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Distributed Cooperative Energy Management System 

of Connected Hybrid Electric Vehicles with 

Personalized Non-Stationary Inference 
 

2Ji Li, Member, IEEE, Quan Zhou, Member, IEEE, Yinglong He, Huw Williams, Hongming Xu, and Guoxiang Lu 

Abstract—This paper develops a distributed cooperative energy 

management system with two distributed control layers for speed-

coupling plug-in hybrid electric vehicles. By introducing 

personalized non-stationary inference, this system can fuse driving 

behavior and vehicle state information to adaptively adjust power-

split control parameters for the improvement of vehicle energy 

economy. In the on-board control layer, five sets of personalized 

control parameters are optimized offline by using chaos-enhanced 

accelerated particle swarm optimization. In the distributed 

control layer, interval type-2 fuzzy sets are applied to develop a 

real-time driving style recognition function. Driving behavior is 

detected remotely, via the vehicle to everything network, and 

downloaded to adaptively adjust power-split control parameters 

in the on-board vehicle controller. Hardware-in-the-loop testing is 

carried out based on the four laboratory driving cycles and four 

personal driving cycles. The proposed system has been 

demonstrated with strong robustness that saves energy by up to 

5.25% over the equivalent consumption minimization strategy 

(ECMS), especially for gentle drivers. Even under harsh 

communication conditions (with signal loss 80+%), it still 

performs better than the ECMS (by 0.57%) and the series-parallel 

control strategy (by 2.66%). 

 
Index Terms—Connected hybrid electric vehicle; distributed 

decision-making; energy management personalization; interval 

type-2 fuzzy logic set; non-stationary inference 

ABBREVIATION 

ECMS Equivalent consumption minimization strategy 
PHEV Plug-in hybrid electric vehicles 

EMS Energy management system 

CD Charge depleting 
CS Charge sustaining 

FLC Fuzzy logic controller 

V2X Vehicle to everything 
V2I Vehicle-to-infrastructure 

SP Series-parallel 

ICE Internal combustion engine 
ISG Integrated starter-generator 

SoC State of charge 

CAPSO Chaos-enhanced accelerated particle swarm optimization 
IT2 Interval type 2 

APSO Accelerated particle swarm optimization 

NOMENCLATURE 

𝑀 Gross mass 

𝐴𝑓 Windward area 

𝑅𝑤ℎ Tire rolling radius 
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𝐶𝑑 Air drag coefficient 

𝑖0 Differential ratio 

𝑖𝑔 Transmission ratio 

𝑇𝑑 Torque demand 

𝑛𝑑 Speed demand 

𝑔 Gravitational constant 

𝛿 Coefficient of rolling friction 

𝑢𝑎 Vehicle speed 

𝜃 Slope grade 

𝝃 Power-split vector 

𝑇𝑚𝑜𝑡 Trans-motor torque 

𝑛𝑚𝑜𝑡 Trans-motor rotation speed 

𝑇𝑖𝑐𝑒 Engine torque 

𝑛𝑖𝑐𝑒 Engine rotation speed 

𝑃𝑔𝑒𝑛 Integrated starter-generator power 

𝜒 Proportionality factor 

𝑆𝑜𝐶 State of charge 

𝛿 Degree of accelerator pedal depression 

𝑒 Error of tracking speed 

𝜆 Style factor 

𝐸𝑓𝑢𝑒𝑙 Instantaneous fuel consumption 

𝜔𝑙 Firing strength of rule 𝑙 
𝜇�̃�𝑖

𝑙 Membership grades 

𝐾𝑟 rth local linear control gain 

𝑢 Crisp output 

𝜙 Control parameter of power-split rules 

I. INTRODUCTION 

LETRIC vehicles, including battery electric vehicles, 

plug-in hybrid electric vehicles (PHEVs), and fuel cell 

electric vehicles are the main contributors towards net 

zero emissions in the transport sector [1]. To bridge the 

transition to battery electric and other renewable vehicles, 

hybrids and plug-in hybrids play an essential role in prior 

technical experience and market expansion [2]. The design of 

the energy management system (EMS) for PHEVs is critical to 

minimizing energy consumption and exhaust emissions, and it 

is a challenging task that needs to deal with the uncertainty and 

the complexity of driving conditions [3]. 

    Heuristic supervisory control systems have been favored by 

industry due to easy implementation and strong robustness [4]. 

These rules are designed based on human expertise and/or 

mathematical models, and there is usually no prior driving 

information [5]. In automotive industry, charge depleting (CD) 

and charge sustaining (CS) strategy is widely used for PHEVs 

due to its explicit mode definition [6]. There is a challenging 
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task to define mode switching conditions and their performance 

is mainly determined by expert knowledge and driving scenario 

choice. To reduce the development workload for energy 

management controllers, Quan et al. research a transferable 

representation modelling routine, where two artificial 

intelligence technologies of deep neural network [7] and 

Gaussian process regression [8] are developed to cooperate 

with an adaptive neuro-fuzzy inference system for knowledge 

transfer of the energy management controller. The equivalent 

consumption minimizing strategy (ECMS) [9] is an online 

method to transform a global minimization problem into an 

instantaneous minimization problem that must be solved at each 

time step. The equivalent factor can be evaluated on the basis 

of past and predicted data of the driving conditions [10]. 

Dynamic programming [11] is able to effectively deal with the 

nonlinearity and constraints of problems e.g. PHEV energy 

management. Its optimal results can be used to adapt to similar 

driving conditions by re-calibration into fixed rules [12] or 

neural networks [13]. However, their limitations remain 

obvious due to computational burden and the poor adaptability 

of the control system to various driving styles. 

    As the primary decision-maker of modern vehicles, human 

driver plays an important role in driving safety as well as in eco-

driving. Therefore, a vehicle control strategy that seeks a highly 

optimized performance which requires optimizing the system 

composed of the vehicle and the driver, needs to explicitly 

consider driver behavior [14]. For the classification of driving 

events, driving style can be grouped according to the fuel 

already contained or the total energy consumption [15], [16]. 

