of the maximum pressure that was measured), the standard error was 

0.6%. For the velocity, taking into account the uncertainty in the distance between the photoelectric 

beam detectors and their response, a standard error of around 0.2% was calculated. Taking into 

account the variability of atmospheric pressure and temperature, the standard error on the density 

was found to be 1%. Thus the standard error on a pressure coefficient of 1.0 was (0.6% + 2*0.2% 

+1%) = 2%. This is a standard error of 0.02 on pressure coefficient throughout the range of the 

pressure coefficient. For the distance the uncertainty was effectively  25 x velocity x (1/sampling rate), 

which for a velocity of 40m/s and a sampling rate of 6250 samples / sec gives an uncertainty of 0.16m 

in terms of full scale values, which is small in relation to the length of a typical vehicle (25m). 

3. Major experimental results 

3.1 Repeats and smoothing of data 

Figure 6a  shows the raw data for three runs using the Class 390 running under the 10m wide, 4.5m 

high overbridge for the track centreline pressures (y=0m).  The results are plotted in pressure 

coefficient form and the horizontal axis is given in terms of a distance, rather than a time, and thus 

effectively gives the shape of the pressure distribution relative to the train position, with negative x 

values roughly corresponding to distances ahead of the train nose. The zero distance position in the x 

direction is located at the point where the pressure transient passes through zero between the 

maximum and minimum peaks. This point corresponds approximately to a position on the train near 

where the full body cross-sectional area is immediately adjacent to the point on the structure where 

pressures are being measured.  The pressure coefficients show an initial rise to a high positive peak 

followed by a rapid fall through zero to a negative, i.e. suction, peak, before a gradual return to a zero 

value through a series of small oscillations. It will be seen that this pattern is repeated in most of the 

datasets that follow, and is consistent with that measured by other investigators – see figure 1 for 

example.  Two further points are apparent. Firstly there is very little difference between the three sets 

of results plotted in this way, and that secondly a high frequency oscillation can be seen on all the 

traces. It is thought that the latter is due to the structure model vibration caused by the passing train.  

Figure 6b shows the pressure coefficient data for hoardings but smoothed with a 10 point moving 

average filter. The high frequency oscillation has been eliminated. A number of other more complex 
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filtering methods were investigated, but proved to have little advantage over the simple moving 

average methodology. There was very little variation between runs for almost all the data that was 

obtained. The exception was for some runs using the Class 66 locomotive, where there were 

considerable fluctuations for large positive values of distance, after the passage of the train nose, 

presumably due to turbulence in the wake of the train. Such distances however do not correspond to 

regions of critical (maximum) pressure coefficients, which are known to occur around the train nose. 

Thus in what follows we will present data from individual runs only, although in each case multiple 

runs were carried out to check basic repeatability, and a 10 point moving average filter will be applied 

to all data.  

3.2 Hoarding results 

Figure 7 shows summary details for all three types of train at a height of z (above top of rail) or z’ 

(above the platform surface) = 0.25m from the bottom of the hoarding. The results at this height are 

similar, if not somewhat greater than, those at other heights. The positive and negative peaks occur 

as would be expected, although for the trackside hoardings the negative peak is somewhat less 

obvious than for the platform cases, but note the two situations are not strictly comparable. The 

magnitudes of the coefficients decrease with distance from the nearest rail or platform edge. In 

general, the magnitudes of the Class 66 pressure coefficients are higher than for the Class 158 

coefficients, which are themselves higher than for the Class 390 coefficients. In Figure 8, the 

coefficients are plotted for the hoarding positions closest to the track or the platform edge for all trains. 

Again these plots show the differences in the nature of the suction peaks between the trackside and 

platform cases, and the relative magnitudes of the peaks for the different train types can be 

appreciated.  It is apparent from the figures that the forms of the positive pressure peaks are very 

smooth and consistent, but the negative pressure peak forms are less consistent, particularly for the 

blunt fronted Class 158 and Class 66. In some cases a double negative peak is apparent. It is 

surmised that this is due to an interaction between the pressure transient and what will be a 

significant separation region around the nose of these vehicles.  

3.3 Overbridge  results 



10 
 

Figure 9a shows a lateral plot of peak to peak pressure coefficients for the Class 390 passing beneath 

10m wide overbridges at different heights, for different distances from the centre line of the 

overbridge. The results are broadly symmetrical about the centre line of the bridge. The scale of the 

pressure transient and the flow of the nose around the vehicle are similar to the scale of the 

overbridge, and complex interactions might be expected to occur between the flow and the structure. 