The use of the rule base algorithm unifies simplicity, is easy to 

explain and implement, but limits the number of parameters that 

can be managed. Larger sets of variables generate unnecessarily 

complex rules that can be substituted by fuzzy logic maps. Syed 

et al. proposed an fuzzy logic algorithm to evaluate optimal 

operation of the pedals in HEVs [17]. The algorithm can 

monitor the operation of the gas pedal and brake pedal, and then 

can calculate the appropriate correction value and produce 

tactile feedback to the driver. Unsupervised algorithms do not 

need to understand the underlying process. In the work of 

Miyajima et al., a Gaussian mixture model was implemented 

based on the analysis of car-following behavior and pedal 

operation spectrum [18]. However, the output needs to be 

guided based on the number of interpretations and clusters. 

    Distributed control provides advantages in terms of faster 

computation, and less communication, and increased 

modularity [19]. For future connected and automated vehicles, 

distributed control could also have security advantages, 

allowing coordination between networked storage systems 

without data centralization, which could lead to intellectual 

property and privacy concerns [20]. Assisted by edge and cloud 

computing services, it is possible to reduce computational 

burden of an on-broad vehicle controller and apply complex 

algorithms for restricting the vehicles’ real-world emissions via 

inter-vehicle communication [21]. Duan et al. present a 

distributed cloud fog computing architecture for energy 

management of smart grids considering the high penetration of 

PHEVs [22], where this distributed framework let neighboring 

agents to get into a consensus with each other. With help of 

Grey Wolf Optimizer, the simulation result shows the 

appropriate efficiency of this layout. Li et al. and Hu et al. 

demonstrated that adaptive modelling can be achieved through 

vehicle to everything (V2X) data and connected computing 

resources [23], [24]. In the Lin et al., a software defined Internet 

of Vehicles architecture based on edge intelligence distributed 

learning is established for supporting real-time vehicle routing 

decision via distributed multi-agent reinforcement learning 

models [25]. By numerical study, this scheme has an ability to 

alleviate traffic congestion with the dynamic changes of the 

road environment. However, as Li et al. pointed out in [26], 

communication issues, such as time delays, quantization errors, 

and packet loss pose a significant challenge to vehicle 

distributed control. Up to now, few noticeable works have been 

documented within the context of EMSs of connected vehicles 

considering communication issues. 

    It is clear from the literature study above, the development of 

next generation of PHEV EMSs needs to overcome the 

following existing technical barriers: 1) driving behaviors 

cannot be captured and utilized well in the onboard EMSs due 

to limits of computation resources; 2) design of heuristic rules 

for EMSs is dependent on human expertise and has poor 

adaptability to various driving styles; and 3) for distributed 

EMSs, communication issues happen from time to time but the 

treatment for signal losses and delays is rarely considered in the 

literature. To systematically address the identified technical 

challenges, this paper develops a distributed cooperative energy 

management system for connected PHEVs that incorporates the 

factor of driving styles into the vehicle control optimization. 

Based on the authors’ recent research in optimization of hybrid 

powertrain systems in distributed decision making [27] and 

fusion of driver-related information [28], a new approach of 

using personalized non-stationary inference is introduced to 

increase adaptability of the EMS to various driving styles. 

    This paper is organized as follows: after the introduction, a 

connected PHEV with its EMS is analyzed in section II. The 

mechanism of the proposed distributed cooperative EMS is 

described in section III, which involves two principal parts of 

inference rule personalization and driving style recognition. 

Section IV sets out the testing cycle and the HiL experimental 

platform that was used. Section V discusses the results of: the 

energy-saving performance; the vehicle system performance; 

and the communication efficiency comparison. Conclusions are 

summarized in section VI. 

II. CONNECTED HYBRID ELECTRIC VEHICLES 

Modern road traffic is a complicated and interconnected 

system, which incorporates traffic information centers, 

monitoring infrastructure, and vehicles with diverse energy 

sources. The V2X network is the communication medium of 

intelligent transport systems, connecting vehicles, 

infrastructure and information centers, wherein dedicated short-

range communication (DSRC) and 4G-LTE are two widely 

used candidate protocols. V2X possesses powerful cloud 

computing facilities that can implement an advanced 

optimization scheme for connected vehicles. This system has 



 

great potential to save energy for each connected vehicle and 

even for the whole transport system by managing traffic and 

individual vehicle operation. 

 
Fig. 1. The connected vehicle communication framework 

 

Fig. 1 shows the connected vehicle communication scenario 

studied in this paper, and the workflow is as follows: 1) roadside 

units receive the PHEV real-time state signal through the 

vehicle-to-infrastructure (V2I) network (data throughput for a 

single connected vehicle at 60 km/h: DSRC: 27Mbps; 4G-LTE: 

4Mbps [29]); 2) the information center collects the PHEV real-

time state signal from the roadside units and operates an 

advanced optimization scheme to determine optimal control 

signals; and 3) the information center refers the control signal 

to the vehicle controller via the roadside units. This framework 

with cyber-physical technology can implement advanced 

intelligent algorithms to enable real-time driver-oriented energy 

management, which was formerly restricted by the performance 

of isolated vehicle controllers. As an increase of connected 

vehicles and their speeds, however, signal delay or loss of using 

either DSRC or 4G-LTE will come out as reported in [30] that 

needs be carefully concerned in the design of distributed EMSs. 

A. PHEV Configuration 

As illustrated in Fig. 2(a), the PHEV has a series-parallel (SP) 

topology, which comprises a 63kW internal combustion engine 

(ICE), a 32kW integrated starter-generator (ISG), and a 75kW 

trans-motor with (i.e., an electric motor that has a float stator 

[31]), where their state-steady efficiency maps are validated by 

Argonne National Laboratory. The main parameters for vehicle 

modelling are illustrated in Table I. They were sourced from the 

authors' recent work [32] and are representative of a typical 

family car, where a 2RC electrical model [33] has been adopted 

to formulate a battery pack which consists of the battery cell 

type NCR-18650 series supplied by Panasonic Automotive & 

Industrial System Ltd. 

TABLE I 

MAIN PARAMETERS OF THE PHEV MODEL 

Symbol Parameters Values 

𝑀 Gross mass 1,500 kg 
𝐴𝑓 Windward area 2 m2 

𝑅𝑤ℎ Tire rolling radius 0.3 m 

𝐶𝑑 Air drag coefficient 0.3 

𝑖0 Differential ratio 3.75 

𝑖𝑔 Transmission ratio 3.55/1.96/1.30/0.89/0.71 

 
Fig. 2. The studied series-parallel PHEV: a) architecture of hybrid powertrain; 

and b) control strategy 

 

By controlling the disengagement/engagement of the clutch 

and lock, the PHEV can work on three operational modes, i.e., 

EV mode, parallel mode, and series mode. If the clutch is 

disengaged, and Lock is engaged, the PHEV will work at the 

EV mode like an electric vehicle. If the clutch is engaged, and 

Lock is disengaged, the PHEV will work at the parallel mode 

where the engine is used for propulsion. If the clutch is 

disengaged, and lock is engaged, the PHEV will work at the 

series mode where the engine is used for charging the battery. 

A backward facing vehicle model considering longitudinal 

dynamics is used in this study. The torque demand 𝑇𝑑  and 

rotation speed demand 𝑛𝑑  after a bi-level-gear speed reducer 

are: 

𝑇𝑑 = (𝛿𝑚𝑎 +
𝐶𝑑𝐴𝑓𝑢

2

21.15
+𝑚𝑔𝑠𝑖𝑛𝜃 + 𝑚𝑔𝑓𝑐𝑜𝑠𝜃) ∙

𝑅𝑤ℎ
𝑖0 ∙ 𝜂𝑖0

𝑛𝑑 = 9.55 ∙
𝑢𝑎

3.6 ∙ 𝑅𝑤ℎ }
 
 

 
 

(1) 

where,  𝑔 =  9.81𝑚/𝑠2  is gravitational constant; 𝛿 = 1 is the 

coefficient of rolling friction; 𝑢𝑎 is the vehicle speed in km/h 

which is defined by driving cycles; 𝜃 = 0 is slope grade; 9.55 

is a conversion coefficient from radian per second to revolution 

per minute. For this model to be valid, we assume the PHEV 

has an available energy budget for a particular journey. 

B. Baseline Energy Management Strategy 

    A typical SP control strategy [12] including electric traction 

mode (EV), charge depletion (CD) and charge sustaining (CS) 

modes is adopted in the on-board controller, as illustrated in 

Fig. 2(b), to ensure robustness and computational efficiency of 

the EMS. The inputs are vehicle torque demand, 𝑇𝑑 , speed 

demand, 𝑛𝑑 , and battery state of charge, 𝑆𝑜𝐶 . It is used to 

determine a power-split vector 𝝃 which is constructed in Eq. (2) 

from the trans-motor torque, 𝑇𝑚𝑜𝑡; the trans-motor speed, 𝑛𝑚𝑜𝑡; 
the ICE torque, 𝑇𝑖𝑐𝑒; the ICE speed, 𝑛𝑖𝑐𝑒; and the ISG power, 

𝑃𝑔𝑒𝑛. 



 

𝝃 = [𝑇𝑚𝑜𝑡 𝑛𝑚𝑜𝑡 𝑇𝑖𝑐𝑒 𝑛𝑖𝑐𝑒 𝑃𝑔𝑒𝑛]                (2) 
In the EV mode (when 𝑆𝑜𝐶 > 0.5 or 𝑃𝑑 < 0), electricity can be 

provided to satisfy power demand of the PHEV independently 

so that both the ICE and the ISG do not need to work. The 

power allocation under the EV mode is described as follows: 

 𝝃 = [𝑇𝑑 𝑛𝑑 0 0 0]                          (3) 
In the CD/CS mode (when 𝑆𝑜𝐶 ≤ 0.5 and 𝑃𝑑 ≥ 0), a PHEV 

will normally favor electric traction, and then the battery will 

subsequently be charged through the power grid. If the battery 

pack’s state of charge (SoC) falls below its target level, the ICE 

will be applied to charge the battery in a CS mode. In this state, 

the ECU will coordinate transition between series and parallel 

layouts to maximize the energy economy. A control parameter, 

𝜙𝑚𝑜𝑑𝑒  will introduced and calibrated in our recent study [32]. 

If 𝑃𝑑 > 𝜙𝑚𝑜𝑑𝑒 , the vehicle will work on parallel layout 

otherwise the vehicle will work on series layout. The detailed 

power distribution is described as follows: 

𝝃 = {
[𝑇𝑑 𝑛𝑑 ∙ (1 − 𝜒1) 𝑇𝑑 𝑛𝑑 ∙ 𝜒1 0]

[𝑇𝑑 𝑛𝑑 𝑇𝑖𝑐𝑒
′ (𝑃𝑔𝑒𝑛) 𝑛𝑖𝑐𝑒

′ (𝑃𝑔𝑒𝑛) 𝑃𝑔𝑒𝑛+ ∙ 𝜒2]
𝑆𝑒𝑟𝑖𝑒𝑠
𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

 (4) 

where, 𝑇𝑖𝑐𝑒
′  and 𝑛𝑖𝑐𝑒

′  are optimal torque and speed of the ICE 

converted based on demand power of the ISG 𝑃𝑔𝑒𝑛; 𝑃𝑔𝑒𝑛
+  is the 

maximum power of the ISG;  𝜒𝑖  (𝑖=1 or 2) is a proportionality 

factor determined by SoC as follows, 𝜒1  and 𝜒2  are for ICE 

control and ISG control, respectively [34]. 

𝜒𝑖(𝑆𝑜𝐶) 

=

{
 
 

 
 

1, 𝑆𝑜𝐶 ∈ [0,0.2]
1

1 + exp {(
𝑆𝑜𝐶
𝑆𝑜𝐶∗

+ 𝜙𝛽)𝜙𝛼}
, 𝑆𝑜𝐶 ∈ (0.2,0.5]

0, 𝑆𝑜𝐶 ∈ (0.5,0.8]

  (5) 

where, 𝑆𝑜𝐶∗ is a scaling coefficient of the BP’s SoC; and 𝜙𝑖,𝛼 

(𝑖=1 or 2) ∈ [0.01,50] and 𝜙𝑖,𝛽  (𝑖=1 or 2) ∈ [−6,6] are four 

control parameters introduced here to enable optimization of 

cut-in timing and conversion speed of the ICE and ISG. They 

separately define the position and slope of the curve in the 

logistic function. 