Note that the pressures furthest from the centre line are effectively between the bridge legs.  Figure 

9b shows a comparison between the centre line pressure coefficients for the different overbridge 

heights (the average of the coefficients measured at the tappings on either side of the centre line), 

and it can be seen that there is a consistent drop in pressure coefficient magnitudes as the height 

increases. Figures 9c and 9d show similar figures for the Class 390 beneath 4.5m high overbridges of 

different widths. The effect of varying width can be seen to be small in Figure 9d, except for the 

smallest overbridge width of 1.5m where the positive and negative peaks are significantly reduced.  

This is perhaps surprising as one might have expected an increase in load as the overall loading on 

the overbridge will be more coherent for a smaller structure. The possible interaction between the 

overbridge and the unsteady flow field, mentioned above, may however also be significant in this 

case. Similar data is shown for the Class 158 in Figure 10 and for the Class 66 in Figure 11. In 

general the magnitudes of the coefficients for the Class 158 are higher than for the Class 390, and the 

magnitudes for the Class 66 are higher still. The same comments apply as for the Class 390, although 

for the smaller overbridge widths for the Class 66, the suction peak close to x=0m, is small and 

dominated by a larger, unsteady peak someway downstream, which may be caused by pressure 

changes in the train boundary layer (slipstream). The differences between vehicles are illustrated in 

Figure 12 for centre line pressures for the 4.5m high, 10m wide overbridge. Note that the pressure 

gradient between the maximum and minimum peaks is higher for the Class 66 than for the other 

trains (or alternatively the peaks are closer together). This reflects the blunter nose shape of the Class 

66.  

3.4 Canopy results 

The results of figure 13 show how the pressure coefficients vary away from the track across the 

canopy for the smallest back wall distance (2.7m from the nearest rail) and the lowest canopy height 

(h=4m), for all three train models. Essentially they show the expected shape of the other results, and 
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although the value for the tappings nearest to the canopy edge is always higher than the other 

tappings, there is actually relatively little variation in coefficient across the canopy for each train type. 

The Class 390 results have the smallest coefficients, and the Class 66 results have the highest.  One 

significant feature, apparent on both the Class 158 and Class 66 results are the existence of pressure 

coefficient oscillations of a substantial magnitude downstream of the initial maximum and minimum 

peaks. A simple dynamic vibration test showed that this was not due to structural oscillations. It could 

thus be surmised that this is due to a vertical flow oscillation between the platform and the canopy, 

but more work would be required to substantiate this. A further interesting point is that the pressure 

coefficients near the edge of the canopy, although being higher than the other pressure coefficients, 

tend to lag the others to some extent, suggesting a distorted pressure wave within the canopy space.  

Figure 14 shows summary results for all three trains for the smallest and largest canopy heights, and 

the smallest and largest back wall distances, for the pressure tappings nearest the edge of the 

canopy. The results for the intermediate canopy heights and the intermediate back wall distances all 

fall consistently between these extremes. Again the Class 390 values are the smallest and the Class 

66 values the largest. The peak magnitudes for the lowest canopies are significantly higher than for 

the highest as seems sensible. The oscillations in the wake can again be clearly seen. There is a 

suggestion that, for the Class 390 and Class 66, the frequency of the oscillation is related to canopy 

height, but this is not the case for the Class 158, where the frequencies look the same. This suggests 

that the oscillation frequency is not a simple function of structure dimensions. Figure 15 shows the 

effect of different back wall distances on the pressures at the edge of the canopy, for the Class 66 

model, with a 4.7m high canopy. The no back wall results are also shown. It can be seen that the 

back wall distance, and indeed the presence or otherwise of the back wall, has only a limited effect on 

the measured pressures at this measurement position. This is generally true for all measurement 

positions. The no back wall results show a reduction in the positive pressure peak, but are otherwise 

very similar to those with a back wall. It is of interest to note that the pressure coefficient oscillations 

still exist for the open canopy, which suggests that they are due to vertical standing wave patterns in 

the cavity. Finally, Figure 16 shows a comparison for the pressure coefficients at the canopy edge for 

the lowest canopy, smallest back wall distance and for all three trains. This clearly shows the relative 

magnitudes of the pressure coefficient due to different train types (maximum for Class 66 and 

minimum for Class 390), including the downstream oscillations. 
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3.5 Trestle platform results 

In general, as might be expected, for the trestle platform the magnitudes of the coefficients decrease 

with distance from the edge of the platform. A comparison of the pressure coefficients for the different 

vehicles, for the pressure tapping nearest the edge of the platform, is shown in Figure 17. Again the 

high pressure and suction peaks can be seen, although the Class 66 suction peak is less distinct than 

for the other vehicles. As before the Class 66 produces the highest positive and negative magnitudes 

of pressure coefficient. 