III. DISTRIBUTED COOPERATIVE ENERGY MANAGEMENT 

SYSTEM 

In order to improve adaptability of the EMS to various driving 

behaviors, the distributed cooperative EMS with two distributed 

control layers is developed and presented in Fig. 3. This EMS 

allows the fusion of driving behavior and vehicle state information 

to adaptively adjust power-split control parameters. In the on-board 

control layer, the chaos-enhanced accelerated particle swarm 

optimization (CAPSO) algorithm is implemented to offline 

optimize control parameters of the SP strategy based on the 

classified driving styles. In the distributed control layer, a real-time 

driving style recognition function using interval type-2 (IT2) fuzzy 

sets is developed to identify driving styles. The proposed EMS is 

expected to subvert the traditional reasoning process by activating 

its stationary inference. Via the V2X network, the distributed 

server receives uploaded feedback information, analyses driving 

behavior, and computes real-time control signals. Those signals 

will be downloaded to adjust the control parameters for minimizing 

the energy consumption and to maintain the SoC. 

 
Fig. 3. The framework of the proposed distributed cooperative EMS 

A．Inference Rule Personalization 

Before being able to adaptively adjust control parameters of the 

SP strategy, the control parameters need to be well defined. 

Inference rule personalization aims to tailor independent control 

parameters of the SP strategy for different driving behaviors. The 

design procedure of the inference rule personalization can be 

divided into three main steps: 1) driver-oriented cycle 

reproduction; 2) problem formulation; and 3) CAPSO 

implementation. 

In the driver-oriented cycle reproduction, the approach of 

processing the accelerator pedal’s angle of depression is 

commonly used for driving style classification. Zhang et al. 

provide a simplified sub-model to describe different types of 

driving style by adjusting a style factor 𝜆 [35] and it is used here. 

Through the model, driving cycles with different driving styles can 

be assigned to five grades, Very Gentle, Gentle, Normal, 

Aggressive, and Very Aggressive. The driver sub-model is drawn 

as follows: 

 
Fig. 4. The schematic diagram of the used driver sub-model 

 

where, the style factor 𝜆 ∈ [0,1] is an impact factor derived from 

the driving style type; the function 𝑃𝐼𝐷 is a proportional–integral–

derivative controller; 𝐾𝑝, 𝐾𝑖 , 𝐾𝑑  are coefficients of proportional, 

integral and derivative terms, respectively; and  𝑒𝑘  is the error 

between the target speed, 𝑣𝑟𝑒𝑓 , and the vehicle speed,𝑣𝑘. Through 

different settings of style factor, new degrees of gas and brake 

pedal depression with different driving styles can be obtained that 

is used to generate new driving profiles from the target speed, 𝑣𝑟𝑒𝑓 . 

    This paper studies a bi-objective optimization problem in PHEV 

energy management. The first optimization objective is to 

minimize the total energy consumption in fuel and electricity, 𝐽1. 

The second optimization objective is to maximize the value of the 

remaining battery SoC at the end of a given driving cycle, 𝐽2. They 

are given by 

𝐽1 =∑ (𝐸𝑓𝑢𝑒𝑙 + 𝐸𝑏𝑝)
𝑘=𝑘𝑒𝑛𝑑

𝑘=0

𝐽2 =
1

𝑆𝑜𝐶𝑒𝑛𝑑 }
 

 

                     (7) 



 

where, 𝐸𝑓𝑢𝑒𝑙  is the instantaneous energy consumption from the 

fuel tank; 𝐸𝑏𝑝 is the instantaneous energy consumption from the 

battery pack; and 𝑆𝑜𝐶𝑒𝑛𝑑 is the value of remaining battery SoC at 

the end of a given driving cycle. In the present work, the multi-

objective optimization is formulated by using the weighted sum 

method. 

    Consequently, the energy-flow control optimization problem 

with constraints is expressed by 

[𝜙1,𝛼
∗ 𝜙1,𝛽

∗ 𝜙2,𝛼
∗ 𝜙2,𝛽

∗ ] = argmin(𝐽1 𝐽2)        (8) 

𝑠. 𝑡. {
𝜙𝛼
∗ , 𝜙𝛼

 ∈ 𝒜 

𝜙𝛽
∗ , 𝜙𝛽

 ∈ ℬ
 

    For the given case study, the range of the control parameter 𝜙𝛼 

is between 휀𝛼
− = 0.01  and 휀𝛼

+ = 50 , its limits are the lowest 

requirement to ensure a close to 0-90 degree slope search area (this 

also depends on the length of sampling time); the control parameter 

𝜙𝛽 is constrained between 휀𝛽
− = −6 and 휀𝛽

+ = 6, and limited by 

its horizontal search range. 

 
Fig. 5. The workflow of inference rule personalization by using CAPSO 

 

    The standard accelerated particle swarm optimization (APSO) 

always maintains the attraction factors as a static value [36]: In 

repetitive experiments, however, the solution is largely unchanged. 

Inspired by chaotic mapping strategy, the CAPSO algorithm [37] 

has a higher convergence speed and a greater probability of finding 

a global optimum. For personalizing the conventional stationary 

inference rule, this algorithm is tailored with an additional nest for 

different driving behaviors to obtain the optimal power-split 

control parameters over the driver-oriented WLTCs. As illustrated 

in Fig. 5, for each driving behavior 𝑖, the position of each particle 

is updated via: 

𝑥(𝑗+1,𝑘) = (1 − 𝛿) 𝑥(𝑗,𝑘) + 𝛿 𝑔(𝑗,∗) + 휀(𝑗) 𝑟(𝑗,𝑘)          (9) 

where, 𝑔(𝑗,∗) is the best position in the 𝑗th iteration; 𝛿 and 휀 are the 

attraction and convergence factors of CAPSO algorithm; and 𝑟 

denotes a 𝑈[0, 1] random variable. Furthermore, 휀 and 𝛿 obey the 

following equations to update for each iteration: 

휀(𝑗) = 휀(0) 𝛾𝑗 ,

𝛿(𝑗+1) = 𝑎 𝛿(𝑗) (1 − 𝛿(𝑗)),
}                     (10) 

    In Eq. (9), the settings, 휀(0) = 0.9 and 𝛾 = 0.95, are adopted; 

and the attraction factor is mapped by the logistic map, wherein the 

initial values 𝛿(1) = 0.6 and 𝑎 = 4 are applied. Once the index of 

driving behavior 𝑖  reaches the terminal condition 𝐿 = 5 , the 

program will end and then optimized control parameters will be 

recorded. 

B．Driving Style Recognition 

To reduce computational burden on the onboard controller, 

driving style recognition is performed in the distributed control 

layer by the nonlinear model (recognizer) to monitor driving 

behavior, which includes an observation window, a type-2 FLC, 

and a final interpolation. 

Firstly, a short-term sliding window is launched to restrict the 

sampling size and extend the residence time of recorded samples. 

Here, the dataset of speed and acceleration signals is established, 

where each time step k of data is described as follows: 

(𝒗, 𝒂)𝑇 = [
𝑣𝑘−ℎ+1 𝑣𝑘−ℎ+2
𝑎𝑘−ℎ+1 𝑎𝑘−ℎ+2

⋯ 𝑣𝑘
⋯ 𝑎𝑘

]             (11) 

where, 𝒗  is a vector of vehicle speed (m/s) ; 𝒂  is a vector of 

vehicle acceleration (m/s2); and ℎ = 60s is time width of the 

short-term sliding window. As the core of the reasoning 

mechanism, a type-2 FLC is used to differentiate driving style 

during real-time driving, which can be expressed mathematically 

as follows 

𝜆 = FLC(𝑣𝑎𝑣𝑔 , 𝑎𝑟𝑛𝑔)                          (12) 

in which 

{
𝑣𝑎𝑣𝑔 =

∑ (𝒗)𝑇𝑖=ℎ
𝑖=0

ℎ
𝑎𝑟𝑛𝑔 = max(𝒂)

𝑇 −min(𝒂)𝑇
                 (13) 

where, driving style 𝜆 is a fuzzy logic function FLC of ranges of 

speed 𝑣𝑎𝑣𝑔  and acceleration 𝑎𝑟𝑛𝑔 , and ranges of vehicle 

acceleration are assumed to reflect driving proficiency. In general, 

drivers with higher driving proficiency have a relatively low range. 

Average values of vehicle speed are adopted as considered in [38] 

to reflect driving habits. 

    Differing from type-1 fuzzy sets, type-2 fuzzy sets have the 

ability to handle higher-order uncertainty factors (e.g., driving 

behavior) at lower computational cost. In this case, type-2 fuzzy 

sets using linguistic terms are regulated by standard triangular 

membership functions (MFs), where the degree of membership is 

expressed as a function of normalized values in the interval, [0,1]. 
In order to manage a nonlinear plant based on the IT2 T–S fuzzy 

model as described in the work of Cao et al. [39], an IT2 T–S FLC 

is designed, and its fuzzy rules can be described as follows: 

𝑅(𝑟): IF 𝑧1 is �̃�1
𝑟 and 𝑧2 is �̃�2

𝑟,…, and 𝑧𝜐 is �̃�𝜐
𝑟,  

THEN 𝑢𝑘 = 𝐾𝑟𝑥𝑘 ,         (𝑟 ∈ 𝐿 ≔ 1,2, … ,𝑚) 

where 𝐾𝑟  denotes the rth local linear control gain. The output of 

this FLC is determined to be 



 

𝑢(𝑘) =∑𝑓(𝜔𝑟
𝐿(𝑥), 𝜔𝑟

𝑈(𝑥))

𝑚

𝑟=1

𝐾𝑟 𝑥                 (14) 

𝜔𝑟
𝐿 and 𝜔𝑟

𝑈 meet the constraint, 

∑𝜔𝑟
𝐿(𝑥) + 𝜔𝑟

𝑈(𝑥)

𝑚

𝑟=1

= 1                          (15) 

and the value of 𝑓(𝜔𝑟
𝐿(𝑥), 𝜔𝑟

𝑈(𝑥))  is dependent on the type 

reduction methods and belongs to an interval. In this study, of 

minimax uncertainty bounds [40] is engaged for type reduction. 

Assigning (𝜔𝑟
𝐿(𝑥), 𝜔𝑟

𝑈(𝑥))/2  to (𝜔𝑟
𝐿(𝑥), 𝜔𝑟

𝑈(𝑥))  and 

substituting it into Eq. (21); leads to 

𝑢𝑘 ∈ [𝑢𝑘
(𝑂), 𝑢𝑘

(𝑀)]                              (16) 

Then, the uncertainty bounds can be calculated to be 

{
 
 
 

 
 
 𝑢𝑐,𝑘 = min

 
{𝑢𝑘

(𝑂)
, 𝑢𝑘
(𝑀)
}

𝑢𝑐,𝑘 = 𝑢𝑐,𝑘 −

[
 
 
 
 
 ∑ 𝜔

𝑖
−𝜔𝑖𝑚

𝑖=1

∑ 𝜔
𝑖𝑚

𝑖=1 ∑ 𝜔𝑖𝑚
𝑖=1

×
∑ 𝜔𝑖(𝐾𝑖 −𝐾1)𝑥
𝑚
𝑖=1 ∑ 𝜔

𝑖
(𝐾𝑚 − 𝐾𝑖)𝑥

𝑚
𝑖=1

∑ 𝜔𝑖(𝐾𝑖 − 𝐾1)𝑥
𝑚
𝑖=1 + ∑ 𝜔

𝑖
(𝐾𝑚 −𝐾𝑖)𝑥

𝑚
𝑖=1 ]

 
 
 
 
 
(17) 

The lower bound 𝑢𝑐,𝑘 is designated to be equal to the upper bound 

𝑢𝑐,𝑘 if only one rule is triggered (i.e., 𝑚 =  1). The crisp output of 

the FLC is 

{
𝑢𝑘 ≈

1

2
(𝑢𝑐,𝑘 + 𝑢𝑐,𝑘)

𝜆𝑘 = 𝑢𝑘

                          (18) 

For fairly comparative study, both the type-1 and type-2 MFs are 

designed by using widely-used triangle shapes, wherein their 

shapes are drawn following Ref. [39] and illustrated in Fig. 6. 