4. Validation / comparison with other sources of data 

This section discusses the validation of the current experimental results and presents a comparison 

with experimental data from other sources, in order to show that the results are reliable and can be 

used with confidence to predict full scale pressure distributions. In this process a number of different 

approaches are possible. 

 Consideration of the internal consistency of results 

 Consideration of earlier comparisons made with experimental results in the TRANSAERO Project, 

[7] 

 Comparison with earlier TRAIN Rig measurements, [8] 

 Comparison with full scale UK measurements on train sides, [8] 

 Comparison with full scale UK measurements on platform hoardings, [9] 

 Comparison with full scale UK measurements on a trestle platform, [10] 

Internal consistency of results.  

Firstly, it will be clear from the results discussed in section 3, that the data is internally consistent, in 

that it is of the same form in most cases, with the magnitudes of the coefficients being in general 

greatest for the Class 66 and least for the Class 390, with a consistent variation of magnitude with 

structure height / width, distance along and across the various structures. It is also quite repeatable 

on a run to run basis. This consistency and repeatability gives some confidence in the results.  

TRANSAERO results 
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In the 1990s, as part of the EU TRANSAERO Project, measurements were made using the TRAIN 

Rig with moving models of Italian ETR500 trains, with various nose shapes, and the pressures 

measured on the side of stationary trains [7]. These results were compared with equivalent full scale 

measurements of the same configurations and excellent agreement with nose and tail passing 

pressures was obtained, again giving some confidence in the use of the rig for the measurement of 

train-induced pressures. For the full scale experiments the values of the maximum pressure peak, 

minimum pressure peak and time between the peaks were 0.222kPa, 0.253kPa and 0.122sec, whilst 

the equivalent values from the TRAIN Rig experiments were 0.220kPa, 0.241kPa and 0.112sec, 

indicating a high level of agreement. 

Earlier TRAIN Rig measurements 

Measurements have been made in the past using the TRAIN Rig on the pressures on stationary trains 

as they are passed by a moving train [8]. In this comparison three sets of such experimental data 

were used. 

 A Class 341 multiple unit passing a Mark 3 coach, with pressures measured 1.63m above the 

track on the latter. 

 A Class 43 (HST) passing a freight wagon, with the pressures being measured 1.63m and 

2.73m above the track on the wagon.  

 A Class 220 passing a freight wagon, with the pressures being measured 1.63m and 2.73m 

above the track on the wagon. 

In calculating the equivalent hoarding distances, it was assumed that the width of the moving trains 

and the Mark 3 coach was given by the maximum width of the W6a gauge (2.82m) and the width of 

the freight container was 2.5m.  This resulted in equivalent hoarding distances from the track centre 

line of 1.99m for the Class 341 / Mark 3 measurements and 2.31m for the other measurements. In 

view of the assumptions made above there could be potentially sizeable errors in these figures (of the 

order of ten centimetres or more). The average maximum and minimum pressure coefficients from 

between 3 and 6 sets of measurements in each case were calculated and these were compared with 

the height averaged values measured on the hoardings on the TRAIN Rig. The results of this 

comparison are given in Figure 18. The current TRAIN Rig data is shown as solid lines (connecting 
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the discrete experimental points), whilst the various sets of earlier data are shown as experimental 

points. “Max” refers to the maximum value of the positive pressure peak, and “Min” refers to the 

largest magnitude of the negative pressure peak.  The full scale data is all for passenger train shapes 

with the leading vehicles all having relatively blunt noses. It can be seen that in general the present 

results are consistent with the earlier results, making due allowance for the variation in geometry, and 

the uncertainty in assigning the correct equivalent distance of a hoarding from the track centre line for 

the train side results. In general the maximum positive values correspond to the Class 390 and Class 

158 data as would be expected, whereas the maximum negative values fall closest to the Class 158 

data. 

Full scale UK measurements on train sides 

Full scale measurement data are also available for full scale experiments with a moving Class 390 

train passing a stationary Class 390 train, with two measurement positions on the stationary train [8]. 