 
Fig. 6. MFs of the two input variables (i.e., 𝑣𝑎𝑣𝑔 and 𝑎𝑟𝑛𝑔): (a) type-1 MFs; (b) 

type-2 MFs 

 

There are 25 fuzzy rules defined and used to infer an output of the 

style factor, as shown in Table II. 

TABLE II 

RULE BASE FOR 5 × 5 FUZZY LOGIC INFERENCE 

𝑣𝑎𝑣𝑔 𝑎𝑟𝑛𝑔 

VS S M L VL 

VS VG VG G G N 

S VG G G N A 

M G G N A A 

L G N A A VA 

VL N A A VA VA 

    Finally, the optimized control parameters 𝜙𝛼, 𝜙𝛽 were used 

to fit to the style factor 𝜆 using the linear interpolation, 

𝜙 = 𝜙𝑖 + (𝜙𝑖+1 − 𝜙𝑖)
𝜆 − 𝜆𝑖
𝜆𝑖+1 − 𝜆𝑖

, 𝜆 ∈ [𝜆𝑖 , 𝜆𝑖+1] (19) 

where, index 𝑖 indicates the type of classified driving styles. 

Activated by Eq. (23), the proceed signal of driving style 𝜆 can 

be calculated and used to adjust the inference rules of the SP 

strategy based on mapping relations between the style factor 𝜆 

and the control parameters 𝜙𝛼 , 𝜙𝛽. 

IV. TESTING AND VALIDATION SET-UP 

A. Driving Cycles 

    In this research, four typical laboratory driving cycles 

including Worldwide harmonized Light vehicle Test Cycle 

(WLTC), China Light-Duty Vehicle Test Cycle (CLTC), EPA 

Federal Test Cycle (FTP-75), and New European Driving Cycle 

(NEDC) are considered as the baseline to produce personalized 

driving cycles via the sub-driver model [36] by adjusting the 

style factor λ. For each laboratory driving cycle, five style-fixed 

and one style-free driving cycles (by adding a white noise signal 

to the style factor) are generated, namely, V. Gentle, Gentle, 

Normal, Aggressive, V. Aggressive. 

TABLE III 

DRIVING INFORMATION OF FOUR SUBJECTS 

Driver Age Time to hold a 
driving license (yrs.) 

Annual 
mileage (mile) 

Driving 
geography 

A 27 10 2000 Urban 

B 24 7 2500 Hybrid 
C 26 10 1500 Hybrid 

D 26 4 6000 Motorway 

 

    In order to evaluate the vehicle system adaptability to real-

world driving scenarios, personal driving cycles collected from 

our current research [38] have been adopted. There are four 

human drivers involved to produce real-time driving patterns 

(with a 10Hz sampling frequency) of 20-min driving signals via 

interacting with a driving simulator (supported by a 

Thrustmaster T500RS). With respect to real-world road 

conditions, the road map model used with reconstructed traffic 

simulates a cyclic undivided highway with uphill, downhill, 

curved and straight roads and is provided by IPG CarMaker. 

Table III organizes driving-related information about six 

subjects. 

B. Hardware in the loop Experiment 

Hardware in the loop testing was carried out for the 

evaluation of the distributed system’s real-time performance. It 

is used to shows an implementability that the driving style 

recognizer can work in distributed control layer. Meanwhile, all 

control variables in the energy management system need to be 

solved in real time at the same time step in order to restore the 

real controller's calculation mechanism as much as possible. 

This research adopts the industry standard experimental 

facilities supplied by the ETAS Group. The framework of the 

HiL experimental platform is shown in Fig. 6. 

The distributed computing and V2I communication were 

performed by an ETAS ES910 and its basic components are a 

1.5GHz microprocessor with 4GB RAM and 1Gbps Ethernet 

communication. The function of driving style recognition was 



 

encoded into host PC-1 and flashed to the ES910 by ETAS 

INTECRIO. The DESKLABCAR functions as the PHEV with 

the local controller and communicates with the V2I interface 

(ES910) through a CAN bus. Models of the vehicle and the 

local controller were compiled in host PC-2 and downloaded to 

the DESK-LABCAR by the ETAS experimental environment 

via Ethernet protocol. In this study, the sampling time is 10 Hz 
and the vehicle performance is governed by the ETAS 

experimental environment in host PC-2. Thanks to the rule-

based SP control strategy, we found that there was still a surplus 

of computing resources in the experimental platform. 

 
Fig. 7. Hardware-in-the-loop experimental platform 

V. RESULTS AND DISCUSSION 

A. Pareto Analysis and Energy-saving Performance 

Before discussing the distributed cooperative EMS, the SP 

control strategies with the proposed personalized non-

stationary inference used in the on-board controller needs to be 

verified first. This section studies influence of the weighting 

factor and diverse driving styles on energy-saving performance. 

The targeting five driving cycles has 400km driving length 

which is composed of four laboratory cycles i.e., CLTC, 

WLTC, FTP-75, and NEDC, wherein each laboratory cycle is 

reproduced with five driving styles and extended to 100km. For 

fair comparison, the optimal control parameters of each case are 

obtained by using CAPSO algorithm with the same 100 

iterations. 

 
Fig. 8. Pareto Frontier for different settings of the weight factor 

 

Here, a Pareto analysis is performed as illustrated in Fig. 8 to 

investigate the influence of the weight value 𝑤 on the trade-off 

between minimizing the total used energy and maximizing the 

BP’s SoC. The weight value 𝑤 ∈ [0,1]  determines the 

preference of the objectives, namely, when 𝑤 = 0, the CAPSO 

algorithm only seeks to minimize the total used energy, 

similarly, when 𝑤 = 1, it only seeks to maximize the BP’s SoC. 

As can be seen, the total energy decreased by allowing the BP’s 

SoC to decrease from the most effective configuration, in which 

the reducing rate of the total energy is continuously decreasing. 

To reflect an equal preference towards relatively lower energy 

consumption with a safe level of SoC, the weight value is set 

here to a fixed value of 0.7 as considered in [32]. 

TABLE IV 

OVERALL PERFORMANCE COMPARISON OF USING 

DIFFERENT CONTROL STRATEGIES OVER COMBINED FOUR 

LABORATORY DRIVING CYCLES 

Driving 

style 

Control 

strategy 

Final 

SoC 

Equiv. fuel 

consumption 

(100km/L) 

Savings 

(%) 

Very SP-SI 0.402 5.872  

Gentle  ECMS 0.245 5.564 5.25% 

 SP-PNSI 0.370 5.402 8.00% 

 SP-SI 0.393 6.185  
Gentle ECMS 0.230 5.999 3.01% 

 SP-PNSI 0.381 5.824 5.84% 

 SP-SI 0.401 6.290  
Normal ECMS 0.231 6.170 1.91% 

 SP-PNSI 0.399 5.980 4.93% 

 SP-SI 0.414 6.415  

Aggressive ECMS 0.235 6.331 1.31% 
 SP-PNSI 0.402 6.205 3.27% 

Very SP-SI 0.399 6.492  

Aggressive ECMS 0.229 6.466 0.40% 
 SP-PNSI 0.384 6.278 3.30% 

 

Table IV compares energy-saving performance of three 

control strategies used in the studied vehicle system for each 

driving style. They are the SP control strategies with stationary 

inference (i.e., SP-SI) and the proposed personalized non-

stationary inference (i.e., SP-PNSI), and the equivalent 

consumption minimization strategy (ECMS). Evidently, the 

vehicle system using the proposed SP-PNSI strategy 

outperforms the system using ECMS or SP-SI strategy for 

different driving styles. There is an approximately linear 

relationship between the equivalent fuel consumption and 

aggressiveness of driving style, but the trending of rises is 

reduced gradually. It appears that too mild actions signify lower 

power demand so that the control strategy has greater latitude 

in optimizing between the different traction modes. By using 

the combined laboratory cycles in Very Gentle style, the results 

show the proposed SP-PNSI strategy has a significant reduction 

in equivalent fuel consumption (L/100 km) of 8.00% from the 

SP-PNSI one, compared to 5.25% reduction by using the 

ECMS. 

Fig. 9(a) further investigate impact of using different control 

strategies on energy-saving performance for each studied 

laboratory driving cycle during Normal in driving style. 

Overall, the proposed SP-PNSI strategy performs the lowest 

equivalent fuel consumption compared other two in all four 

cases (at least 0.66% of reduction, compared to ECMS). From 

a view of laboratory cycles, using the latest released CLTC as a 

target cycle for control optimization has the highest equivalent 



 

fuel consumption in studied four (up to 8.70% of rises 

compared to using NEDC). Over time, not only the emission 

regulations have become stricter, but the aggressiveness degree 

of driving patterns in the laboratory cycle has also increased 

significantly. Fig. 9(b) illustrates the engine operation map 

during the WLTC with Normal driving style, in which the color 

bar represents the corresponding thermal efficiency (%) of the 

ICE. The initial SoC value is set to 50% in order to focus on the 

conversion of multiple energy sources in CD/CS mode. It can 

be seen from the highlighted equivalent operating points (black 

dotted circle) that using the proposed SP-PNSI strategy leads to 

more operating points of the engine in the high-efficiency area 

(marked in yellow) compared to the ECMS and SP-SI strategy. 

 
Fig. 9. Energy-saving performance comparison of using different control 

strategies during Normal in driving style: a) over four laboratory driving cycles; 

and b) Engine operation map over WLTC 

B. Vehicle System Adaptability to Human Drivers 

To evaluate adaptability of the distributed cooperative EMS, 

HiL testing was conducted under real-time driving scenarios 

with four personal driving cycles (extend to 100km per each). 

The commonly used threshold-based driving style recognition 

algorithm with equalized classification has been involved as a 

control group to compare with the fuzzy-based them. 

Fig. 10 shows real-time performance of velocity and style 

recognition for four human drivers at the first 1200 s. Compared 

to threshold-based recognition algorithm, two fuzzy based they 

perform the smoother recognition signals with less 

overshooting. In Fig. 10(a), threshold-based recognition 

algorithm offers the signal with Very Aggressive in style when 

the vehicle velocity fluctuates greatly, but two fuzzy based they 

offer the signal with Aggressive in style. Fig. 11 illustrates 

driving aggressiveness distribution in 100 km for each driver by 

using three driving recognition algorithms. Compared to type-

1 and type-2 fuzzy based recognition algorithms, threshold-

based one is impossible to have a chance for a signal response 

with Very Gentle. This means that the threshold-based 

recognition algorithm lacks diversity in driving aggressiveness 

quantification. Relatively, the expression of type-1 and type-2 

fuzzy based are more precise and extensive. 

 
Fig. 10. Real-time performance of driving style recognition performance by 

using three driving recognition algorithms for: a) Driver A; b) Driver B; c) 

Driver C; and d) Driver D 

 
Fig. 11. Driving aggressiveness distribution (per 100 km) by using different 

algorithms for: a) Driver A; b) Driver B; c) Driver C; and d) Driver D 

 

On the performance of energy consumption, Table V 

summarizes equivalent fuel consumption of the proposed 

distributed cooperative EMSs by using the studied three style 

recognition algorithms. From a view of driver identity, Driver 

C with more aggressive driving style has the worst equivalent 

fuel consumption (6.94 L/100km) rather than other drivers 

have. Driver D is the most moderate one (6.43 L/100km). From 

a view of recognition algorithm, type-2 fuzzy based recognition 

algorithm shows superior energy-saving performance with up 

to 2.64% reduction in equivalent fuel consumption compared to 



 

other two algorithms. Because of optimization results based on 

laboratory cycles, vehicle system performance to human drivers 

has a certain degree of deterioration in equivalent fuel 

consumption but the proposed distributed cooperative EMSs by 

using type-2 fuzzy based recognition algorithm has the lowest 

affect. 