This can be compared with the hoarding data obtained for the Class 390, if equivalent distances from 

the track can be specified. The results are shown in Figure 19.  It can be seen that, allowing for the 

differences in geometry between the two cases, the agreement is good, with close correspondence of 

the positive peaks, and the full scale negative peaks being rather greater in magnitude than the model 

scale values. This is probably due to differences in the track geometry in the full scale and model 

scale cases. 

Full scale UK measurements on platform hoardings 

Measurements were made at Northallerton of the pressures on a dummy wall on the station platform 

as it was passed by a variety of train types [9]. The trains were as follows 

 Class 43 (HST) – one run 

 Class 91 service train – two runs 

 Class 91 test train – three runs 

 A freight train with tankers - one run 

The wall was 2m away from the platform edge and measured 14m in length and 3m in height. 

Measurements were made at heights of 0.095m, 1.33m and 2.04m above the platform. The average 
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peak to peak values of pressure coefficient for each type of train were averaged over the runs, and 

then the height averaged values of peak to peak coefficients for each train type were calculated. 

These were then compared with the height averaged values from the hoardings measured in the 

TRAIN rig.  The results of the comparison are shown in Figure 20. The current TRAIN Rig data is 

again shown as solid lines and the full scale measurements as discrete symbols. Clearly the full scale 

tests were at a distance from the platform edge not covered by the model scale experiments, but the 

results are nonetheless consistent, with the passenger train full scale values being on plausible 

extrapolations of the Class 390 and Class 158 lines, and the freight train data being similarly 

consistent with the Class 66 data. 

Full scale UK measurements on a trestle platform 

Measurements were made of the pressures on the trestle platform at East Midlands Parkway Station 

[10]. Measurements were made of the absolute pressure on the upper surface of the platform at the 

platform edge and 1.5m from the edge, and differential pressure measurements were made between 

the upper and lower platform surfaces at the platform edge. Pressure measurements were made 

during the passage of Class 222 Meridian trains. There were data from 8 runs in total, and when the 

pressure coefficients were plotted against train speed little systematic variation could be seen. The 

pressure coefficient results were thus averaged across all runs, and the absolute pressure values 

compared with the equivalent absolute values from the TRAIN Rig experiments. The results of the 

comparison are shown in Figure 21. The full scale results for the streamlined Class 222 multiple unit 

compare well with the Class 390 data as might be expected. 

5. Discussion 

In this section we discuss the fundamental nature of the pressure transients measured in this report. 

We consider firstly how these pressure transients relate to the velocity field around the nose of the 

train, and thus to measurements of train slipstreams (see [11] for example). Secondly we consider if it 

is possible to parameterise the results in a relatively simply way, that might prove useful as a 

framework for applying these results to practical situations.  
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Firstly, it is clear that the pressure transients are well defined with a high level of repeatability from run 

to run, at least for the positive pressure part of the transient.  This suggests that the transients are not 

affected by train induced turbulence and can effectively be described using inviscid potential flow 

considerations. This is to some extent confirmed by slipstream velocity measurements (see [12] for 

example) where the nose velocity peak is equally repeatable from run to run, in stark contrast to the 

flow in the train boundary layer and wake where there is very significant run to run variability caused 

by large scale turbulence flow structures. Now by a simple application of Bernoulli’s equation it is 

possible to show that, in the inviscid flow field around the train nose, the pressure coefficient is given 

by 

                         (2) 

where u, v and w  are the longitudinal, lateral and vertical slipstream velocities normalised with train 

velocity. w is always small (of the order of 0.02) and can be neglected. Typical velocity traces for u 

and v (from [11] for an ICE-1) are shown in figure 22. Note that there are small non-zero velocity 

values upstream of the train, caused by low level ambient wind flows. It can be seen that values of u 

and v of around 0.05 to 0.1 are measured. Such values enable one to write.  

                (3) 

From figure 22 it can be seen that the longitudinal velocity transient has a very similar form to the 

pressure transients measured here, giving some confidence in the above analysis. This suggests that 

pressure transients might be inferred from full scale velocity measurements, and vice versa. Equation 

(3) also implies that, as the pressure coefficient is proportional to longitudinal velocity, then if a vertical 

wall (or hoarding) is placed at this point then this can simply be represented by an “image” source on 

the other side of the wall, which would result in the following expression 

      .           (4) 

Now the data from figure 22 corresponds to a position 0.5m above the top of the rail, 2.1m from the 

nearest rail, for a high speed train slipstream. The maximum pressure coefficient at a point 0.25m 

above the track, 2.0m from the nearest rail shown in figure 7 for the Class 390 (the nearest equivalent 
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to the full scale results, although rather more streamlined than the ICE-1) is around 0.17. From figure 

22 and equation (4) the predicted value would be around 0.20, suggesting that the above argument is 

broadly valid. 