TABLE V 

ENERGY CONSUMPTION (L/100 KM) COMPARISON OF USING 

DIFFERENT DRIVING STYLE RECOGNITION ALGORITHMS 

Algorithm Driver A Driver B Driver C Driver D Averaged 

Threshold 6.93 6.74 7.14 6.48 6.82 
Type-1 6.88 6.62 6.90 6.44 6.71 

Type-2 6.81 6.56 6.79 6.38 6.64 

Averaged 6.87 6.64 6.94 6.43 6.72 

C. Effect of Communication Quality 

Efficient communication is the key to the success of the 

distributed system. However, signal loss and delay also happen 

from time to time. For distributed EMSs, the quality of the 

signal sent and received by the vehicle terminal as a whole has 

to be seriously considered. In view of this, this section discusses 

the impact of signal loss and delay on the distributed 

cooperative EMS, respectively. To emulate signal loss of the 

V2X network between the vehicle and roadside unit, six levels 

of signal loss rate are considered and were used to investigate 

the robustness of the proposed distributed cooperative EMS. A 

trigger square signal was designed to multiply the original 

signal, where each trigger segment is used to activate the 

function of driving style recognition and its duration is fixed at 

30 s. Conversely, the non-trigger segment is used to deactivate 

the function of driving style recognition and its duration is 

based on the signal loss rate. 

 
Fig. 12. System robustness performance under different degrees of: (a) signal 

loss and (b) delay 

 

From the result, the ECMS and the SP-SI strategy are not 

affected by signal loss because their control policies do not need 

to be updated during real-time driving. As signal loss rate 

increases, the energy consumption of the distributed 

cooperative EMSs using type-1 and type-2 fuzzy based style 

recognizers both increase gradually. When the signal is 

completely lost, their performance is still higher than that 

obtained by using the ECMS (1.11%) and the conventional SP-

SI strategy (4.31%). Therefore, the proposed the distributed 

cooperative EMSs can improve fuel economy even under harsh 

communication conditions, especially when applying type-2 

fuzzy based style recognizer. According to [30], 0-2000 ms is a 

regular range of latency of DSRC and 4G-LTE for connected 

vehicles. Fig. 12(b) investigates the impact of signal latency on 

equivalent fuel consumption of the proposed distributed 

cooperative EMS. The energy consumption of the distributed 

cooperative EMSs using type-1 and type-2 fuzzy based style 

recognizers are significantly affected by the signal delay, 

compared to that using threshold-based style recognizer. Under 

the condition of 2000ms delay, the energy consumption of 

using type-1 based style recognizer is not even as good as 

ECMS. 

TABLE VI 

EQUIVALENT FUEL CONSUMPTION (L/100 KM) COMPARISON 

OF THE PROPOSED DISTRIBUTED COOPERATIVE EMS UNDER 

DIFFERENT DEGREES OF SIGNAL LOSS AND DELAY 

Signal  Signal loss (%) 

delay (ms) 0 20 40 60 80 100 Overall 

0 6.64 6.71 6.76 6.87 6.89 6.94 6.80 
100 6.65 6.72 6.75 6.82 6.90 6.94 6.80 

200 6.7 6.72 6.77 6.86 6.88 6.94 6.81 

500 6.78 6.84 6.87 6.89 6.93 6.94 6.88 
1000 6.91 6.94 6.92 6.92 6.96 6.94 6.93 

2000 6.94 6.91 6.92 6.95 6.93 6.94 6.93 

Overall 6.77 6.81 6.83 6.89 6.91 6.94 6.86 

 

Table VI summaries equivalent fuel consumption of the 

proposed distributed cooperative EMS (Type-2) under different 

degrees of signal loss and delay. From a view of signal delay, 

200-1000 ms is the most sensitive interval of equivalent fuel 

consumption. Under the dual effects of signal loss and delay, 

the highest equivalent fuel consumption (6.96 L/100km) occurs 

at points with 1000 ms of delay and 80% of signal loss, even 

over those when signals fully loss (6.94 L/100km). When 

network signal delay is detected (>1000 ms), deactivating the 

function of driving style recognition may be an alternative way 

to ensure the vehicle system robustness. Through the 

comprehensive study, the proposed distributed cooperative 

EMS has a great potential to apply in cyber-physical system of 

connected vehicles in the near future. With less onboard 

computational burden and communication, the proposed 

system is expected to save more energy for PHEVs in practice. 

V. CONCLUSION 

This paper developed a distributed cooperative EMS for 

connected plug-in hybrid electric vehicles. By introducing 

personalized non-stationary inference, this system can fuse 

driving behavior and vehicle state information to adaptively 

adjust power-split control parameters for vehicle energy 

economy improvement. Through HiL testing, the proposed 

distributed cooperative EMS has an ability to adapt well to 

differing driving styles, even when there is signal loss and 

delay. The conclusions drawn from the investigation are as 

follows: 

1) Compared to the conventional SP strategy, up to 8% energy 

can be saved over WLTC by using a SP strategy with 

personalized non-stationary inference, especially for very 

gentle drivers. 



 

2) Over the studied four personal driving cycles, generally, 

the driving style recognizer driven by type-2 fuzzy sets 

helps save 1.04% of energy compared to that driven by 

type-1 fuzzy sets and save 2.64% of energy compared to 

that driven by threshold-based recognizer. 

3) In the survey scope of signal delay 0 - 2000 ms, signal 

delays of 200 ms and 1000 ms have the most sensitive 

scope on the energy consumption of the proposed system. 

Compared to no delay condition, an increase of equivalent 

fuel consumption varies from 0.14% to 1.91%. 

4) When the control signal is completely lost, energy-saving 

performance of the improved vehicle system is still higher 

than that of the ECMS (by 0.57%) and the conventional SP 

strategy (by 2.66%). 

    Three main contributions to be made from the investigation 

are: 1) the framework of the distributed cooperative EMS is 

designed to fuse driving behaviors and vehicle state information 

to adapt to various changes of driving behaviors for improving 

vehicle energy economy; 2) for personalizing the conventional 

stationary inference rule, chaos-enhanced accelerated particle 

swarm optimization is tailored with an additional nest for 

different driving behaviors to obtain the optimal power-split 

control parameters over the combined laboratory cycle; and 3) 

a driving style recognizer with type-2 fuzzy sets is developed to 

monitor driving behaviors in real-time and maintain the system 

robustness under different degrees of signal delay and loss. 
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