Now let us consider the parameterisation of the experimental results. The basic questions are how 

and why the pressure transients vary with train type, distance from the train etc. We base our 

discussions around the two perhaps most fundamental cases of those studied – the trackside 

hoardings and the 10m wide overbridge i.e. vertical surfaces next to the track and horizontal surfaces 

above the track. We also use as a framework for the discussion the work of [13], which sets out a 

potential flow calculation of the forces on a vertical pedestrian barrier parallel to the track as a train 

passes by. Whilst the situation considered here is considerably more complex that that analysed by 

[12], it is felt that that analysis could act as a framework for the consideration of the parameterisation 

of the current results. That paper gives the following expression for the transient pressure force 

coefficient on a vertical structure next to the track. 

   
   

   

     

             
         (5) 

Here H is the height of the barrier and A is the area of the train behind the nose. In terms of the 

current results, this suggest that the distance scales on the distance from the train centre Y, and that 

the pressure / force coefficients should scale on the cross sectional size of the train (presumably 

allowing for any large scale flow separation around the nose) and with Y 
-3

. This curve, plotted as 

    
      against      is shown in figure 23. It can be seen to be of the expected form, and is anti-

symmetric around the origin. Now clearly the experimental results shown in section 3 lack this degree 

of symmetry with the magnitudes of the positive and negative x pressure coefficient time histories 

being significantly different. We thus explore in what follows whether the traces for the negative and 

positive x portions of these curves scale in the way suggested by equation (5). To enable this 

comparison to be made the hoarding and overbridge data has been analysed to give overall forces in 

the x direction through either finding the height averaged pressure coefficient (for the vertical 

hoardings) or the pressure coefficient averaged over a 2m length at the centre of the overbridge span. 

These have then been aligned so that the zero crossing between the positive and negative peaks is at 

the origin in the x direction. Table 1 shows the maximum and minimum values for each case 
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considered together with the distances of these peaks from the origin. The ratio of the magnitudes of 

the maximum and minimum peaks and the ratio of the distances to the peaks are given, as an 

indication of the lack of symmetry. In addition, for each set of cases for any one train, the power law 

exponent for the variation of the maximum and minimum coefficients with respect to Y (for the 

hoarding) or bridge height h, and is given. Similarly the power law exponent for the variation of the 

position of the peaks with Y is also given. It can be seen from table 1 that there is a considerable 

degree of asymmetry, both in the maximum and minimum values and the positions of these values. 

Whilst some trends are apparent in the data, it is difficult to generalise. The slopes of the best fit lines 

with Y show that for the vertical hoardings, the peak values fall off with distance from the train with an 

exponent somewhere between 1 and 2 whilst for the overbridge case the exponent takes on values of 

2.5 to 4.0 the latter being closer to the value of 3.0 expected from equation 5. Both the positions of the 

maximum and minimum peaks increase with distance from the train (i.e. the peaks become more 

spread out and diffuse), although the variation with Y or h has an exponent of rather greater than the 

value of unity that would be expected by the scaling with distance from the track centre line suggested 

above.  

These points being made, the experimental data was then normalised with the magnitudes of the 

positive and negative peaks, and the magnitudes of the peak positions – effectively assuming 

different scaling for positive and negative values of x. The results are shown for the three classes of 

configuration in figure 24 and compared with the form of equation (5). It can be seen that the data fits 

this form well between the positive and negative peaks, but deviates significantly for regions outside 

the peaks. Inspection of the results shows that in general the greatest deviation is for small values of 

Y or h, i.e. with the structures close to the train.  

Thus it can be concluded that the scaling of the pressure coefficient time histories is complex and not 

amenable to a general parameterisation, although the theoretical curves of [13] do give a useful 

framework for analysis and discussion. 

6. Conclusions  

From the data presented in the preceding sections the following main conclusions can be drawn. 
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a) The use of the TRAIN rig methodology has been shown to be a robust way of obtaining 

aerodynamic loading on a wide variety of trackside structures in an efficient manner, with the results 

showing good run-to-run repeatability.  

b) The nose pressure coefficient distribution caused by passing trains is of the expected type, with a 

positive pressure peak followed by a negative pressure peak. In general, the peaks are not 

symmetrical i.e. they do not have the same magnitudes. 

c) In general the surface pressure coefficients generated by the class 66 freight locomotive are 

greater than those generated by the class 158 multiple unit, which are themselves greater than those 

generated by the Class 390 Pendolino. 

d) For the hoarding structures, the trackside negative peak is very indistinct. 

e) The pressure coefficients across the overbridges, show a roughly parabolic fall off from the centre 

line. The coefficients fall as overbridge height increases, but are insensitive to the width of the bridge 

in the along track direction, except for the smallest bridge widths. 

f) The canopy pressure coefficients show little variation across the canopy, except very close to the 

canopy edge. The effect of back wall distance on the canopy pressures is also small. For the blunter 

trains, a vertical standing pressure wave appears to be generated in the canopy / platform space.   

g) A comparison of the current results with a range of earlier measurements and calculations at both 

model scale and full scale show a reasonable agreement, although the nature of many of the earlier 

results makes a precise comparison difficult.  

h) There are indications that the surface pressures transients on vertical surfaces such as hoarding 

are well correlated with slipstream velocities. 

i) The scaling of the pressure transient time histories is complex and not amenable to easy 

generalisation. That being said, the theoretical approach of Sanz-Andres et al (2004) offers a 

potentially useful framework for the consideration of these results.  
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Notation 

A Area of train in analysis of [13] (m2)  

Cp Pressure coefficient    p/0.5v2 

CF Integrated force coefficient 

CFMAX Maximum integrated force coefficient 

CFMIN Minimum integrated force coefficient 

h Distance from top of rail to overbridge  / canopy (m) 

H Height of vertical structure in analysis of Sanz-Andres et al (2004) (m)  

p Pressure relative to ambient (Pa) 

u Longitudinal slipstream velocity (m/s) 

v Lateral slipstream velocity (m/s) 

w Vertical slipstream velocity (m/s) 
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V Train / model velocity (m/s) 

x Distance along the track (m) 

xMAX Distance of maximum pressure peak from pressure zero crossing point (m) 

xMIN Distance of minimum pressure peak from pressure zero crossing point (m) 

y Lateral distance from centre of track (m) 

y’ Lateral distance from edge of platform (m) 

Y Lateral distance of vertical structures from centre of track (m) 

Y’ Lateral distance of vertical structures from platform edge (m) 

z Vertical distance from the track (m) 

z’ Vertical distance from top of platform (m) 

 Density of air (kg/m3)  
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Captions for figures 

 

Figure 1 Pressure transients from passing trains (from [1]) 

Figure 2 The TRAIN Rig 

Figure 3 Test train models 

Figure 4 Co-ordinate system 

Figure 5 Photographs of modelled structures 

Figure 6 Effect of multiple runs and data smoothing on pressure coefficient distributions 

Figure 7 Hoarding pressure coefficients at 0.25m height at different distances from nearest rail or 

from platform edge  (a – Class 390, trackside; b- Class 390 – platform; c – Class 158, trackside; d- 

Class 158 – platform; e – Class 66, trackside; f- Class 66 – platform)  

Figure 8 Comparison of pressure coefficients caused by different train models on hoardings (a- 

trackside hoardings, 0.25m from bottom of hoarding, 0.7m from rail; b – platform hoardings 0.25m 

above bottom of hoarding, 0.2m from platform edge)  

Figure 9 Pressure coefficients on overbridge models caused by passage of Class 390 model (a – 

lateral peak to peak pressure variation on 10m wide overbridges of different heights; b – centreline 

pressure distributions on 10m wide overbridges of different heights; c – lateral peak to peak variations 

on 4.5m high overbridges of different widths; d – centreline pressure distributions on 4.5m high 

overbridges of different widths)  

Figure 10 Pressure coefficients on overbridge models caused by passage of Class 158 model (a – 

lateral peak to peak pressure variation on 10m wide overbridges of different heights; b – centreline 

pressure distributions on 10m wide overbridges of different heights) 
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Figure 11 Pressure coefficients on overbridge models caused by passage of Class 66 model (a – 

lateral peak to peak pressure variation on 10m wide overbridges of different heights; b – centreline 

pressure distributions on 10m wide overbridges of different heights; c – lateral peak to peak variations 

on 4.5m high overbridges of different widths; d – centreline pressure distributions on 4.5m high 

overbridges of different widths)  

Figure 12 Comparison of pressure coefficient distributions for 10m wide, 4.5m high overbridges for all 

train models 

Figure 13 Variation of pressure coefficient across 4.0m high canopy with 2.7m back wall (a –  Class 

390; b –  Class 158; c – Class 66) 

Figure 14 Variation of pressure coefficient at edge of canopy for different canopy heights and back 

wall distances (a – Class 390; b – Class 158; c – Class 66) 

Figure 15  Effect of back wall distance on pressures close to leading edge of canopy 

Figure 16 Variation of pressure coefficient at the canopy edge with different train types for a 4.0m 

high canopy with a 2.7m back wall. 

Figure 17 Comparison of pressure coefficients caused by all train models close to the edge of the 

trestle platform 

Figure 18 Comparison of earlier TRAIN Rig pressure coefficients measurements on the side of a 

stationary train with current TRAIN Rig hoarding data, (TRAIN Rig measurements given by solid lines) 

[8] 

Figure 19 Comparison of earlier full scale pressure coefficients measurements on the side of a 

stationary Class 390 with current TRAIN Rig hoarding data, (TRAIN Rig measurements given by solid 

lines). [8] 

Figure 20 Comparison of current TRAIN Rig hoarding data with full scale Northallerton 

measurements, (TRAIN Rig measurements given by solid lines) [9] 
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Figure 21 Comparison of current TRAIN Rig data with full scale East Midland Parkway 

measurements, (TRAIN Rig measurements given by solid lines). [10] 

Figure 22. Slipstream velocity traces around the nose of a Velaro S103 high speed train, 2.5m from 

the track centre line, 0.2m above top of rail [12] - the graph shows the longitudinal, and lateral 

components of horizontal slipstream velocity normalised by the train speed; distance is measured 

from an arbitrary point ahead of the train  

Figure 23. Plot of equations (5) – load transients from the analysis of [13] 

Figure 24 Normalised pressure transients 
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Figure 1 Pressure transients from passing trains (from [1]) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 The TRAIN Rig 
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a) Class 390 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) Class 158 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) Class 66 
 

Figure 3 Test train models 
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Figure 4 Co-ordinate system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
 

a) Hoarding (from above)   b) Overbridge (from side of track) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

c) Canopy     d) Trestle platform (from side of track) 
 
 

Figure 5 Photographs of modelled structures 
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(a)                                                                       (b)  

Figure 6 Effect of multiple runs and data smoothing on pressure coefficient distributions 
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   (e)      (f) 

 

Figure 7 Hoarding pressure coefficients at 0.25m height at different distances from nearest rail or 

from platform edge  (a – Class 390, trackside; b- Class 390 – platform; c – Class 158, trackside; d- 

Class 158 – platform; e – Class 66, trackside; f- Class 66 – platform)  
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   (a)      (b) 

Figure 8 Comparison of pressure coefficients caused by different train models on hoardings (a- 

trackside hoardings, 0.25m from bottom of hoarding, 0.7m from rail; b – platform hoardings 0.25m 

above bottom of hoarding, 0.2m from platform edge)  
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   (c)      (d) 

Figure 9 Pressure coefficients on overbridge models caused by passage of Class 390 model (a – 

lateral peak to peak pressure variation on 10m wide overbridges of different heights; b – centreline 

pressure distributions on 10m wide overbridges of different heights; c – lateral peak to peak variations 

on 4.5m high overbridges of different widths; d – centreline pressure distributions on 4.5m high 

overbridges of different widths)  
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(a) (b) 

Figure 10 Pressure coefficients on overbridge models caused by passage of Class 158 model (a – 

lateral peak to peak pressure variation on 10m wide overbridges of different heights; b – centreline 

pressure distributions on 10m wide overbridges of different heights) 
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Figure 11 Pressure coefficients on overbridge models caused by passage of Class 66 model (a – 

lateral peak to peak pressure variation on 10m wide overbridges of different heights; b – centreline 

pressure distributions on 10m wide overbridges of different heights; c – lateral peak to peak variations 

on 4.5m high overbridges of different widths; d – centreline pressure distributions on 4.5m high 

overbridges of different widths)  
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Figure 12 Comparison of pressure coefficient distributions for 10m wide, 4.5m high overbridges for all 

train models 
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      (c) 

Figure 13 Variation of pressure coefficient across 4.0m high canopy with 2.7m back wall (a –  Class 

390; b –  Class 158; c – Class 66)  
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   (a)      (b) 

 

 

      (c) 

Figure 14 Variation of pressure coefficient at edge of canopy for different canopy heights and back 

wall distances (a – Class 390; b – Class 158; c – Class 66) 

 

 

 

 

 

 

 

 

 

 

Figure 15  Effect of back wall distance on pressures close to leading edge of canopy 
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Figure 16 Variation of pressure coefficient at the canopy edge with different train types for a 4.0m 

high canopy with a 2.7m back wall. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 17 Comparison of pressure coefficients caused by all train models close to the edge of the 

trestle platform 
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Figure 18 Comparison of earlier TRAIN Rig pressure coefficients measurements on the side of a 

stationary train with current TRAIN Rig hoarding data, (TRAIN Rig measurements given by solid lines) 

[8] 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Comparison of earlier full scale pressure coefficients measurements on the side of a 

stationary Class 390 with current TRAIN Rig hoarding data, (TRAIN Rig measurements given by solid 

lines). [8] 
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Figure 20 Comparison of current TRAIN Rig hoarding data with full scale Northallerton 

measurements, (TRAIN Rig measurements given by solid lines) [9] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 Comparison of current TRAIN Rig data with full scale East Midland Parkway 

measurements, (TRAIN Rig measurements given by solid lines). [10] 
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Figure 22. Slipstream velocity traces around the nose of an ICE-1 train, 2.85m from the track centre 

line, 0.5m above top of rail [11] - the graph shows the longitudinal (u) and lateral (v) components of 

horizontal slipstream velocity normalised by the train speed; distance is measured from an arbitrary 

point close to the train nose  

 

 

 

 

 

 

 

 

 

 
 

Figure 23. Plot of equations (5) – load transients from the analysis of [12] 
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(a) Trackside hoardings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
(b) Overbridges  

 
Figure 24 Normalised pressure transients 
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 Y (m) CFmax CFmin xmax (m) xmin (m) CFmax/ 
CFmin 

xmax/ xmin 

Slope of regression line with Y 

CFmax CFmin xmax  xmin  

Class 390 
hoarding 

1.45 0.37 -0.21 -1.16 1.06 1.73 1.10 

-1.45 -1.06 1.08 0.61 1.95 0.28 -0.18 -1.26 0.96 1.57 1.32 

2.75 0.15 -0.11 -2.29 1.54 1.35 1.48 

Class 158 
hoarding 

1.45 0.47 -0.54 -0.86 0.57 0.88 1.51 

-1.40 -1.08 1.33 1.47 1.95 0.35 -0.39 -1.33 0.91 0.90 1.46 

2.75 0.19 -0.27 -2.03 1.47 0.72 1.38 

Class 66 
hoarding 

1.45 0.67 -0.64 -0.75 0.66 1.05 1.13 

-1.09 -0.39 1.65 1.59 1.95 0.52 -0.68 -1.39 1.28 0.76 1.09 

2.75 0.33 -0.50 -2.16 1.85 0.67 1.17 

Class 390 
overbridge 

4.50 0.18 -0.34 -2.02 1.89 0.53 1.07 

-2.44 -3.61 1.70 1.23 
5.00 0.15 -0.24 -3.11 2.26 0.63 1.38 

5.50 0.11 -0.16 -3.46 2.53 0.68 1.37 

6.00 0.09 -0.12 -3.31 2.69 0.75 1.23 

Class 158 
overbridge 

4.50 0.23 -0.35 -1.43 1.25 0.66 1.14 

-2.60 -3.45 2.96 2.08 
5.00 0.19 -0.24 -1.88 1.46 0.80 1.29 

5.50 0.13 -0.18 -2.28 1.94 0.75 1.17 

6.00 0.11 -0.13 -3.47 2.21 0.88 1.57 

Class 66 
overbridge 

4.50 0.42 -0.84 -1.36 1.00 0.50 1.36 

-2.20 -2.69 3.23 2.93 
5.00 0.34 -0.66 -1.58 1.41 0.51 1.12 

5.50 0.27 -0.50 -2.17 1.87 0.54 1.16 

6.00 0.22 -0.39 -3.49 2.32 0.57 1.50 

Table 1 Scaling parameters of pressure coefficient time history  

 

 

 
 

 

 


